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Abstract

Notch signaling is essential for vascular physiology. Neomorphic
heterozygous mutations in NOTCH3, one of the four human NOTCH
receptors, cause cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy (CADASIL). Hypo-
morphic heterozygous alleles have been occasionally described
in association with a spectrum of cerebrovascular phenotypes
overlapping CADASIL, but their pathogenic potential is unclear. We
describe a patient with childhood-onset arteriopathy, cavitating
leukoencephalopathy with cerebral white matter abnormalities
presented as diffuse cavitations, multiple lacunar infarctions and
disseminated microbleeds. We identified a novel homozygous
c.C2898A (p.C966*) null mutation in NOTCH3 abolishing NOTCH3
expression and causing NOTCH3 signaling impairment. NOTCH3
targets acting in the regulation of arterial tone (KCNA5) or
expressed in the vasculature (CDH6) were downregulated. Patient’s
vessels were characterized by smooth muscle degeneration as in
CADASIL, but without deposition of granular osmiophilic material
(GOM), the CADASIL hallmark. The heterozygous parents displayed
similar but less dramatic trends in decrease in the expression of
NOTCH3 and its targets, as well as in vessel degeneration. This
study suggests a functional link between NOTCH3 deficiency and
pathogenesis of vascular leukoencephalopathies.
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Introduction

The Notch signaling pathway is an ancient inter-cellular signaling

mechanism playing central roles in vascular physiology (Gridley,

2007). Notch3, one of the four mammalian Notch family receptors, is

a heterodimeric, single-pass transmembrane protein functioning as

transcriptional activator. It is composed of a 34 epidermal growth

factor-like repeats (EGFRs) extracellular domain (Notch3ECD) non-

covalently attached to the transmembrane/intracellular domain

(Notch3TM/IC) (Kopan & Ilagan, 2009). Notch3 is predominantly

expressed in the smooth muscle cells (SMCs) surrounding small

arteries and in pericytes around capillaries (Joutel et al, 2010b;

Lewandowska et al, 2010). Notch3 knockout mice (Notch3�/�) show
marked alteration of arterial SMCs, pointing to a critical role of

Notch3 in the maturation and maintenance of arteries (Joutel, 2010a).

Heterozygous NOTCH3 mutations underlie cerebral arteriopathy

with subcortical infarcts and leukoencephalopathy (CADASIL, MIM

125310), a disorder of the small arterial vessels of the brain that

represents the most common heritable cause of stroke and progres-

sive ischemic dementia in the adults. CADASIL is inherited

dominantly, with > 500 families reported worldwide and de novo

events observed sporadically (Coto et al, 2006; Chabriat et al,

2009). Virtually all mutations (> 95%) are highly stereotyped

missense mutations that abolish an existent cysteine residue of the
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34 EGFRs of NOTCH3ECD (mainly EGFRs 2–5) or insert a new one,

with the final effect of introducing an odd number of cysteines

(Chabriat et al, 2009). In CADASIL, aberrant accumulation of

mutant NOTCH3ECD is observed and specific granular osmiophilic

material (GOM) deposits appear around the degenerated vascular

SMCs (Chabriat et al, 2009), but it remains debated whether

NOTCH3ECD is or is not a principal GOM component (Joutel, 2010a).

CADASIL-associated mutations confer NOTCH3ECD propensity to

self-aggregate, sequestering wild-type NOTCH3 and other extracellu-

lar molecules (Duering et al, 2011). Anomalous accumulation of

such aggregates within vessel walls, possibly leading to GOM depo-

sition, is considered a likely pathogenic mechanism.

Nonetheless, CADASIL mutations have been shown to reflect

hypomorphic receptor activity in mouse models that remarkably

parallel the human condition (Arboleda-Velasquez et al, 2011).

Thus, a chronic reduction of Notch3 signaling may plausibly lead

to vascular SMC degeneration and ultimately to ischemic disease

(Arboleda-Velasquez et al, 2011). Few hypomorphic NOTCH3

mutations (two distinct small out-of-frame deletions and a

nonsynonymous nonsense substitution) have been observed in three

different patients having a clinical and/or familial history compatible

with CADASIL or CADASIL-like conditions (Dotti et al, 2004;

Weiming et al, 2013; Erro et al, 2014). Interestingly, the nonsense

mutation, a p.R103X substitution, has been described in an indepen-

dent family in association with a phenotype of ischemic strokes but

with incomplete penetrance (Rutten et al, 2013). Taken as a whole,

these findings support the hypothesis that heterozygous hypo-

morphic NOTCH3 alleles may predispose to a spectrum of cerebro-

vascular phenotypes overlapping CADASIL. These alleles act with

highly variable penetrance, in agreement with the observation that

hypomorphic alleles have been reported occasionally also in normal

subjects (Rutten et al, 2013).

