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Abstract In this paper we study stochastic process indexed by Z constructed from certain
transition kernels depending on the whole past. These kernels prescribe that, at any time,
the current state is selected by looking only at a previous random instant. We characterize
uniqueness in terms of simple concepts concerning families of stochastic matrices, generaliz-
ing the results previously obtained in De Santis and Piccioni (J Stat Phys 150(6):1017–1029,
2013).
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1 Introduction and Main Definitions

This paper is concerned with stochastic processes indexed by Z taking values in a finite
alphabet G, constructed from a transition kernel which depends on the whole past, i.e. a map
p : G × G−N+ → [0, 1] such that, for any choice of w−1−∞ = (w−1, w−2, . . .) ∈ G−N+ ,
p(·|w−1−∞) is a probability measure on G. In the literature these models appear under various
names, as chains with complete connections [18], g-functions [3] or processes with long
memory [4].

Two alternative ways to associate aG-valued stochastic process, i.e. a probability measure
on GZ, to a transition kernel are possible. The first deals with processes with a boundary
condition. Letw = (wn, n ∈ Z) be an arbitrary configuration, i.e. an element ofGZ, possibly
random, and let r ∈ Z; we say that Xr,w = (Xr,w

n , n ∈ Z) is governed by the kernel p with
boundary condition w from the instant r , if Xr,w

n = wn for n ≤ r and
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P

(
Xr,w
n = g|Xr,w

n−1, X
r,w
n−2, . . .

)
= p

(
g|Xr,w

n−1, X
r,w
n−2, . . .

)
a.s., (1)

for any n > r . It is clear that, given the law ofw (in particular if it is a deterministic sequence),
the law of this process is uniquely defined. If for some strictly decreasing sequence (rn),Xrn ,w

converges weakly in the product topology of GZ, the limit is said to be an infinite volume
limit. By weak compactness of the set of probability measures on a compact space, this set
is non-empty: it reduces to a single element μ if and only if Xr,w converges weakly to μ, as
r → −∞, irrespectively of w. Infinite volume limits are mainly considered in the theory of
multi-dimensional random fields [16,17]. Here we find convenient to borrow the standard
usage in the multi-dimensional framework to introduce boundary conditions from an entire
configuration onZ, rather than shifting to the left a configuration defined only on the half-line
−N+.

The second construction, more often used in the one-dimensional time-directional con-
text we are concerned with, is to declare directly a process X = (Xn, n ∈ Z), equivalently
its law, to be compatible with p if (1) holds for any n ∈ Z. This is analogous to the
Dobrushin–Lanford–Ruelle definition in the theory of multi-dimensional random fields
[16,17]. Compatible laws are immediately seen to be infinite volume limits; indeed if W
is compatible with p and we choose it as a boundary condition, then Xr,W has the same
law of W, for any r ∈ Z: here we profit of having allowed random boundary conditions.
Conversely, since (1) is equivalent to

E

[
1{g}(Xr,w

n )h(Xr,w
n−1, . . . , X

r,w
n−m)

]
= E

[
p(g|Xr,w

n−1, X
r,w
n−2, . . .)h(Xr,w

n−1, . . . , X
r,w
n−m)

]
,

for any positive integer m and any real function h defined on Gm , this relation is maintained
in the limit provided p(g|·) is continuous for any g ∈ G. In this paper only continuous
kernels will be considered, therefore we will identify infinite volume limits with compatible
laws, denoting their set with G(p). In the proofs both characterizations of G(p) will be found
useful.

Notice that elements of G(p) are not necessarily stationary, i.e. translation invariant, but
from a non-stationary element of G(p) one can produce a stationary one by performing
Cesaro averages of shifts over a finite window increasing to Z. Thus if G(p) reduces to a
single element, it has to be stationary. On the contrary, it is possible that |G(p)| > 1 but this
set contains only one stationary element; indeed we will present later a situation in which
this happens. Notice that, G(p) being convex, in case of non uniqueness G(p) has infinitely
many elements.

Uniqueness conditions for general transition kernels of the form (1) are scattered in the
literature for various decades. Some of these results refer to a dynamical systems setting, see
e.g. [19,20,26]. The use of techniques of a more probabilistic flavor, in particular coupling
techniques, has increased in time, see e.g. [1,21,25]. The work [4] has started a constructive
approach, focused to the design of perfect simulation schemes for the unique compatible
measure. In a number of cases this has allowed to prove not only the uniqueness, but also the
existence of a compatible law, when G is countable. Finally, multi-dimensional statistical
mechanics techniques, such as the Dobrushin criterion, have recently been used also in this
setting [11,12]. For perfect simulation in the multi-dimensional case the reader is addressed
to e.g. [5,7,15]; also the continuity assumption can be relaxed, as in [6].

The various sufficient conditions for uniqueness usually take a suitable positivity condition
together with some regularity assumption on the kernel p. The latter allows to control the
behavior of the range of the functions p(g|w−1−r ·) on G−N+ , for fixed g ∈ G and w−1−∞ ∈
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348 E. De Santis, M. Piccioni

G−N+ , as r gets large.Regularity assumptions of some sort are actually needed for uniqueness,
as shown in [3], where an example of a positive transition kernel has been given with a strong
“dependence on the remote past” that gives rise to different infinite volume limits.

In order to motivate the class of kernels considered in the paper it is useful to recall the
setting of [4]. In this paper they write down a decomposition of a continuous kernel of the
following form:

p(g|w−1−∞) = θ0ν(g) +
∞∑
k=1

θk P(k)(g;w−1, . . . w−k), (2)

where ν is a probability distribution onG, θ = (θn, n ∈ N) is a probability distribution on the
integers and for any k ∈ N+ P(k) : G ×Gk → [0, 1] is a transition kernel depending only on
the k-th most recent values. If θ0 > 0 and θn decays to zero fast enough they provide a perfect
simulation algorithm for the unique compatible measure. The first assumption corresponds
to positivity of p(g|·), for some g ∈ G, whereas the second amounts again to a regularity
assumption on the kernel p.

The mixture decomposition presented in [4] is not unique. Other decompositions have
been proposed to prove uniqueness [8,13,14], leading to relax not only the regularity but
also the positivity assumption in [4].

In the present paper we consider general transition kernels of the following form

p(g|w−1−∞) =
∑
k∈A

θk P(k)(w−k, g), (3)

for some probability distribution θ supported by A ⊂ N+ and P(k) is a stochastic matrix on
G, for any k ∈ A. Since

∑
k∈A θk = 1, any kernel of the form (3) is clearly continuous. A

transition kernel of the above form will be called an imitation kernel.
When the P(k)’s have the property that each row contains only a single positive entry,

necessarily equal to 1 (as happens in particular for permutation matrices), the updating rule
(1) means Xr,w

n = fk(X
r,w
n−k) with probability θk , where fk is a function on G obtained from

P(k). We refer to these cases as imitation kernels without noise. Otherwise we speak about
imitation kernelswith noise. Imitation kernels without noise are in some sense, to be clarified
later, the most interesting to consider.

