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Anaplastic thyroid cancer (ATC) is often incurable so new therapeutic approaches 
are needed. Tyrosine kinases inhibitors (such as imanitib, sunitinib or sorafenib) are 
under evaluation for the treatment of ATC. Other vascular disrupting agents, such as 
combretastatin A4 phosphate, and antiangiogenic agents, such as aplidin, PTK787/
ZK222584 and human VEGF monoclonal antibodies (bevacizumab, cetuximab), have 
been evaluated. Small-molecule adenosine triphosphate competitive inhibitors 
directed intracellularly at EGFRs tyrosine kinase, such as erlotinib or gefitinib, are also 
studied. Furthermore, new molecules have been shown to be active against ATC, such 
as CLM94 and CLM3. However, more research is needed to finally identify therapies 
able to control and to cure this disease.
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Anaplastic thyroid cancer (ATC) has a very 
poor prognosis due to its aggressive behavior 
and resistance to cancer treatments [1].

Surgery followed by chemotherapy and 
radiotherapy can significantly prolong the 
survival of patients carrying ATC intrathy-
roidal tumors, but this kind of presenta-
tion is very unusual. In fact, ATC is often 
advanced and metastatic at diagnosis  [2,3]. 
Currently, the most effective treatment of 
ATC is multimodal treatment protocol that 
includes surgery, chemotherapy (doxoru-
bicin and cisplatin) and hyperfractionated 
accelerated external beam radiotherapy with 
a median patient survival of 10 months [4].

During the last two decades, several 
somatic mutations in different molecular 
pathways of anaplastic thyroid carcinomas 
have been revealed and associated with 
progression of ATC [5,6].

Thus, clinical research targeting these 
pathways has been recently explored. There 
are a number of clinical trials for anaplas-
tic thyroid carcinoma underway or being 
planned using different types of drugs, such 
as peroxisome proliferator-activated receptor 

(PPAR-γ) agonists, and tyrosine kinase 
inhibitors [6].

Genetic study & molecular 
pathways in ATC
To date, several genetic mutations have been 
identified that play roles in the carcinogen-
esis of ATC. A well-studied mutation of 
thyroid cancer is BRAFV600E, occurring 
in approximately 26% of ATCs and 45% of 
papillary thyroid cancers (PTCs) [7,8].

The tumor suppressor gene p53 is fre-
quently mutated in ATC [7] but uncommon 
in well-differentiated PTC and follicular 
thyroid cancer (FTC) (with a frequence 
ranging from 71 to 88% in ATC)  [9,10]. 
Point mutations within RAS genes involve 
codons NRAS, HRAS and KRAS, with 
mutations of NRAS and HRAS at codon 61 
and of KRAS at codon 12/13 being the most 
common. Mutant RAS proteins activate the 
MAPK and PI3K/AKT pathways. RAS 
mutations are found in ∼10–15% PTCs, 
40–50% of FTCs and in ∼35% of poorly 
differentiated and ∼50% of ATCs, where 
the presence of RAS mutations seems to 
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correlate with a more aggressive tumor behavior and 
poor prognosis [11,12].

Mutations of PIK3CA are also common in ATC [7]. 
PIK3CA encodes the p110α catalytic subunit of PI3K 
and PI3K, which regulates cell cycle progression, 
adhesion and motility  [13]. Garcia-Rostan  et  al.  [13] 
showed that the missense mutations of PIK3CA are 
frequently present in ATC.

VEGF-A is the major mediator of tumor angiogen-
esis, promoting the proliferation and survival of endo-
thelial cells and increasing vascular permeability [14]. 
Differentiated thyroid cancer (DTC) has been found 
to express high levels of both VEGF, because of upreg-
ulation of its main receptor, VEGFR-2, with respect 
to normal thyroid [15]. Moreover, increased expression 
of VEGF in thyroid cancer has been associated with 
an increase in tumor size, distant metastasis and poor 
prognosis [16].

EGFR (ErbB-1; HER1 in humans) is the cell-sur-
face receptor for members of the epidermal growth 
factor family (EGF-family) [17]. Mutations, amplifica-
tions or misregulations of EGFR or family members 
are implicated in about 30% of all epithelial can-
cers. EGFR is overexpressed in ATC, and is impli-
cated in tumor progression and invasion in thyroid 
cancer [18,19].