To date, null homozygous NOTCH3 alleles have never been

reported in humans. Here we describe a patient, previously diag-

nosed as having Sneddon syndrome (Parmeggiani et al, 2000),

displaying arteriopathy and cavitating, early-onset leukoencephalo-

pathy. In this patient we identified a homozygous NOTCH3

nonsense mutation, which abolishes NOTCH3 expression and

causes deregulation of NOTCH3 downstream target genes.

Results

Brain MRI

The last MRI scan in the proband, performed at 23 years of age,

showed an enlargement of the lateral ventricles (left > right),

thinning of the corpus callosum, atrophy of the basal ganglia,

reduced volume of brainstem and cerebellum, and diffuse cerebral

white matter hyperintensity on T2-weighted images, with relative U

fibers sparing (Fig 1A, B and E). The hyperintense cerebral white

matter showed severe, diffuse cavitations in association with

chronic multiple lacunar infarctions in the basal ganglia, thalamus,

pons and bulb (Fig 1B and E) and one acute ischemic lesion in the

pons (1D). Brain 3D TOF (time of flight) (Fig 1C) showed two

small saccular aneurisms in the right M1 (ø 4 mm) and left M2

(ø 2.5 mm) segments of middle cerebral arteries. Disseminated

microbleeds were present in both infra- and supra-tentorial struc-

tures (Fig 1F) on susceptibility-weighted imaging (SWI).

Brain MRI and MR angiography showed no significant changes

in the asymptomatic parents, respectively, at 54 and 56 years,

except for multiple focal hyperintensities on T2-weighted fluid-

attenuated inversion recovery (FLAIR) images in the periventricular

and subcortical cerebral white matter expression of gliosis second-

ary to chronic small vessel ischemic changes, more evident in the

father (Fig 1G) than in the mother (Fig 1H).

Genetic study

Based on the assumption that the causative mutation was inherited

in the homozygous state, whole exome sequencing (WES) detected

23 rare (minor allele frequency < 1%) homozygous variants. Only 8

of these were within large homozygous genomic regions (> 5 Mb),

which are known to have higher probability to harbor the patho-

genic mutation (McQuillan et al, 2008). Only three were predicted

as pathogenic by at least 2 out of the 4 in silico pathogenicity

predictors used and 1 was a truncating mutation. Of these four vari-

ants, 2 were discarded since within genes already reported to be

responsible for phenotypically divergent recessive diseases: KANK2,

implicated in palmoplantar keratoderma and woolly hair (MIM

616099) and CHRNG, implicated in multiple pterygium syndrome

(MIM 253290). This filtering procedure (Supplementary Fig S1A)

left 2 final candidate variants: a nonsense p.C966* variant

(NM_000435:c.C2898A) in NOTCH3 and a missense p.R65H variant

(NM_001040664) in PPAN/PPAN-P2RY11 (Supplementary Fig S1B).

Between these 2 final candidates, NOTCH3 mutation emerged as the

most likely explanation for the disease pathogenesis, as supported

by mutation type (nonsense versus missense), alternate allele

frequency (novel versus 0.002% in the EXAC database, http://

exac.broadinstitute.org/), deeper intolerance to genic variation (5.0

versus 10.8/17.1 RVIS percentile) and consistency of the pathology

observed in the proband with protein function, tissue pattern expres-

sion and existent association with the disorder (Supplementary

Fig S1B).

Figure 1. Brain MRI study of the proband and parents.

A–F Brain MRI of the proband at 23 years. (A) Sagittal fast spin echo (FSE) T1-weighted image shows thinning of the corpus callosum, dilation of the IV ventricle and of
the cisterna magna and reduced volume of vermis and brainstem; two lacunar lesions are evident in the dorsal pons. (B) T2-weighted axial fluid-attenuated
inversion recovery (FLAIR) images show hyperintense periventricular white matter with several lacunar lesions also in the basal ganglia and thalami. (C) MR
angiography 3D TOF (time of flight) reconstruction shows two saccular aneurisms in the right M1 (ø 4 mm) and left M2 (ø 2.5 mm) segments of middle cerebral
arteries (arrows). (D) A recent ischemic hyperintense lesion is detected on diffusion tensor imaging (DTI) in the right side of the dorsal pons. Severe cavitations and
lateral ventricles dilation (left > right) on FLAIR images (B, E) and diffuse microbleeds as small hypointense foci on SWI are visible (F) in the same slices of (E).
R = right, L = left.