For general kernels of the form (3) the value Xr,w
r+1 can be drawn in the following way.

An integer Kr+1 is chosen at random according to the distribution θ , and the value of the
boundary condition wr+1−Kr+1 is read. Then Xr,w

r+1 is drawn from the wr+1−Kr+1 -th row
P(Kr+1)(wr+1−Kr+1 , ·) of the matrix P(Kr+1). To perform this step, it is convenient to make
reference to a sequence ( f(k), k ∈ N+) of coupling functions f(k) : G × [0, 1] → G,
having the property that, for any k ∈ N+, f(k)(g,U ) is distributed as P(k)(g, ·) whenever
U is a random variable uniformly distributed in [0, 1], for g ∈ G. So, if Ur+1 is uniformly
distributed in [0, 1], f(Kr+1)(wr+1−Kr+1 ,Ur+1)yields X

r,w
r+1. This updating rule canbe iterated

to produce the values of the process Xr,w at all sites n > r by drawing a random sample
(Kn, n > r) from θ and an independent random sample (Un, n > r) from the uniform
distribution on [0, 1]. It is clear that for imitation kernels without noise, the Un’s are not
needed for the construction of Xr,w.

Rather than proceeding forward from the boundary sites, one can proceed backwards from
any site of interest. In this case to produce the random variable Xr,w

n , with n > r , we have to
follow the random walk T (n) = (T (n)

k , k ∈ N)

T (n)
k+1 = T (n)

k − K
T (n)
k

, for k ∈ N, (4)
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with T (n)
0 = n, whose distribution of decrements is θ .

Let us define
M (n)

r = inf{k : T (n)
k ≤ r}, V (n)

r = T (n)

M(n)
r

(5)

which are the minimum number of steps leading the random walk to land on a site below the
threshold r and the landing site, respectively. The information on the boundary condition w
is propagated forward by applying recursively the coupling functions in the following way

Xr,w
T (n)
k−1

= f
(T (n)

k−1−T (n)
k )

(
Xr,w
T (n)
k

,U
T (n)
k

)
, k = M (n)

r , . . . , 1 (6)

starting from Xr,w
T
M(n)
r

= w
V (n)
r

. Thus, at the end of the recursion one has, for any n > r

Xr,w
n = Fr,n(Km,Um, r < m ≤ n;w

V (n)
r

) (7)

for some suitably defined function Fr,n .
One can appreciate here that, if an additional zero order term θ0ν(g), with θ0 > 0 and

ν probability measure on G, appears in the kernel (3), the Kn’s can also assume the value
0 with probability θ0. When this happens, one stops the random walk from going further in
the past and reads directly the value at that site by sampling from ν. Since this event will
happen a.s., uniqueness always holds in this case. Incidentally, θ0 > 0 means

∑∞
k=1 θk < 1,

the Dobrushin sufficient criterion for uniqueness for this kind of kernels. It is not difficult to
realize that a zero order term cannot be singled out when each of the columns of P(k) has
a zero entry, for all k ∈ A. In particular, this happens for imitation kernels without noise,
except in the trivial case of some P(k) with all the rows equal to the same unit versor.

Whenever for some pair of distinct sites m, n ∈ Z, it happens that T (m)
h = T (n)

k , for some
positive integers h and k, we say that the two random walks started from the sites m and
n coalesce. If this is the rightmost site in which this happens, we say that T (m)

h = T (n)
k is

the coalescence point of the two random walks. In this case one has T (m)
h+l = T (n)

k+l , for any

l ∈ N, hence for r ≤ T (m)
h , it is V (m)

r = V (n)
r . As a consequence the values w

V (m)
r

and w
V (n)
r

coincide, conveying all the information about the boundary condition w needed to compute
both Xr,w

m and Xr,w
n , by means of the functions Fr,m and Fr,n defined in (7).

If the randomwalks T (n), started from n ∈ �, with� arbitrary finite subset of Z, coalesce
a.s. we say that the distribution θ = (θn, n ∈ A) is coalescent. In order to verify this property
it is enough to check it for a window�made by two adjacent sites ofZ. If we let two particles
perform two independent random walks started from these two sites, with the rule that it is
always the rightmost that moves, the distance between the two particles is a Markov chain
on the integers, the so called von Schelling process [10], up to coalescence. This is again a
random walk with decrements following the law θ , but with a reflection around the origin
once the negative half-line is hit. Thus coalescence of θ means that from any n ∈ N+ the
return of this process to the origin is almost sure; this requires both some algebraic property
for A and a control of the tail behavior of the θn’s, see [23].

Back to imitation kernels, wemention that already in [4] a particular class of binary kernels
of the form (3) was examined, in which P(k) took only the two possible values

I2 =
(
1 0
0 1

)
, J2 =

(
0 1
1 0

)
, (8)

for k ∈ A, the so-called binary autoregressive kernels. However the presence of a zero
order term θ0ν(g) made the uniqueness problem trivial. In our previous work [9] we have
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350 E. De Santis, M. Piccioni

considered binary autoregressive kernels with θ0 = 0, equivalently with the P(k)’s equal
to either I2 or J2, making a first step towards understanding the implications of the lack
of positivity for imitation kernels. The main result of that paper is that for a coalescent θ

uniqueness holds.
In the present paper the results are completely general, and not restricted to the binary

case. Themain result is that uniqueness for imitation kernels can be characterized completely
in terms of the properties of what we call the G-stochastic function induced by the imitation
kernel (3), namely the mapping

k ∈ A ⊂ N+ �→ P(k).

The necessary and sufficient conditions generalize the well known concepts of irreducibility
and aperiodicity for a single stochastic matrix.

Irreducibility is discussed in Sect. 2. Since the presence of two irreducible classes implies
the existence of two different compatible laws (Proposition 2) and states not belonging to an
irreducible class cannot appear in the support of a compatible law (Proposition 3), we are
allowed to focus our further study to irreducible kernels.

Aperiodicity is the subject of Sect. 3. Here a difference with the case of a single stochastic
matrix appears: the states are constrained to have a period which is a multiple of the gcd d(A)

of A. But since any element of G(p) has independent marginals along the residual classes
mod d(A), the uniqueness problem is reduced to any of them, for which with an obvious
rescaling d(A) = 1. This is the content of Proposition 4, which allows to correct a mistake
occurred in [9]. Furthermore, as it happens for finite Markov chains, the presence of several
periodic classes implies the existence of different non-stationary elements of G(p), obtained
one from the other by shifts (Theorem 1). Notice that this kind of phase transition is entirely
different from the one in [3] that concerns a positive kernel. At the end of the section we prove
an important lemma relating the stationary elements of G(p) with the invariant distributions
of the stochastic matrix P̂ = ∑

k∈A θk P(k).
In Sect. 4 we prove our main result (Theorem 2), which is analogous to the ergodicity

theorem for finite Markov chains: uniqueness holds for irreducible and aperiodic imitation
kernels. The unique invariant distribution λ̂ of P̂ is identified as the single-site marginal of
the unique compatible law.