Liu et al. [20] found frequent copy number gains in 
many receptor tyrosine kinase genes containing the 
EGFR, PDGFR-α, PDGFR-β, VEGFR1, VEGFR2, 
KIT, MET, PIK3Ca, PIK3Cb and PDK1 genes. Many 
of the genes play an important role in ATC tumori-
genesis by aberrant activation of the oncogenic path-
way. The prevalence of copy number gains was gener-
ally higher in ATC than in DTC [21]. It is suggested 
that the copy number variations should be important 
and involved in the progression and aggressiveness of 
ATC [22].

A major mechanism controlling cellular differen-
tiation and biological behavior of cancer cells is his-
tone acetylation that results in a more open chroma-
tin configuration that increases the gene transcription 
rate. Cancer cells have been found to have dysregu-
lated histone acetyltransferase or histone deacetylase 
activity [23,24].

It has been reported [20] RET/PTC rearrangement 
in three cases of ATC tissues, probably because some 
ATC tissues contained PTC tissues.

More recently, it has been suggested the upregu-
lated expression of miR-20a in ATC counteracts thy-
roid cancer progression and may have therapeutic 
potential [25].

Many papers have recently reviewed the com-
prehensive genetic alterations in ATC to identify 
genomic alterations associated with ATC [6].

PPAR-γ agonists
PPAR-γ are members of a superfamily of nuclear hor-
mone receptors  [26]; activation of PPAR-γ isoforms 
elicits antineoplastic  [27] effects in several types of 
cells. Recently, it has been shown in vitro that acti-
vating ligands of PPAR-γ: induce apoptosis and exert 
antiproliferative effects on human PTC cells  [26]; 
prevent distant metastasis of BHP18–21 tumors 
in nude mice in vivo  [26] and induce redifferentia-
tion in thyroid cancer [28–30]. The expressions of the 
PPAR-γ are increased in human ATC cell lines  [31], 
with respect to PTC, and PPAR-γ ligands inhibit 
proliferation and invasion, and induce apoptosis [31–
33]. Rosiglitazone was able to increase the expression 
of thyroid-specific differentiation markers, suggest-
ing that PPAR-γ agonists induce a partial reversion 
of the epithelial mesenchymal transition in ATC 
cells [32]. Furthermore, it has been recently shown in 
‘primary cultured cells from human ATC’ (ANA), 
obtained from each patient [34,35], that PPAR-γ ago-
nists rosiglitazone and pioglitazone are able to inhibit 
cell growth.

On the basis of the encouraging results of in vitro 
studies, recently an in vivo trial has been done.

Recently a novel high-affinity PPAR-γ agonist 
(RS5444), which is dependent upon PPAR-γ for its 
biological activity, has been shown to inhibit prolif-
eration of (IC

50
 ∼ 0.8 nM) ATC cells, and of ATC 

tumor in nude mice [36].
It was also demonstrated that reactivation of sup-

pressed RhoB is a critical step for the inhibition of 
ATC growth [33].

More recently, a Phase I study evaluated efatuta-
zone and paclitaxel in ATC. Fifteen ATC patients 
received efatutazone (0.15, 0.3 or 0.5  mg) orally 
twice daily and then paclitaxel every 3 weeks. 
Median times to progression were 48 and 68 days in 
patients receiving 0.15 mg of efatutazone and 0.3 mg 
of efatutazone, respectively; corresponding median 
survival was 98 versus 138 days. Eight patients had 
≥1 serious adverse event. The authors suggest that 
efatutazone and paclitaxel in combination were safe 
and tolerated and had biologic activity [37].

Targeted therapy for ATC 
Raf kinase pathway
The orally active multikinase inhibitor (mKI) 
sorafenib, targeting VEGFR-1 and -2, B-Raf, RET 
and c-Kit, is a potentially effective agent for patients 
with thyroid cancer, due to its effects on RET, the 
B-Raf pathway and angiogenesis. Several Phase II 
clinical trials, and one Phase III trial, have evalu-
ated the use of sorafenib in patients with metastatic 
iodine refractory thyroid carcinoma [38–41].



www.futuremedicine.com 137future science group

TKIs for the therapy of ATC    Review

The results of these studies suggest that sorafenib is 
a new treatment option for patients with progressive 
radioactive iodine-refractory DTC [41].