G, H Brain MRI scans of the asymptomatic parents of the proband show multiple focal hyperintensities on T2-weighted images in the periventricular and subcortical cerebral
white matter, expression of gliosis secondary to chronic small vessel ischemic changes, more evident in the father (G), 56 years, than in the mother (H), 54 years.
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In the proband, NOTCH3 lay in one of the long autozygous

regions, a 7.9-Mb-long region on chromosome 19 (Supplementary

Fig S1C, left panel). NOTCH3 c.C2898A was confirmed in

the patient in the homozygous state and detected in the consan-

guineous patient’s parents in the heterozygous state (Supplemen-

tary Fig S1C, right panel). In addition to public databases, the

mutation was absent from > 200 in-house control exomes and

in 500 regional control chromosomes analyzed by direct

sequencing.

By quantitative mRNA analysis in skeletal muscle biopsies

(Fig 2A), we observed dramatic reduction of NOTCH3 expression in

the proband and demonstrated a more moderate reduction of

NOTCH3 expression in his father, whereas there was no relevant

deregulation of NOTCH3 in his mother. In 3 CADASIL patients,

reduction of NOTCH3 expression was comparable to that observed

in the father. In the proband, direct sequencing of the NOTCH3

cDNA obtained by retrotranscription of the residual mRNA detected

only the 2898A allele (mutant), while in the heterozygous parents,

the C2898 allele (wild-type) appeared to be predominant (Fig 2B).

cDNA of the two CADASIL patients carrying the c.C3016T

(p.R1006C) mutation revealed balanced composition of C3016 and

3016T alleles. These findings suggest that the c.C2898A protein-

truncating substitution induces the decay of the mutant mRNA

molecule, while classical CADASIL-causing c.C3016T change does

not.

We examined expression levels of canonical NOTCH3 target

genes (HES1, HEY1, HEYL) and of 17 potential target genes (PERP,

PLN, TBX2, SUSD5, TIMP4, PTP4A3, GRIP2, KCNA5, NRIP2, S1PR3,

PGAM2, CDH6, XIRP1, RCAN2, ANGPT4, HP and SORBS2) homolo-

gous to murine genes found to be robustly downregulated in

caudal distal arteries of Notch3�/� mice (Fouillade et al, 2013).

Among 17 potential NOTCH3 downstream target genes, 4 (RCAN2,

ANGPT4, HP and SORBS2) were not detectable in none of the

samples (Supplementary Table S1). Genes of the HES and HES-

related families were not downregulated, consistent with what was

reported in Notch3�/� mice (Fouillade et al, 2013). Global alter-

ation in the expression profiles of the 13 detectable potential target

genes was consistent with the levels of reduced expression of

NOTCH3 itself. The proband displayed global deregulation of target

genes, with four downregulated genes (TBX2, KCNA5, NRIP2,

CDH6) and one upregulated gene (TIMP4) (Supplementary Table

S1; Fig 2A). Gene expression was almost unaltered in the mother

(Supplementary Table S1; Fig 2A). Altered expression was

observed in the father and in CADASIL patients, where three genes

(GRIP2, NRIP2, XIRP1) and four genes (PERP, TBX2, S1PR1, XIRP1),

respectively, resulted significantly downregulated (Supplementary

Table S1; Fig 2A). Magnitude in fold changes of deregulated genes

was generally greater in the proband than in his father and in

CADASIL patients.

Muscle histology

Standard staining of proband’s muscle biopsy showed mild varia-

tion of the fiber size. Pathological changes were evident in small

vessels and capillaries, which presented a generalized thickening of

the walls (Supplementary Fig S2A and C). Muscle biopsies of the

proband’s parents showed similar changes (Supplementary Fig S2E

and G). In the mother, inflammatory infiltration around a blood

vessel was also evident (Supplementary Fig S2H). More details

about muscle histology are included in the Supplementary Informa-

tion (Supplementary Fig S3 and Supplementary Methods and

Results).