The fact that the tail behavior of the θk’s does not enter in the uniqueness conditions entails
that, by keeping A fixed, but distributing enough mass to larger values of k ∈ A, we can
construct examples of uniqueness in which any of the general sufficient conditions appeared
in the literature fails. The uniqueness theorem appearing in [9] is found as a particular case,
without assuming coalescence (Theorem 3).

In Sect. 5 we propose two simulation algorithms of the CFTP type [24], to construct the
unique compatible law on any finite window of Z. The first, presented in Theorem 6, works
when the distribution θ is known to be coalescent. When θ is not coalescent or at least this is
unknown, a threshold has to be specified, introducing an error in the algorithm. In Theorem
7 we prove that the error introduced in this way can be made arbitrarily small pushing the
threshold towards −∞. For this reason we call it an ε-perfect simulation algorithm. In a
situation of non uniqueness, the algorithms presented here can still be used to construct any
stationary element of G(p). In the irreducible but non-aperiodic case, it can also be proved
that there is only one stationary element.

Finally, in Sect. 6 we present a result for the case of countable G. A sufficient condition
for the existence of a unique element in G(p), together with a perfect simulation algorithm
is obtained. For finite G, such a condition reduces to irreducibility and aperiodicity. The
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One-Dimensional Infinite Memory Imitation Models with Noise 351

algorithm eliminates the approximation error for non-coalescent θ but it can be considerably
more complicate for G large or infinite.

2 Irreducibility of G-Stochastic Functions and Uniqueness

We start with a brief discussion of mappings defined on someA ⊂ N+ with values in the set
of stochastic matrices over the set G. We call a mapping of this type a G-stochastic function.

Recall that the free semigroup generated by A is the set A∗ = ⋃
n∈N+ An of finite n-

tuples with elements inA, for all positive integers n, called words in the sequel. It is indeed a
semigroup under concatenation, defined for a = (a1, . . . , an) and b = (b1, . . . , bm) by ab =
(a1, . . . , an, b1, . . . , bm). AG-stochastic function defined onA extends to a homomorphism
of the semigroup A∗ into the semigroup of stochastic matrices on G by associating to each
a = (a1, . . . , an) the stochastic matrix

Pa = P(an) · · · P(a1). (9)

Likewise, for any a = (a1, . . . , an) ∈ A∗, we define the composition of coupling functions
fa : G × [0, 1]n → G as

fa(g; u1, . . . , un) = f(a1)( f(a2)(. . . f(an−1)( f(an)(g; un), un−1), . . . , u2), u1),

for g ∈ G and ui ∈ [0, 1], i = 1, . . . , n. We define the depth of a as s(a) = ∑n
i=1 ai .

Let us define a directed graph �θ with the sites of Z as vertices, and arcs joining n ∈ Z

with n − k, whenever k ∈ A. It is natural to visualize the elements a ∈ A∗ as paths of the
graph �θ . Once we have weighted the arc (n, n − k) with the probability θk > 0, we can
assign a probability to any path, given by the product of the probabilities of the arcs belonging
to the path. Now, for a = (a1, . . . , am) ∈ A∗, Pa is the stochastic matrix used to compute
the value of Xr,w

n from the value Xr,w
n−s(a), for n − s(a) > r , whenever Kn = a1, Kn−a1 =

a2, . . . , Kn−a1−···−am−1 = am : an event which has probability θa = θa1 · . . . · θam . Notice that
infinitely many paths are associated to each a ∈ A∗, differing in the starting site in Z. Also
observe that the depth s(a) is the distance of the last site of the path from the first one (see
Fig. 1)

The sample K = (Kn, n ∈ Z) selects a particular random subgraph �K of �θ , made of
the arcs (m,m − Km), for all m ∈ Z. Likewise, the random walks T (n) = (T (n)

k , k ∈ N), for
n ∈ Z, can be actually seen as random walks on the graph �θ .

We can extend to aG-stochastic function P(·) a number of concepts which are well known
for the “standard” case of a single stochastic matrix P , i.e. the G-stochastic function defined
on A = {1}, with P(1) = P .

Definition 1 Let P(·) be a G-stochastic function defined on A and i 	= j ∈ G. We say that
i ∈ G P(·)-communicates with j ∈ G if there exists a ∈ A∗ such that Pa(i, j) > 0. We say
that i and j P(·)-intercommunicate when i communicates with j and vice versa.

Fig. 1 The word a = (2, 4, 3) and the corresponding path
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352 E. De Santis, M. Piccioni

As usual for the standard case, we declare that each i ∈ G intercommunicates with
itself, so that intercommunication becomes an equivalence relation and G is partitioned in
intercommunicating classes.

Definition 2 An intercommunicating class C is closed when i ∈ C communicates with
j ∈ G implies j ∈ C (therefore j communicates with i). We say that a G-stochastic function
P(·) is irreducible if for any i and j ∈ G there exists a ∈ A∗ such that Pa(i, j) > 0, that is the
whole G is the only intercommunicating class. More generally, P(·) is essentially irreducible
if there exists a single intercommunicating class.

It is easily verified that P(·) is irreducible if and only if P̂ is irreducible. As in the standard
case it is possible to decompose G in a rather familiar way.

Proposition 1 Let P(·) be a G-stochastic function. There exists a unique partition
{R1, . . . , Rs, T } of G, with s ≥ 1, where

(1) Rh is a closed intercommunicating class, thus {P(k)|Rh , k ∈ A} is irreducible, for h =
1, . . . , s;

(2) for any i ∈ T there exists j ∈ R1 ∪ . . . ∪ Rs and a ∈ A∗ such that Pa(i, j) > 0.

Proof The proof is completely analogous to that for a single finite stochastic matrix. In that
case the sets Rh , h = 1, . . . , s represent the recurrent states, whereas the set T , which is
the union of the intercommunicating classes that are not closed, represents the remaining
transient states. �

The reader will notice that the above decomposition coincides with that concerning any
convex combination of the stochasticmatrices P(k), k ∈ Awith positiveweights, in particular
thematrix P̂ . The following result allows to rule out a trivial case of nonuniqueness for kernels
of the form (3).

Proposition 2 If theG-stochastic function P(·) hasmore thanone closed intercommunicating
class then for the kernel (3) one has |G(p)| > 1.

Proof The restriction of a kernel (3) to a closed intercommunicating class Rh is by itself a
transition kernel pRh on Rh . Identifying G(pRh )with a subset of G(p) in the natural way, and
taking into account that G(pRh ) are non empty and disjoint, for h = 1, . . . , s, the statement
of the theorem is immediately obtained. �

The simplest example of this sort is contained in [9]: if P(k) = I2 for all k ∈ A, then the
two states are two closed classes and the Dirac measures on the two constant sequences are
two elements of G(p).