Patients with ATC who had failed up to previous 
therapies were enrolled in a multi-institutional Phase II 
trial of sorafenib. Twenty of them were treated with 
sorafenib 400 mg twice daily, and 2/20 (10%) patients 
had a partial response (PR) and 5/20 (25%) had stable 
disease (SD). The overall median progression-free sur-
vival (PFS) was 1.9 months, the median and a 1-year 
survival being 3.9 months and 20%, respectively. The 
authors conclude that sorafenib is active in ATC even if 
at a low frequency [42].

EGFR pathway
The small-molecule EGFR-TK inhibitor gefitinib inhib-
its cell growth in thyroid cancer lines and in RET-trans-
fected cell lines at submicromolar concentrations  [43]. 
The EGFR kinase inactivation induced by gefitinib 
potentiates the ionizing radiation-induced inhibition of 
cell proliferation on FTC and anaplastic cell lines [44].

A Phase II trial was conducted in patients with 
advanced or metastatic thyroid cancer (DTC = 18, med-
ullary thyroid cancer [MTC] = 4, etc.) who received 
gefitinib (250  mg/daily), and reported tumor volume 
reductions in 32% of cases (none of them met criteria 
for PR); 48% of them attained SD at 3  months; the 
overall survival (OS) and median PFS were 17.5 months 
(70 weeks) and 3.7 months (14.8 weeks), respectively, 
suggesting that gefitinib could not have clinically 
significant activity as monotherapy [45].

In a patient with ATC treated with an intermittent 
high-dose gefitinib, and fixed-dose docetaxel, a PR was 
shown [46].

VEGF pathway 
Vandetanib
The orally bioavailable mKI vandetanib targets EGFR, 
VEGFR-2 and -3, and RET kinases, and is approved 
for MTC treatment because of its effects on both RET 
activation and angiogenesis [47]. Two Phase II trials, and 
one Phase III trial, on vandetanib have been conducted 
in patients with MTC with positive results [47–49], and 
the US FDA and EMA-approved vandetanib [50] for the 
treatment of aggressive MTC.

A pretherapeutic drug evaluation by tumor xeno-
grafting in ATC has been recently published suggest-
ing that vandetanib reduced the tumor volume (up to 
61%) and tumor vascularity accompanied by decreased 
EGF-R/VEGF-R2 receptor activity [51].

Axitinib
The mKI axitinib targets PDGFR, VEGFR-1, -2 and 
-3 and c-Kit, has great selectivity against VEGFR-2, 

and is considered the most potent VEGFR-2 inhibitor 
available. A strong activity of axitinib against thyroid 
cancer was evidenced in a Phase II trial on 60 patients 
with advanced, iodine-refractory thyroid cancer using 
axitinib 5 mg b.i.d. [52]. PR was shown in 18 patients 
(30%; eight patients with PTC, six FTC, two MTC 
and one ATC). Moreover, SD was also observed 
in other 23  patients (38%) and median PFS was 
18.1 months (72.4 weeks).

Long-term outcomes were evaluated in a recent 
study in 60  patients with advanced thyroid cancer 
treated with axtinib. Objective response rate was 
38% (23  patients had PR, and 18 had SD lasting 
≥16  weeks). Responses occurred in all histologic 
subtypes. The median follow-up was of 34 months, 
median OS was 35  months, median PFS was 
15  months and median duration of response was 
21  months. These results suggest that axitinib is 
active and well tolerated in patients with advanced 
thyroid cancer demonstrating long OS [53].

Sunitinib
The mKI sunitinib targets c-Kit, VEGFR-2, 
PDGFR, RET, FLT-3 and CSF-1R  [54]. Two Phase 
II trials with sunitinib in thyroid cancer have been 
published [55,56].

Recently, the results of a large open-label Phase II 
trial, which included 28  patients with progres-
sive DTC and 7  patients with MTC  [57] have been 
presented. They showed complete response in one 
patient, PR in 28% and SD in 46% of patients [57].

Recently a paper reported a case report showing 
clinical and visual activity using sunitinib as a sal-
vage treatment in an ATC patient who was not fit to 
receive systemic chemotherapy treatment  [58]. After 
the end of the second cycle, 12 weeks from the begin-
ning of sunitinib treatment, a complete macroscopic 
response of the ATC in the neck was achieved. How-
ever, response in tumor size over neck mass did not 
correlate with lung metastasis shrinkage that were 
stable. Unfortunately, the patient died as a result of 
a massive upper gastrointestinal bleeding 5  months 
after the start of sunitinib treatment and while the 
patient was still on treatment [58].