Characterization of skin and skeletal muscle vessels

Analysis of vessel wall structure was performed by immunofluores-

cence, immunohistochemistry and transmission electron micro-

scopy (TEM) both on skin and on skeletal muscle. By

immunofluorescence, increased deposition and altered distribution

of collagen IV, with a clear derangement of collagen fibers, were

prominent in the proband, in both tissues examined (Fig 3A and

B). These features were paralleled by attenuation and disorganiza-

tion of SMCs of the tunica media, as evaluated by immunohisto-

chemistry on skeletal muscle (Fig 3C). Similar changes were

observed in a CADASIL patient (Fig 3A–C) that showed a near

complete loss of SMCs of the tunica media of skeletal muscle

vessels, and in the parents (Supplementary Fig S4A–C) where the

alterations were less pronounced. Changes in vessels’ structure

were confirmed by transmission electron microscopy (TEM) analy-

sis of skin biopsy, both in the proband (Fig 3D) and, to a lesser

extent, in his parents (Supplementary Fig S4D). Proband’s skin

vessels were characterized by multilayering and shedding of the

basal membrane from plasmalemma into the stroma: Parallel rows

of banded collagen fibrils were oriented perpendicular to and inti-

mately associated with the plasma membrane. In the interstitial

stroma, collagen fibrils appeared quantitatively more represented,

while elastic fibers were rarefied. Most importantly, no deposits of

granular osmiophilic material (GOM), a hallmark of CADASIL

vascular injury, were ever observed, in contrast to CADASIL

patients (Fig 3E).

Finally, on the basis of the results of gene expression analysis

(Fig 2A), we examined the expression of KCNA5 protein in skeletal

muscle biopsy of the proband, his parents and a CADASIL patient

by immunohistochemistry with specific antibodies. Consistent with

KCNA5 mRNA levels, reduced immunoreactivity was observed in

the proband, his father and the CADASIL patient, while the

proband’s mother was similar to the control (Fig 3F and Supple-

mentary Fig S4E).

Discussion

In this study, we identified a null homozygous NOTCH3 mutation in

a patient affected by recessive early-onset leukoencephalopathy,

which progressed to severe encephalopathy with white matter cavi-

tations and evidence of vascular lesions. Being a single patient, we

cannot completely exclude that other variants, due to the high

degree of parental consanguinity, may contribute to the pathogene-

sis of the disease. However, NOTCH3 deficiency is likely to be the

driving mechanism for this phenotype, considering its recognized

critical role in the development and maintenance of vascular func-

tion. Consistently, the patient displays typical changes in the wall of

small vessels and arterioles of skin and skeletal muscle, character-

ized by loss and degeneration of SMCs and abnormal collagen accu-

mulation, as documented by ultrastructure and by smooth muscle

actin and collagen IV immunostaining.
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Figure 2. NOTCH3 and NOTCH3 targets expression profile.

A Gene expression of NOTCH3, HES1, HEY1, HEYL and the 17 recently identified targets were established by a real-time PCR panel assay in skeletal muscle of controls
(n = 6), proband (II:1), parents (mother I:1, father I:2) and CADASIL patients (n = 3). Graph shows gene expression fold changes relative to controls and normalized on
GAPDH (reference gene), expressed as mean of two experiments � SEM. Among the 17 novel assayed target genes, RCAN2, ANGPT4, HP and SORBS were not detected
in any sample and were therefore not reported. Green and red lines indicate 2.0 and 0.5 fold changes, respectively. Statistical significances and P-values are reported
in Supplementary Table S1.

B Direct sequencing of NOTCH3 cDNA from skeletal muscle of controls, proband, parents and two CADASIL patients. In the proband, residual mutant cDNA is amplified
and the sequence shows only the mutant allele (A allele, arrow). Predominance of the wild-type allele (C allele, arrow) in the parents documents mRNA-mediated
decay of the mutant allele (A allele), in contrast to what was observed for a canonical CADASIL mutation where there is balanced composition of mutant and wild-
type alleles (arrows).
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Most of these features are also apparent in CADASIL patients, as

extensively supported by the literature (Miao et al, 2006; Ihalainen

et al, 2007; Chabriat et al, 2009; Lewandowska et al, 2010; Dong

et al, 2012). Notably, in contrast to CADASIL, no GOM deposits

were observed. This is in line with the absence of GOMs in

Notch3�/� mice (Joutel, 2010a).