The following proposition ensures that, when there is only one communicating class, we
can restrict the kernel to it.

Proposition 3 For a transition kernel of the form (3), consider the corresponding G-
stochastic function P(·) and suppose that R is the union of all closed intercommunicating
classes. Let pR be the restriction of p to R. Then G(p) = G(pR) for the kernel (3).

Proof Themain step is to prove that ifX ∼ μ ∈ G(p), then, for any n ∈ Z, P(Xn ∈ Rc) = 0.
For this it is enough to prove that

lim
r→−∞ P(Xr,w

n ∈ Rc) = 0 (10)
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One-Dimensional Infinite Memory Imitation Models with Noise 353

for any w ∈ GZ.
Starting with Z0 = Rc, we define recursively a sequence of subsets Zh ⊂ Rc, for

h = 1, . . ., with strictly decreasing cardinality, until for some integer L it is ZL = ∅. During
this construction wewill define ah ∈ A∗ of length nh and Borel sets�h ⊂ [0, 1]nh of positive
Lebesgue measure Lebnh , for h = 0, 1, . . . , L − 1. The recursive construction is given by

Zh+1 = { fah (i,�h), i ∈ Zh} ∩ Rc

and has the properties

1. { fah (i,�h), i ∈ Zh} ∩ R 	= ∅, h = 0, . . . , L − 1
2. For any i ∈ Zh , | fah (i,�h)| = 1.

Let us explain the generic step h of the construction. Fix an arbitrary state j ∈ Zh . By
the definition of R there exists a word ah ∈ A∗ of length nh such that Pah ( j, R) > 0.
This ensures the existence of �∗

h with a positive nh-dimensional Lebesgue measure such
that fah ( j,�

∗
h) ∈ R, hence Property 1 is guaranteed. To obtain Property 2 one may need to

reduce �∗
h to some smaller �h ⊂ �∗

h keeping positive Lebesgue measure, which is clearly
always possible by finiteness of Zh .

Nowweare in a position to prove (10).Define theworda of lengthm = n0+n1+· · ·+nL−1

by the concatenation a = aL−1 . . . a0 and the Borel set � = �L−1 × · · · × �0 ⊂ [0, 1]m .
Let c = θa · Lebm(�) > 0.

Recall the recursive construction of Xr,w
n in terms of the random walk T (n) = {T (n)

k , k ∈
N}with the corresponding sequences {Kk = K

T (n)
k

, k ∈ N}, obtained through the relation (4),
and let {Uk = U

T (n)
k

, k ∈ N}. If, for some integer l, a segment (Kl , . . . , Kl+m,Ul , . . . ,Ul+m)

belongs to a×� with T (n)
l+m > r , then Xr,w

n ∈ R, irrespectively of w. Since a segment of this
kind will eventually occur with probability 1, (10) holds.

As a consequence, if μ ∈ G(p) then μ(RZ) = 1. Moreover, being μ compatible and
supported by RZ, it is actually in G(pR). �

3 Periodicity of G-Stochastic Functions and Uniqueness

In the previous section we have justified to restrict our attention to irreducible G-stochastic
functions P(·). In this section we turn our attention to the notion of periodicity of a state
i ∈ G, which is slightly more delicate than in the standard case. We start by observing that
the depth s is a homomorphism of the free semigroup A∗ into the additive semigroup of
positive integers N+. As a consequence s(A∗) is a sub-semigroup of N+. The period ofA is
defined as

d(A) = gcd{s(A)} = gcd{s(A∗)}. (11)

If 1 ∈ A, as it happens in the standard case, then s(A∗) coincides with N+, and d(A) = 1.
Recall that, except for a finite number of elements, an additive semigroup of positive integers
has always the form {n0d, (n0 + 1)d, . . . }, where d is the gcd of the semigroup and n0 is a
suitable positive integer.

Now suppose that the transition kernel p in (3) has d(A) > 1. Then it is natural to move
from p to

p̄(g|w̄−1−∞) =
∑
l∈Ā

θld(A)P(ld(A))(w̄−l , g), (12)
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354 E. De Santis, M. Piccioni

with Ā = {l : ld(A) ∈ A}, so that d(Ā) = 1. The following proposition allows us to set
d(A) = 1 in all the uniqueness proofs of the present paper, without restriction of generality.

Proposition 4 For a transition kernel p of the form (3) let d(A) > 1 and define p̄ as in (12).
Then uniqueness holds for p if and only if it holds for p̄.

Proof Let us consider the process Xr,w governed by the transition kernel p. Then for any
h = 0, 1, . . . , d(A) − 1 the d(A)-marginal process X̄(h), defined by

X̄(h)k = Xr,w
h+kd(A), k ∈ Z (13)

is governed by the kernel p̄, with boundary conditions w̄(h) = (wh+kd(A), k ∈ Z), with
r (h) = max{k : h + kd(A) ≤ r}. If uniqueness holds for p, then Xr,w converges weakly as
r ↓ −∞ to the unique elementμ of G(p), for any choice ofw ∈ GZ. LetY be a process with
distribution μ. Likewise the process X̄(h) converges weakly to Y(h) = (Yh+kd(A), k ∈ Z), as
r (h) ↓ −∞ which proves that uniqueness holds also for p̄.

For the converse notice that, for any r , conditionally to w ∈ GZ, the d(A)-marginal
processes X̄(h), defined in (13), are independent, for h = 0, 1, . . . , d(A)−1. By consequence,
if μ̄ is the unique element in G( p̄), each of the d(A)-marginal processes converges to it, so the
whole process Xr,w has a limit distribution with the d(A)-marginal processes μ̄ distributed
and independent, which ends the proof. �

The previous proposition corrects the erroneous statement contained in our paper [9] (see
Proposition 1 and Theorem 1) that d(A) = 1 is necessary for uniqueness.

Next assume that d(A) = 1 and define the period of i ∈ G to be di = gcd(s(A∗
i )), where

A∗
i = {a ∈ A∗ : Pa(i, i) > 0}. If di = 1 we say that the state i ∈ G is aperiodic for P(·), The

following proposition guarantees that, for irreducible G-stochastic functions, we can refer
the term to the whole function, since all states have the same period.

Proposition 5 Let P(·) be an irreducible G-stochastic function defined onA, with d(A) = 1.
Then di = d̂ , for i ∈ G, for some d̂ ∈ N+. Moreover, there exists a partition of G in sets
{Gh, h = 0, . . . , d̂ − 1} such that

Pb(i, j) > 0, i ∈ Gh ⇒ j ∈ Gh+s(b),

identifying Gh+kd̂ with Gh.

Proof By irreducibility for any pair i, j ∈ G there exists a1, a2 ∈ A∗ such that
Pa1(i, j)Pa2( j, i) > 0. This implies that Pa2a1(i, i) ≥ Pa1(i, j)Pa2( j, i) > 0, so
s(a2a1) = s(a1) + s(a2) = kdi . Moreover if Pb(i, i) > 0, then Pa1ba2( j, j) ≥
Pa2( j, i)Pb(i, i)Pa1(i, j) > 0, thus a1A∗

i a2 ⊂ A∗
j , from which

s(a1) + s(A∗
i ) + s(a2) = kdi + s(A∗

i ) ⊂ s(A∗
j ).