Lenvatinib (E7080)
Lenvatinib (E7080) is an oral inhibitor of PDGFRb, 
VEGFR-1, -2, -3 RET, FGFR-1, -2, -3, -4 and c-KIT, 
it has been shown active in advanced DTC [59].

The antitumor activity of lenvatinib against 
human thyroid cancer was evaluated in xenograft 
models in nude mice (five DTC, five ATC and one 
MTC). Lenvatinib showed antiangiogenesis activity 
in DTC and in ATC xenografts [60].
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CLM94, CLM3
Antonelli et al. demonstrated the antitumoral activity 
of CLM94, a novel cyclic amide with VEGFR-2 and 
antiangiogenic activity, in ANA cells both in vitro and 
in vivo [61].

CLM3 (a mKI that inhibits RET tyrosine kinase, 
EGFR, VEGFR2 and with antiangiogenic activ-
ity)  [62,63] can inhibit in vitro the proliferation of 
ANA, inducing apoptosis. CLM3, significantly inhib-
ited EGFR, AKT and ERK½ phosphorylation, and 
cyclin D1, and decreased the VEGF-A expression and 
microvessel density in ANA. The above-mentioned 
data showed the antitumor and antiangiogenic activity 
of CLM3 is very promising in ATC, opening a future 
avenue to clinical evaluation [63].

Vascular disrupting mechanism 
Combretastatin
The microtubule depolymerizing agent combretastatin 
A4 phosphate (CA4P) exerts selectively its activity 
against established tumor vascular networks, produc-
ing interruption of tumor blood flow and necrosis of 
the tumor tissue [64]. A complete response was reported 
in a Phase I trial conducted on ATC, in one patient 
treated with combretastatin, and was alive 30 months 
after treatment [65].

The FACT trial was a randomized, controlled 
Phase II/III trial assessing the safety and efficacy of 
carboplatin/paclitaxel with CA4P (experimental arm) 
or without CA4P (control arm) in ATC  [66]. A total 
of 80  patients were enrolled; 55% had undergone a 
cancer-related operation, of whom 70% had near-
total/total thyroidectomy. Baseline characteristics for 
operative and nonoperative patients were not substan-
tially different. Median survival for patients who had 
cancer-related operation was 8.2 months in the CA4P 
arm versus 4.0 months in the control arm. This sug-
gests that thyroidectomy followed by CA4P combi-
nation regimen shows a nonsignificant trend toward 
improvement in patient survival [66].

An open-label study of doublet carboplatin/pacli-
taxel chemotherapy with or without fosbretabulin 
in patients with ATC has been recently conducted. 
Eighty patients were enrolled. There was no significant 
difference in PFS between the two arms [67].

Targeted therapies resistance
Clinical experience suggests that many of treatment-
responsive patients experience relapse as a result of 
acquired resistance to targeted therapies [68]. This resis-
tance is often associated with genomic changes (such as 
the amplification of a completely different cancer gene, 
or an additional point mutation within the gene encod-
ing the protein to which the drug is targeted) originally 

present in minimal subclones of cancer cells [69]. Thus, 
the production of second-generation drugs to com-
bat resistance is clinically important. For example, in 
chronic myeloid leukemia patients resistance to imatinib 
therapy is associated with secondary mutations within 
the Abl kinase domain. Reduced drug sensitivity seems 
to be conferred by all of these mutations; second-gener-
ation Abl inhibitors (such as nilotinib and dasatinib) [70] 
can bypass the resistance of the imatinib-refractory Abl 
mutations, showing significant clinical activity.

The use of combination strategies that could mini-
mize the possibilities of the resistant clones ever 
expanding have been evaluated, too.

For the above-mentioned reasons, the identification 
of new active compounds against aggressive DTC is 
needed [61].

Combination therapy & salvage therapy
Many clinical studies have indicated several limitations 
to the application of TKIs as a single agent in various 
types of cancers. For these reasons, the potential of 
sorafenib (or other TKIs) to synergize with other tar-
geted agents, or chemotherapy, or radiation, has been 
widely explored with promising results [71–73].

In a clinical trial [74], sorafenib, in combination with 
tipifarnib (a farnesyltransferase inhibitor that inactivates 
Ras), was given to 35 patients with DTC and MTC in a 
Phase I trial. MTC PR rate was 38% (5 of 13), SD of at 
least 6 months was 31%. The DTC PR rate was 4.5%, 
and SD of at least 6 months was 36%. Median PFS for 
all 35 patients was 18 months. The authors concluded 
that inhibiting the Ras/Raf/MAPK kinase/ERK and 
RET kinase pathways with sorafenib and tipifarnib is 
well tolerated and active against thyroid cancer.