The vascular leukoencephalopathy described here and CADASIL

are clinically distinct disorders. Our results suggest that they are

associated with distinct molecular defects in the same gene,

NOTCH3. Due to the occurrence of livedo reticularis, the proband

was previously diagnosed as having Sneddon syndrome (MIM

182410) (Parmeggiani et al, 2000). Intriguingly, a classical NOTCH3

CADASIL-causing mutation had been associated with Sneddon

syndrome (Kumar et al, 2007). In CADASIL, the pathogenic mecha-

nism of NOTCH3 mutations translates into neomorphic properties of

mutant NOTCH3, possibly leading to GOM formation (Chabriat

et al, 2009; Joutel, 2010a; Storkebaum et al, 2011). The central role

of cysteine-specific changes as well as of GOM deposition in the

SMC pathology of CADASIL is out of question. It has been exten-

sively documented that CADASIL mutations favor self-aggregation

and aggregation with other proteins that possibly accumulate in

GOMs, thus subtracting key molecular factors to the extracellular

environment and/or generating toxic species (Monet-Leprêtre et al,

2013). However, CADASIL mutations can also result in hypo-

morphic NOTCH3 signaling activity (Arboleda-Velasquez et al,

2011). In the proband, we provide evidence of abolished NOTCH3

expression, due to RNA decay, resulting in profound deregulation of

NOTCH3 target genes. Of the target genes downregulated in the

proband, KCNA5 is known to contribute to diameter of small rat

cerebral arteries (Albarwani et al, 2003), with an established role in

the regulation of arterial tone or SMC function, whereas CDH6 has

documented expression in the vasculature. Two of the downregulated

genes (KCNA5, NRIP2) were reported among six identified quick

responders to transient in vivo pharmacological blockade of

NOTCH3 signaling, thereby corroborating their possible role as

immediate NOTCH3 targets (Fouillade et al, 2013). Upregulation of

TIMP4 may be understood in light of its suggested role as a novel

systemic marker for vascular inflammation (Koskivirta et al, 2006).

Not all the genes found to be deregulated in Notch3�/� mice were

replicated in the proband. This can be at least partly explained by

species or tissue-specific differences. All together, these observa-

tions suggest that the extent of NOTCH3 under-expression impacts

on the magnitude of target genes deregulation. We recognize that

our expression analysis was affected by the limited availability of

tissue samples from the subjects investigated. However, we maxi-

mized the use of skin and muscle biopsies obtained along the path

to reach the diagnosis for this patient. In addition, since we were

working on tissue homogenate, we documented gene expression of

a mixture of different cell types, the minority of which is repre-

sented by SMC and endothelium, the target tissue of NOTCH3-

related pathology.

Notwithstanding these limitations, results of gene expression

studies were strengthened by the demonstration of a marked reduc-

tion of KCNA5 protein expression in vessel walls of the same muscle

biopsies from our proband and a CADASIL patient. Compatibly with

the presence of vascular pathology, the increased mtDNA copy

number in the proband (Supplementary Information, Supplemen-

tary Fig S3B) can be interpreted as a compensatory activation of

mitochondrial biogenesis secondary to chronic hypoxia in a tissue

with high-energy requirements and oxygen consumption such as

the skeletal muscle.

In the proband’s parents, subtle white matter lesions, typically

the consequence of age-related chronic small vessel ischemic

changes, were more pronounced in the father. We may attribute this

to sex-dependent expressivity of the heterozygous mutant, as male

sex is a risk factor for early disease progression in CADASIL as well

as in several other neurodegenerative disorders (Opherk et al,

2004). Another possible contributing factor is the severe impairment

of arylsulfatase A (ARSA, MIM 607574) activity previously reported

in the father (Parmeggiani et al, 2000). The severity of NOTCH3

target genes deregulation in the parents seems to reflect the relative

fold change of wild-type NOTCH3 itself, which was found to be

higher in the father than in the mother. The overall target gene

expression profile appeared to be impacted accordingly.

Our finding of heterozygous truncating mutations in the asymp-

tomatic parents opposes the idea that haploinsufficiency is a possi-

ble pathogenic mechanism. However, our data and the data of

different authors (Dotti et al, 2004; Rutten et al, 2013; Weiming

et al, 2013; Erro et al, 2014) collectively suggest that NOTCH3

haploinsufficiency can predispose to a variety of cerebrovascular

phenotypes overlapping CADASIL, although with reduced pene-

trance. As suggested elsewhere (Arboleda-Velasquez et al, 2011),

even the dominant nature of CADASIL could be attributed, in part,

to dosage effects acting through the chronic exposure to reduced

Figure 3. Morphologic analysis of vessels in skin and skeletal muscle of the proband as compared to control and CADASIL patient.

A–C Histopathological examination of skin (A) and skeletal muscle biopsies (B, C) of control (left), proband (middle) and CADASIL patient (right). (A) Collagen IV staining
(in green) in skin vessels: Collagen wall appears compact in the control, while it is disorganized in the skin vessels of the proband and of the CADASIL patient.
Derangement of the collagen wall in single collagen fibers is more evident in the proband than in the CADASIL patient, where collagen wall is quite compact.
Vessel’s endothelium is delineated by ULEX staining (in red). Collagen IV staining in skeletal muscle vessels (B) recapitulates the skin picture. Smooth muscle actin
immunostaining of skeletal muscle biopsies (C) shows attenuated SMCs in the tunica media of both the proband and the CADASIL patient, with foci characterized
by a complete SMCs loss (particularly in the CADASIL patient) and thinning of the vessel wall (arrows).