This implies that d j ≤ di . Exchanging the roles between i and j one gets di = d j as
promised.

For the second statement let us fix some reference state k ∈ G, and, for any h =
0, 1, . . . , d̂ − 1 define the subsets of G

Gh = {i ∈ G : Pa(k, i) > 0 for some a ∈ A∗ with s(a) = nd̂ + h, n ∈ N}.
By irreducibility the union of the Gh’s is the whole G. Now suppose that i ∈ Gh1 ∩ Gh2 .
Then there exist a1 ∈ A∗ with s(a1) = n1d̂ + h1 and a2 ∈ A∗ with s(a2) = n2d̂ + h2 such
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that Pa1(k, i)Pa2(k, i) > 0. We can safely assume that n1 = n2 = n, since s(A∗
k) contains

all the multiples of d̂ large enough. Next let b ∈ A∗ such that Pb(i, k) > 0: we will have
that

Pba1(k, k)Pba2(k, k) ≥ Pb(i, k)
2Pa1(k, i)Pa2(k, i) > 0,

which implies that s(ba1) and s(ba2) are multiples of d̂. Hence

s(ba1) − s(ba2) = s(a1) − s(a2) = h1 − h2

must be a multiple of d̂ . Since |h2 − h1| < d̂ this happens only when h1 = h2. So we have
proved that {Gh, h = 0, 1, . . . , d̂ − 1} is a partition.

Next assume Pb(i, j) > 0, i ∈ Gh, j ∈ Gl . By assumption there exists a ∈ A∗ such that
Pa(k, i) > 0 with s(a) = nd̂ + h. Then Pba(k, j) ≥ Pa(k, i)Pb(i, j) > 0, so

s(ba) = s(b) + s(a) = s(b) + nd̂ + h = md̂ + l

for some integer m, from which

s(b) = (m − n)d̂ + (l − h) ⇒ l = h + s(b), mod d̂,

as desired. �
We can immediately make profit of the previous proposition to establish the following

result.

Theorem 1 Let p be a transition kernel of the form (3) and let d(A) = 1. If P(·) is irreducible
but not aperiodic (i.e. d̂ > 1) then |G(p)| > 1.

Proof By Proposition 5 the classes G0,G1, . . . ,Gd̂−1 are well defined. Let us select an

element from each class, say gi ∈ Gi , for i = 0, . . . , d̂ − 1 and define wk = gi if k is
congruent to i mod(d̂), for k ∈ Z. Finally define w = (wk : k ∈ Z) and the translated ŵ,
with ŵk = wk+1, for k ∈ Z.

Recall that any probability measure in G(p) can be obtained as a weak limit of the laws of
Xr,w, for r ↓ −∞. These laws give probability one to the event {X0 ∈ G0}, so this remains
true in the limit. On the other hand the weak limits of the laws of Xr,ŵ give probability one
to the event {X0 ∈ G1}, therefore the measure are necessarily distinct. This ends the proof.

�
An example of application of Theorem 1 is the situation examined in [9]. If the image of

A under P(·) is made by the matrices I2 and J2, then P(·) is irreducible. This happens also if
this image is the singleton {J2}. Now suppose d(A) = 1 and, for k ∈ A and odd, P(k) = J2
and for k ∈ A and even, P(k) = I2. Then, for any state i ∈ G, s(A∗

i ) is made only by even
numbers, thus di is a multiple of 2. It is precisely 2 since d(A) = 1. Thus P(·) is not aperiodic.
The two elements of G(p) constructed in Theorem 1 are Dirac measures supported by the
two coherent sequences alternating the two states, as defined in [9]. Clearly these measures
are not stationary: as a matter of fact the convex combination of them with equal weights is
the unique stationary element in G(p). More generally, under the hypotheses of Theorem 1,
we will prove in Sect. 5 that G(p) contains only one stationary measure.

We close this section focusing our attention on the set I of invariant distributions for the
stochastic matrix P̂ = ∑

k∈A θk P(k).

Lemma 1 The following statements hold:
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(1) Let λ ∈ I and w be a configuration with λ-distributed single-site marginals. Then, for
any r ∈ Z, Xr,w has the same property.

(2) For any λ ∈ I there is at least one element of G(p) with single-site marginals equal to
λ. This element can be always chosen to be stationary.

(3) A stationary element of G(p) has all its single-site marginals equal to an element of I.
(4) If there is a unique (stationary) element in G(p), there is a unique invariant measure for

P̂.

Proof For (1) it is enough to notice that, by induction on n > r , and interchanging the two
sums of positive terms,

P(Xr,w
n = g) = E(P(Xr,w

n = g | Xr,w
i , i < n)) =

∑
k∈A

θk(λP(k))(g) = (λP̂)(g) = λ(g).

(14)
For (2) takeXr,w as above and send r to−∞: any weak limit point will be in G(p) and it will
keep the single-site marginals equal to λ. By taking Cesaro averages on a window increasing
to Z and going to the limit one gets at least one stationary process with single site marginals
still equal to λ. For (3), let X ∈ G(p) be stationary and call λ its single-site marginals: then,
similarly to (14)

λ(g) = P(Xn = g) = E(P(Xn = g | Xi , i < n)) =
∑
k∈A

θk(λP(k))(g) = (λP̂)(g). (15)

(4) is an immediate consequence of (3). �
By the remark following Proposition 1, it is immediately seen that I has a single element

if and only if P(·) is essentially irreducible. So this is a necessary condition for the existence
of a unique stationary element in G(p). At the end of Sect. 5 we will able to prove that this
condition is also sufficient.

4 Main Results

After the results of the previous section, it remains to consider transition kernels of the form
(3) with a corresponding G-stochastic function P(·) which is irreducible and aperiodic with
d(A) = 1. In this section we prove that uniqueness holds for all of them. Here is the main
result.

Theorem 2 Let p have the form (3) and assume that P(·) is irreducible and aperiodic. Then
G(p) has a unique element μ, with single-site marginals equal to λ̂, the unique invariant
distribution of P̂.

Before giving the proof of this result, we prove a weaker result in order to present the
basic argument in a simpler context. Recall that under the above assumptions, P̂ has a unique
invariant distribution.

Lemma 2 Let p have the form (3) and let P(·) be irreducible and aperiodic. Then, for any
n ∈ Z the distribution of Xr,w

n converges to λ̂, as r → −∞, irrespectively of w ∈ GZ.

Proof Without loss of generality, we take d(A) = 1 and n = 0. We are going to couple in a
suitable way the random variables Xr,w

0 for any w ∈ GZ, in such a way that, as r → −∞,
they all converge to the same random variable a.s.
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Let i0 be a fixed state in G. By irreducibility the additive semigroup s(A∗
i0
) is non empty

and, by aperiodicity, it has a gcd equal to 1: by the characterization of these semigroups, there
exists m0 ∈ N+ such that, for m ≥ m0, then m ∈ s(A∗

i0
). Now use again irreducibility to

prove that there exists n0 ∈ N+ such that, for any i, j ∈ G one can choose a word bi, j ∈ A∗
with Pbi, j (i, j) > 0 and s(bi, j ) = n0. We call B the collection of these (distinct) words.
These words can be identified with paths in �θ with the same depth n0. For any b ∈ B we
call θb its probability and let ρ = ∑

b∈B θb be the sum of the probabilities of these paths.

Next we are going to construct the random walk T (0) = {T (0)
k , k ∈ N} by generating

{K
T (0)
k

, k ∈ N}, according to (4). Let (l(0)h , u(0)
h ] be the interval between whose endpoints a

path corresponding to a word in B appears for the h-th time in the random walk T (0) (it is
understood that such a word can vary with h). By definition u(0)

h − l(0)h = n0 (see Fig. 2).
The independence of the decrements of the random walk ensures that, with probability 1, a
sub-walk in B will appear infinitely many times. Once T (0) reaches the site V (0)

r , the value
Xr,w
0 can be obtained from w

V (0)
r

by using the recursion in (6), with an exception for each

of the sub-walks in B identified before. Suppose that one of these sub-walks joins s = T (0)
k

with s − n0 = T (0)
k+m , with s − n0 > r . Then, conditionally to this event, the transition from

Xr,w
s−n0 to Xr,w

s follows the transition matrix

Q = 1

ρ

∑
b∈B

θbPb. (16)

This matrix is positive by construction, therefore there exists a coupling function f∗ :
G × [0, 1] → G with the following property. If U is uniform in [0, 1], f∗(g,U ) has the law
Q(g, ·), and there exists ε > 0 such that for u < ε

f∗(g, u) = f∗(h, u),∀g, h ∈ G. (17)

It is enough to number the states and use the Skorohod representation. Thus any transition
from the left endpoint to the right one of the segments (l(0)h , u(0)

h ] can be performed by
drawing some independent random variable U with uniform distribution in [0, 1]. When
U < ε occurs, then Xr,w

s does not depend on Xr,w
s−n0 , and thus does not depend on w. Once

this coupling occurs, by following the recursion (6) one obtains that Xr,w
0 does not depend

on w as well.
Since each time a sub-walk in B occurs the U used by the coupling function f∗ are

independent, coupling will happen with probability 1 and thus, as r → −∞, Xr,w
0 converges

a.s. to a random variable which does not depend of w. Finally take w with all the single-site
marginal equal to λ̂. Then, by Lemma 1, Xr,w has law λ̂ for any r , and this law is kept by
any weak limit point. This ends the proof. �

Proof of Theorem 2 Again, for any finite subset � ⊂ Z, we have to couple all the processes
Xr,w

� for all r ∈ Z and w ∈ GZ in such a way that, as r → −∞, they converge a.s. to the
same limit vector, hence they share the same limit in law.

Fig. 2 An example with B = {(1, 2), (2, 1)}. Paths in B appear above the sites
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Thus, we proceed first to the construction of the random walks T (n) = {T (n)
k , k ∈ N},

for n ∈ �, by using the i.i.d. θ -distributed random variables (Km,m ∈ Z). The intervals
(l(n)
h , u(n)

h ] where a path in B occurs for the h-th time, h = 1, 2, . . . are located within the
random walk T (n), for any n ∈ �, with the constraint that distinct intervals which overlap
are discarded.

We recall that the distance between two different random walks can be seen as a von
Schelling process until the possible coalescence. The results in [2] imply that when d(A) = 1
it is recurrent if and only if the distribution θ is coalescent. In this case any finite family of
randomwalks coalesce a.s.; otherwise this process is transient and any pair of distinct random
walks T (m) and T (n) either coalesce or their distance goes to infinity a.s.

The set� is partitioned according to the following equivalence relation:m ≡ n whenever
T (m) and T (n) coalesce. If this happens let Sm,n denote their coalescence point, otherwise
we set Sm,n = −∞. For each of the equivalence classes C1, . . . ,Cl , let

SCh =
{
inf{Sm,n,m, n ∈ Ch}, if |Ch | ≥ 2,
n, if Ch = {n}, (18)

for h = 1, . . . , l. For a coalescent distribution θ , l = 1 a.s. Otherwise the random walks
T (SCh ) do not coalesce, for h = 1, . . . , l and their distance goes to infinity with probability
1.

Therefore there are infinitely many non overlapping intervals where a path in B occurs,
for each of these random walks. With the same argument used in the previous proof we
get that, with probability 1, provided r is sufficiently close to −∞, Xr,w

SCh
converge to λ̂,

irrespectively of w, independently for any h = 1, . . . , l. Since any random walk T (m), for
m ∈ �, necessarily hits the set {SC1 , . . . , SCl }, by forward iteration of (6) it is then possible
to obtain the required limiting values for Xr,w

n , for all n ∈ �. �

Next we apply the previous theorem to the class of binary autoregressive kernels examined
in [9]. Theorem 3 in this reference proved uniqueness under conditions (a) and (b) therein.
Now condition (a) is nothing but irreducibility and aperiodicity of the associatedG-stochastic
function. Condition (b) assumes coalescence so, as a consequence of Theorem 2, this condi-
tion appears to be unnecessary for uniqueness. Altogether we have the following uniqueness
theorem.

Theorem 3 Consider a transition kernel p of the form (3) with |G| = 2, d(A) = 1 and the
range of P(·) contained in {I2, J2}, with I2 and J2 defined in (8). Then uniqueness holds for
p if and only if there exists m ∈ A even with P(m) = J2, or at least m1,m2 ∈ A, both odd,
with P(m1) = J2 and P(m2) = I2.

Proof It is clear that these conditions ensure that J2 is contained in the range of P(·) (which
is equivalent to irreducibility) and that they exclude that the odd elements of A are sent by
P(·) into J2 and the even into I2 (which is the only periodic case). �

By putting together all the results proved so far, we finally get the following

Theorem 4 For a given kernel p of the form (3) one has uniqueness if and only if the
corresponding G-stochastic function P(·) is essentially irreducible and its single intercom-
municating class is aperiodic.
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5 Perfect and ε-Perfect Simulation

In this section, under the conditions of Theorem 2 we construct simulation algorithms for
the unique element μ of G(p) on a finite set of sites � ⊂ Z. Recall that we have assumed
without loss of generality that d(A) = 1, so the coalescence property of the distribution θ is
equivalent to the recurrence of the corresponding von Schelling process.