D, E Ultrastructural analysis of skin biopsies. (D) Skin biopsy of the proband: (left panel) At low magnification, the tunica media of a vessel shows irregular SMCs
surrounded by a markedly thickened basal membrane with a multilayered aspect (arrows); SMCs are identified by the presence of “focal adhesions” (square boxes);
(middle panel) collagen fibrils appear organized in a parallel pathway along SMC (arrow), note the “focal adhesions” (square box); (right panel) collagen fibrils
(“CF”) are more represented in dense bundles than elastic ones (“E”). No GOM is detected, in contrast to CADASIL patient (E), showing deposits of granular
osmiophilic material (arrows) located between SMC plasmalemma and basal lamina.

F KCNA5 immunostaining of skeletal muscle biopsies of control (left), proband (middle) and CADASIL patient (right). A global decrease in reactivity is evident in the
vessels of both the proband and the CADASIL patient. Note multiple areas in which KCNA5 is barely detectable (arrows).

Data information: Scale bars: (A) 50 lm; (B) 30 lm; (C, F) 10 lm; (D, left panel) 7 lm; (D, middle and right panel) 1 lm.
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NOTCH3 signaling. Our data corroborate this hypothesis. The

notion that Notch3�/� mice do not develop white matter lesions can

be explained, in part, by the limitation in lifespan that is an inherent

limitation of these models (Arboleda-Velasquez et al, 2011). In the

future, as an increasing number of null NOTCH3 alleles may be

identified, it will be possible to expand our understanding of their

effect on NOTCH3 signaling and vascular physiology.

In conclusion, identification of this single case with null

NOTCH3 mutation acting in a recessive manner argues in favor of

the role, still questioned, of NOTCH3 hypomorphic mutations in

white matter disease and implies the possible occurrence of null

NOTCH3 recessive mutations in other patients, in particular

among those displaying a severe, early-onset cavitating leukoence-

phalopathy.

Materials and Methods

Clinical study

We investigated a family trio in which the proband was a previously

reported male (Parmeggiani et al, 2000), born to healthy consan-

guineous (1st cousins) parents, who was affected with arteriopathy

and early-onset cavitating leukoencephalopathy. At the moment of

writing this manuscript, the patient was 24 years old and suffered a

deeper deterioration with respect to the previous report (Parmeggiani

et al, 2000). The neurological picture was considerably worse: The

patient was unable to walk and move and needed a wheelchair; he

was aphasic and dysphagic. Due to oxygen desaturation at night

and hypoventilation, the patient had been required to use a c-pap

mask. He still suffered from polycythemia and livedo reticularis

(Supplementary Fig S5). Livedo reticularis, present in the proband

from birth, appeared as mottled reticulated vascular pattern with

a reddish-violet discoloration of the skin. Occasionally, ulcers

occurred. Recently, the patient has had epileptic seizures, character-

ized by clonic jerks without loss of consciousness. The EEG showed

slow waves and spikes, and spike waves over the vertex. Genomic

DNA was extracted from peripheral blood samples of the proband

and his parents, and we obtained peripheral blood genomic DNA,

skin and skeletal muscle biopsies. All of them underwent magnetic

resonance imaging (MRI). The local ethical committee had approved

this study. We obtained written informed consent from both

parents.

Genetic study

Whole exome sequencing: After negative preliminary genetic analy-

ses (Supplementary Methods and Results and Supplementary

Table S2), proband’s DNA was captured for WES with solid-phase

NimbleGenSeqCap EZ Exome 44 Mb array (Nimblegen Inc.,

Madison, WI, USA) and sequenced as 91-bp paired-end reads on

Illumina HiSeq2000 platform (Illumina Inc., Santa Clara, CA, USA)

(Supplementary Methods and Results) at BGI (Beijing Genomics

Institute, Shenzen, China). Reads were processed following a

general analysis pipeline described elsewhere (Magini et al, 2014).

Single nucleotide variants (SNVs) and small insertions and deletions

(InDels) were called with the Genome Analysis ToolKit (GATK)

(DePristo et al, 2011).

Only nonsynonymous SNVs, splice-site substitutions and

small InDels that had the following features were considered

further:

• Population allele frequency < 1% in public databases (1,000

genomes, http://www.1000genomes.org; Exome Variant Server,

http://evs.gs.washington.edu/EVS/).

• Not being homozygous in other in-house database WES samples

belonging to subjects without brain abnormalities.

• Having a normalized phyloP score of phylogenetic conservation

across 100 vertebrates ≥ 0.95 (Liu et al, 2011).

• Being within large exomic homozygous regions as identified by

the H3M2 program (Magi et al, 2014). Large homozygous regions

have enhanced probability to harbor the causative mutation in the

proband. The highest priority was given to homozygous regions

> 5 Mb, which are those most likely originated from recent

parental relatedness.

• Being either predicted as non-benign mutation by at least 2 out of

4 pathogenicity predictors (MutPred, Mutation Taster, Polyphen2,

SIFT) or loss-of-function mutation.

• The affected gene has not been associated with recessive diseases

that do not have phenotypic overlap with the patient’s clinical

picture.

Variants remaining after this filtering procedure were prioritized

according to the following criteria:

• Highest degree of intolerance to genic variation expressed as

highest RVIS percentile (Petrovski et al, 2013) for the affected

gene.

• Best match between known expression pattern of the affected

gene and tissues/organs involved in the disease.

Skeletal muscle and skin biopsies

Skeletal muscle and skin biopsies were performed by open surgery

under local anesthesia after having obtained the written informed

consent from the subjects. Biopsies were processed and stored

depending on the following applications, as detailed hereinafter.

Quantitative analysis of NOTCH3 and NOTCH3 target genes expres-

sion. Total RNA was extracted from frozen skeletal muscle biopsies

by TriPure isolation reagent (Roche, Penzberg, OBB, Germany),

and 1 lg of total RNA was reverse-transcripted using the Transcrip-

tor First Strand cDNA Synthesis Kit (Roche, Penzberg, OBB,

Germany). The RealTime Ready Assay (Roche, Penzberg, OBB,

Germany) was used to analyze the expression profile of NOTCH3

itself, of its canonical target genes and of 17 potential target genes.

Two different reference genes (GAPDH, RPL0) were used for

normalization, obtaining comparable results. The analysis has been

conducted in duplicate, and the fold change was calculated through

the Pfaffl DCt method (Pfaffl, 2001). This assay was performed on

specimens from muscle biopsies of six controls, of the proband and

his parents and of three CADASIL patients carrying canonical

NOTCH3 mutations (2 of p.R1006C and 1 of the p.R133C). We

considered as differentially expressed those genes with a fold

change ≥ 2.0 or ≤ 0.5 and statistically significant P-values. Statisti-

cal significance of differences in median values with respect to

controls was calculated using SigmaPlot 12.5 software and applying

the Mann–Whitney U-test and Bonferroni correction for multiple

tests, on the basis of which P-values ≤ 0.003 were considered statis-

tically significant.
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Determination of allelic balance in NOTCH3 cDNA

Part of NOTCH3 cDNA was sequenced in the proband, his parents, a

healthy individual and the two CADASIL patients with c.3016 C > T

(p.R1006C) substitution. Amplification primers were designed

within exons 18 (forward) and 19 (reverse) according to

NM_000435.2 sequence, in order to detect both mutations (c.2898

C > A and c.3016 C > T) in the same amplicon. PCR (reagents by

Roche, Penzberg, OBB, Germany) was carried out through a touch-

down program, with annealing temperature starting from 59°C and

decreasing by 0.4°C each cycle for 10 cycles and then remaining

stable at 55°C for 25 additional cycles. A total of 1.5 mM of MgCl2
and 1 ll of cDNA were used in each reaction. PCR products were

checked by gel electrophoresis, sequenced with an ABI Prism Big

Dye Terminator v1.1 Cycle Sequencing kit (Life Technologies, Carls-

bad, CA, USA) and run on a 48-capillary ABI 3730 DNA analyzer

(Applied Biosystems, Foster City, California, United States).

Sequences were analyzed with Sequencher software 4.9 (Gene

Codes Corporation, Ann Arbor, MI, USA).

Immunofluorescence staining on muscle and skin biopsies

Muscle specimens were frozen after surgery in cooled isopentane

and stored in liquid nitrogen for histological and histoenzymatic

analysis including hematoxylin and eosin (H&E), Gomori trichrome,

periodic acid-Schiff stainings and oxidative enzymes activities,

according to standard protocols (Dubowitz & Sewry, 2007). 7-lm-

thick sections were obtained from skeletal muscle using a freezing

sliding microtome (HM 550 Microm, Bioptica). Immunofluorescence

reactions with antibodies against MHC class I antigens (HLA-ABC,

1:100, DakoCytomation, Glostrup, Denmark) were performed;

sections were visualized using a secondary antibody conjugated

with fluorescein isothiocyanate isomer 1 (FITC, 1:50, DakoCytoma-

tion, Glostrup, Denmark). Immunohistochemistry with antibodies

against collagen IV (DakoCytomation, Glostrup, Denmark, 1:50);

smooth muscle actin clone 1A4 (DakoCytomation, Glostrup,

Denmark, 1:100) and KCNA5 (Sigma-Aldrich, St Louise, MO, USA,

1:50) was performed on frozen muscle biopsy sections. The primary

antibody was labeled using the LSAB2 System-HRP kit (DakoCyto-

mation, Glostrup, Denmark).