The problem of determining conditions for coalescence of θ has been recently addressed
in [23], where it has been established that the following tail condition

∞∑
k=1

( ∞∑
n=k

θn

)2

< +∞

is sufficient. Notice that this is weaker than the finiteness of the mean of θ , which has the
same form but without the square. The latter is equivalent to the positive recurrence of the
corresponding von Schelling process, which is in turn equivalent to the finiteness of the mean
of the coalescence time of any two of the random walks T (n), n ∈ Z. In [23] an example of
transient von Schelling process was also given.

In the uniqueness regime, if θ is coalescent a perfect simulation algorithm for the marginal
distribution μ� in any finite window � ⊂ Z can be designed. Indeed, in this case the
coalescence point Sm,n is finite a.s. for any n,m ∈ �, and so is the coalescence point

S� = inf{Sm,n,m 	= n ∈ �}. (19)

Moreover these coalescence points are all adapted to the filtration

Fmax�
s = σ(Kn, s < n ≤ max�), s < min�, (20)

which makes them accessible through sequential simulation. The following proposition
essentially coincides with a result appearing in [9] in a particular case.

Theorem 5 Consider a transition kernel p of the form (3) with d(A) = 1, a coalescent
distribution θ , and P(·) irreducible and aperiodic. Let λ̂ be the unique invariant distribution
of the stochastic matrix P̂. Then, for any finite � ⊂ Z the random vectorX� = (Xn, n ∈ �)

given by Simulation Algorithm 1 is distributed asμ�, themarginal on� of the unique element
μ of G(p).

Simulation Algorithm 1

1. Construct the random walks T (n), n ∈ � up to their coalescence time S� (see Fig. 3);
2. Sample X̃S� ∼ λ̂;
3. Keeping the Km used in the first step and sampling Um i.i.d. uniform in (0, 1) for S� <

m ≤ max�, compute

Xn = FS�,n

(
Km,Um, S� < m ≤ n; X̃ S�

)
, n ∈ �.

Fig. 3 An example of coalescing random walks, withA = {2k, k ∈ N+} ∪ {3}, for the simulation of the two
rightmost adjacent sites. The leftmost site is drawn from the distribution λ̂
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Proof By assumption we are working in the uniqueness regime, so we can approximate μ�

in total variation norm with the law of Xr,w
� , with arbitrarily chosen boundary condition w,

as r → −∞. Choosing the components of w to be i.i.d. from the law λ̂ we can make profit
of Lemma 1. By the strong Markov property applied to the random walks T (n), n ∈ �,
conditionally to {S� = s} with s ≥ r , Xr,w

s is independent ofFmax�
s and has the distribution

of λ̂. By consequence we can represent the random variable X̃ produced in Step 2 of the
algorithm as Xr,w

s , which implies that on the event {S� = s} with s ≥ r ,

Xr,w
n = Fs,n(Km,Um, s < m ≤ n; Xr,w

s ) = Xn, n ∈ �.

By the coupling inequality (see e.g. [22]) we have that the total variation distance between
the law of Xr,w

� and that of the output X� of the algorithm is bounded by the probability that
S� < r . By sending r to −∞ the proof is completed. �

Notice that if the unique invariant distribution λ̂ for the stochastic matrix P̂ is difficult
to compute, one can use a perfect simulation algorithm for finite Markov chains to obtain a
sample from it.

In the non-coalescent case the simulation algorithm of the previous theorem is unfeasible
since the coalescence point S� of � is not finite with probability 1. Even if the distribution
θ is coalescent we may need to stop the simulation when it goes beyond some large negative
threshold because of memory and time limitations. A fortiori this needs to be done if we
are not able to prove coalescence. In all these cases it is still possible to produce a sampling
algorithm, provided a certain small error is accepted. In order to evaluate this error we need
to introduce the following random time

Ŝ� = inf{Sn,m : n,m ∈ �, Sn,m > −∞}. (21)

In case the set appearing at the r.h.s. of (21) is emptywedefine Ŝ� = min�. As a consequence
Ŝ� is finite, but when θ is not coalescent, it is not adapted to the filtration (20).

Here is a ε-approximate simulation algorithm, where ε is an error which goes to zero as
the threshold site u ∈ Z appearing in the algorithm decreases to −∞. Indeed, Ŝ� being
finite, in principle it is possible to select u sufficiently close to −∞ to make the r.h.s. of
the forthcoming (23) smaller than any fixed ε > 0. In practice, the determination of a tail
estimate on the distribution function of Ŝ� can be extremely complicate.

Theorem 6 Consider a transition kernel p of the form (3) with d(A) = 1 and let P(·)
irreducible and aperiodic. Let λ̂ be the unique invariant distribution of the stochastic matrix
P̂ and μ be the unique element of G(p). Let � ⊂ Z be finite, and let u < min�. Let μ̃u

� be
the law of the random vector X̃u

� = (X̃u
n , n ∈ �)defined by the following

Simulation Algorithm 2

1. Construct the random walk T (n) until V u
(n) is reached, for n ∈ �;

2. For any m ∈ Vu,� = {V u
(n) : n ∈ �} sample X̃u

m ∼ λ̂, independently;
3. Keeping the Km used in the step 1 and sampling Um i.i.d. uniform in (0, 1) for u < m ≤

max�, compute

X̃u
n = Fu,n

(
Km,Um, u < m ≤ n; X̃u

V (n)
u

)
, n ∈ �. (22)

Then, in total variation norm

||μ̃u
� − μ�|| ≤ P(Ŝ� < u). (23)
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Proof Choosing the same boundary condition w as in the previous theorem we can decom-
pose the formula (7) in the following two steps: first the boundary conditions are propagated
up to Vu,�

Xr,w
m = Fr,m(Kl ,Ul , r < l ≤ m;wVr

(m)
), m ∈ Vu,�, (24)

for any u < min�. Next the random variables at � are constructed

Xr,w
n = Fu,n

(
Kl ,Ul , u < l ≤ n; Xr,w

V u
(n)

)
, n ∈ �. (25)

Now we construct on the same probability space the random vector X̃u
Vu,� produced by

step 2 of the algorithm. It will be shown that, when the event {Ŝ� ≥ u} occurs, X̃u
Vu,� will

coincide with Xr,w
Vu,� , as given by (24). Therefore, on this event also X

r,w
� , given by (25), will

coincide with the output of the algorithm X̃u
� given by (22). By applying again the coupling

inequality and sending r → −∞ the proof will be concluded.
For the last step we define i.i.d. sequences (K (m)

l ,U (m)
l ), r < l ≤ u, , independently for

any m ∈ Vu,�. From each site m, by means of the K (m)
l ’s, independent random walks are

started. As done in the case of two walks, we assume that the rightmost of them is updated
first. The same (Kl ,Ul)’s defined to construct Xr,w are used, except at coalescence sites,
where additional independent copies are sampled. Analogously to (5), let us define Ṽ (m)

r to
be the site where the random walk starting from m lands under the threshold r . At this site
we use the original boundary condition appearing in Xr,w. If more random walks land at the
same site, additional independent copies are sampled as before.

These boundary conditions are propagated forward in time on eachwalk, using theU (m)
l ’s,

until the starting points m ∈ Vu,� are reached. Following the notation of (7), we have

Xr,w(m)

m = Fr,m
(
K (m)
l ,U (m)

l , r < l ≤ m;w
(m)

V (m)
r

)
, m ∈ Vu,� (26)

By Lemma 1, Xr,w(m)

m ∼ λ̂, and they are independent by construction, so they are identical
in law to the X̃u

m’s generated in step 2 of the algorithm as promised.
Finally, observe that when Ŝ� ≥ u, no site is visited twice by any of these random walks

and therefore, for any m ∈ Vu,�, the random variables Xr,w
m defined by (24) coincide with

Xr,w(m)

m in (26). Using the coupling inequality and sending r to −∞ concludes the proof. �
As remarked by one of the referees, the previous two algorithms work also in case of

non-uniqueness to construct any stationary element of G(p). Which element is picked up
depends on the invariant distribution of P̂ used in Step 2. In the essentially irreducible case
the matrix P̂ is itself essentially irreducible, so its unique invariant distribution is the only
possible choice.

Corollary 1 Consider a transition kernel p of the form (3) with d(A) = 1 and let P(·)
irreducible but not aperiodic. Let λ̂ be the unique invariant distribution of the stochastic
matrix P̂. Then G(p) has a unique stationary element μs . Let � ⊂ Z be finite. Simulation
Algorithm 1 (for coalescent distributions θ ) constructs a random vector X̃� distributed
as μs,�. Simulation Algorithm 2 constructs a random vector X̃u

� converging to μs,� as
u → −∞.

Proof Consider any stationary element μ̃ of G(p). By Lemma 1 it has necessarily λ̂-
distributed single-site marginals. Take the boundary condition w appearing in the Proof
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of Theorems 5 and 6 to be μ̃-distributed. Then Xr,w has the distribution μ̃�. Since this is
either the law or it is arbitrarily close in total variation to the random vectors constructed by
these algorithms, which do not depend on the choice of μ̃, one establishes both the statements
of this corollary. �

6 A Result with G Countable

In this section G is allowed to be countable. In this case the complete characterization
presented in Theorem 4 fails, despite the fact that the conditions of essential irreducibility
and aperiodicity continue to make sense. Indeed, by the lack of compactness of the sets of
probability measures overGZ, existence is not guaranteed. On one side this prevents the con-
struction of more than one compatible law when essential irreducibility and/or aperiodicity
do not hold, and on the other requires to strengthen these assumptions to prove existence
and uniqueness. In this section we are going to provide an assumption of Doeblin type that,
in case G is countable, allows to prove existence and uniqueness of compatible laws. For
definiteness assume that either G = N+ or G = {1, . . . , |G|}.

Hypothesis D For a kernel p of the form (3), there exists a certain state, say 1 without
loss of generality, and an integer n̄0 ∈ N+, with the following property

∀i ∈ G, ∃bi ∈ A∗ with s(bi ) = n̄0 such that inf
i∈G Pbi (i, 1) =: ε > 0. (27)

Whereas in the countable case this assumption is strictly stronger than essential irreducibility
and aperiodicity, if G is finite it is actually equivalent for the following reason. First, the fact
that for any i ∈ G one has Pbi (i, 1) > 0 for some bi ∈ A∗ it implies that two different
irreducible classes cannot exist. Second, the fact that these words can be chosen with the
same depth denies the existence of a non-trivial partition in periodic classes as in Proposition
5.

Before stating the result, define B̄ = {bi , i ∈ G}, ρ̄ = ∑
b∈B̄ θb > 0 and

Q̄ = 1

ρ̄

∑
b∈B̄

θbPb.

These quantities will play in the forthcoming result the same role as played by B, ρ and
Q in the proof of Lemma 2. Under Hypothesis D, this matrix has all the entries of the
first column not smaller than ε, so the Skorohod construction gives a coupling function
f∗ : G ×[0, 1] → G that, in addition to the property that f∗(g,U ) has the law Q(g, ·) when
U is uniform in (0, 1), for any g ∈ G, satisfies

f∗(g, u) = 1, g ∈ G, 0 < u < ε. (28)

We warn the reader that this coupling function enters explicitly in Simulation Algorithm
3 presented below, differently from what happened in the algorithms of the previous section.
If the cardinality of G is large or infinite the computation of Q̄, and consequently of the
coupling function f ∗, can give rise to accuracy and computational time problems. This is
the reason for which, even if the following theorem applies to G finite as well, and as such it
provides a perfect simulation algorithm under the uniqueness regime which is free of error,
in practice it may be preferable to accept a small error introducing a truncation threshold in
the simpler Simulation Algorithm 2, which, in addition to the (Kl ,Ul)’s, requires only the
computation of the invariant distribution λ̂. Moreover Simulation Algorithm 3 does not apply
in a situation of non uniqueness, as in the non aperiodic case.
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Theorem 7 Under Hypothesis D, there exists a unique element in G(p), whose restriction
to any finite � ⊂ Z is the law of the random vector X� given by Simulation Algorithm 3.

Simulation Algorithm 3

1. Set V = �;
2. If V = ∅ stop.
3. Otherwise set m = maxV;
4. Construct the random walk T (m) and check if a subpath corresponding to a word in B̄

appears before it lands on or below a site s in V (this is possible only if the distance
between m and V \ {m} exceeds n̄0);

5. If such a subpath appears connecting, say, the sites u and l (with u − l = n0), extract
U∗ uniform in (0, 1), independent of all the variables generated previously: if U∗ < ε,
set Xu = 1, compute by forward simulation Xm, using (6) and the coupling functions
f ∗(U∗; ·) on the previously located segments (l, u], together with Xn, n ∈ � for all n
such that T (n) hits m, delete m from V and go to 2.;

6. Otherwise replace m by s in V (if s is already in V this means that the two random walks
have coalesced) and go to 2.

Proof Themain to prove is that the above algorithm stops in a random but a.s. finite time.We
already know that any twowalks T (m) and T (n), withm 	= n, either coalesce, or their distance
go to infinity a.s. As a consequence it happens with probability zero that the rightmost walk,
constructed from site m at step 3, only finitely many times is at distance larger than n̄0 from
the current position of the other “surviving” walks, stored in the set V . Each time it is at a
distance larger than n̄0 there is a probability ρ̄ε to stop the walk with the determination of
the value Xu at some site u, independently of the outcome of all previous simulations. Hence
a finite number of walks will all be stopped in a finite time a.s. We call W the leftmost site
where a random walk is stopped.

Next consider any process of the form Xr,w constructed through the recursion (7). If
this rule is modified by using on each interval (l, u] where a path in B̄ has occurred the
coupling function f ∗, such process can be represented on the same probability space where
the algorithm is constructed, without changing its law. Again by the coupling inequality the
variation distance between X� and Xr,w

� will be bounded by the probability that {W ≤ r}.
The proof is completed by sending r to −∞. �
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