Skin samples for immunostaining were immediately fixed in cold

Zamboni’s fixative and kept at 4°C overnight. 50-lm-thick sections

were obtained using a freezing sliding microtome (2000R, Leica,

Deerfield, IL, USA). Free-floating sections of both skeletal muscle

and skin were incubated overnight with a mouse collagen IV anti-

body (Col IV, 1:800, Chemicon, Temecula, CA, USA). Sections were

then washed, and a secondary antibody labeled with cyanine dye

fluorophores 2 (1:400; Jackson ImmunoResearch, West Grove, PA,

USA) was added for overnight incubation. A biotinylated endothe-

lium binding lectin, ULEX europæus (Vector laboratories Burlin-

game, CA, USA), was added along with primary antibody to show

the vessel’s endothelium. This staining was visualized by cyanine

dye fluorophore 5.18 coupled with streptavidin (Jackson Immuno-

Research, West Grove, PA, USA). Washed sections were mounted

onto coverslips in agar, dehydrated through alcohols, cleared with

methylsalicylate and embedded in slides with DPX (VWR Interna-

tional PBI, Milano, Italy). Sections were viewed under a laser-

scanning confocal microscope (Leica DMIRE 2, TCS SL, Leica

Microsystems, Heidelberg, Germany) for a 3D study of the skin

vessels’ structure. Each image was collected in successive frames of

1–2 lm increments on a Z-stack plan at the appropriate wavelengths

for secondary antibodies with a 40× plan apochromat objective and

successively projected to obtain a double-stained 3D digital image

by a computerized system (LCS lite, Leica Microsystems, Heidelberg,

Germany).

Ultrastructure analysis of skin biopsies

A small fragment of skin and muscle biopsies was fixed immediately

after surgery in glutaraldehyde 2.5% in phosphate buffer, post-fixed

in OsO4 1% in the same buffer and dehydrated in the ascending

ethanol. Biopsy samples were embedded in Araldite. After staining

in uranyl acetate and lead citrate, thin sections were studied with a

Philips T410 transmission electron microscope. The skin sample

was considered adequate, as containing at least five arteries with

multiple SMCs layers and the inner elastic lamina (Morroni et al,

2013). More than one thin section per subject was examined to

achieve a sufficient number of vessels.

The paper explained

Problem
Stereotypic missense mutations in one member of the NOTCH family,
NOTCH3, cause a late-onset, progressive cerebrovascular disorder
known as CADASIL (cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy). These mutations,
impairing the correct balance of cysteines in the protein, gain
neomorphic activity that leads to deposition of typical granular osmi-
ophilic material (GOM) and to vascular smooth muscle cells (vSMCs)
degeneration. However, for some CADASIL mutations it has been
shown that they cause hypomorphic NOTCH3 activity, and NOTCH3
out-of-frame or stop-gain alleles have been occasionally observed in
association with cerebrovascular disorders with reduced penetrance. It
is still unclear whether hypomorphic mutations can cause white
matter disease and whether they act by affecting NOTCH3 signaling.

Results
In a patient with devastating childhood-onset, vascular leukoence-
phalopathy, we identified a homozygous NOTCH3 p.C966* stop-gain
mutation. Homozygous null NOTCH3 alleles had never been observed
in humans. Notch3 knockout mice (Notch3�/�) showed marked alter-
ation of arterial smooth muscle cells, but no GOM deposition. The
p.C966* homozygous mutation in NOTCH3 abolished NOTCH3 expres-
sion and caused NOTCH3 signaling impairment, with downregulation
of NOTCH3 target genes acting in the regulation of arterial tone
(KCNA5) or expressed in the vasculature (CDH6). Patient’s vessels were
characterized by smooth muscle cells degeneration similar to that,
which can be observed in CADASIL but without GOM deposits, mirror-
ing the Notch3�/� mouse model. Both the heterozygous parents
displayed similar but less dramatic trends in NOTCH3 signaling
impairment and vascular damage.

Impact
This study suggests a functional link between NOTCH3 signaling impair-
ment and cerebrovascular pathology, arguing in favor of the role, still
questioned, of NOTCH3 hypomorphic mutations in white matter disease.
Taken as a whole, our findings point to NOTCH3 haploinsufficiency as a
predisposing factor to vascular impairment, while implying the possible
occurrence of null NOTCH3 recessive mutations in other patients with
devastating early-onset leukoencephalopathy.
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