The role of salvage therapy was recently evaluated in 
64 patients with metastatic DTC who received salvage 
therapy after their initial sorafenib failure. Salvage ther-
apy included sunitinib (n = 4), pazopanib (n = 3), cabo-
zantinib (n = 4), lenvatinib (n = 3) and vemurafenib 
(n = 3). Median OS of all 64 patients receiving first-line 
sorafenib was 37 months; median OS was significantly 
longer with salvage therapy compared with sorafenib 
alone (58 vs 28 months). Median PFS was 7.4 months 
with first-line sorafenib and 11.4 months with salvage 
therapy. These results suggest that other targeted agents 
are effective salvage treatments after sorafenib fail-
ure, despite similar mechanisms of action, and should 
be offered to patients who are able to receive salvage 
therapy [75].

Personalization of therapy
The advent of not expensive individual genomic 
analysis could lead to a new era of patient-specific, 
personalized care. Moreover, in vitro drug screening 
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Executive summary

•	 Anaplastic thyroid cancer (ATC) has a very poor prognosis due to its aggressive behavior and resistance to cancer 
treatments.

•	 Currently, the most effective treatment of ATC is multimodal treatment protocol including surgery, 
chemotherapy (doxorubicin and cisplatin) and hyperfractionated accelerated external beam radiotherapy 
(median patient survival of 10 months).

Genetic study and molecular pathways in ATC
•	 Different alterations of genes and molecular pathways have been shown in ATC (B-Raf and VEGFR-2, EGFR, etc.).
•	 The development of novel compounds that target genes and molecular pathways playing a crucial role in the 

development of ATC has led to the introduction of new drugs that might overcome in the future the lack of 
effective therapies for ATC.

Targeted therapy for ATC
•	 Tyrosine kinases inhibitors (such as imanitib, sunitinib or sorafenib) are under evaluation for the treatment 

of ATC; antiangiogenic agents, vascular disrupting agents, such as combretastatin A4 phosphate, and small-
molecule adenosine triphosphate competitive inhibitors directed intracellularly at EGFRs tyrosine kinase, such as 
gefitinib, have been evaluated.

Targeted therapy for ATC
•	 To reach the goals to extend life duration assuring a good quality of life, the identification of new compounds is 

needed.
Personalization of therapy
•	 The advent of not expensive individual genomic analysis could lead to a new era of patient-specific, personalized 

care.
Personalization of therapy
•	 The possibility to test these novel drugs in primary ATC cells (obtained from each patient) in vitro could help 

improve the personalization of the treatment, avoiding the administration of inactive therapeutics.

in primary human tumor cells [76] can lead to a nega-
tive predictive value of 90%, and a positive predictive 
value of 60% [77] for the activity of clinical responses, 
allowing to avoid the administration of inactive 
chemotherapeutics to patients [78].

Until now, primary thyroid cancer cell cultures 
have been obtained from surgical biopsies. Fine-needle 
aspiration (FNA) cytology by passes the need of sur-
gery. The possibility to obtain ‘primary cell culture 
directly from FNA cytology samples of ATC’ (FNA-
ANA) paves the way to the use of FNA-ANA to test 
the sensitivity in each patient to different drugs. This 
could avoid unnecessary surgical procedures and the 
administration of inactive therapeutics [34,35,79,80].

Conclusion & future perspective
Different alterations of genes and molecular pathways 
have been shown in ATC (B-Raf, and VEGFR-2, 
EGFR, etc.). The development of novel compounds 
that target genes and molecular pathways playing 
a crucial role in the development of ATC has led to 
the introduction of new drugs that might overcome 
in the future the lack of effective therapies for ATC. 
However, until now, no significant amelioration of sur-
vival in ATC patients has been shown with targeted 
therapies. Furthermore, resistance and ‘escape’ to TKIs 
treatments have been described.

The potential of TKIs to synergize with other tar-
geted agents, or chemotherapy, or radiation has been 
widely explored with promising results, to overcome 
the resistance to a single TKI agent. Furthermore, 
it has been shown that other targeted agents might 
be effective salvage treatments after a first-line TKI 
failure, despite similar mechanisms of action.

To reach the goals to extend life duration assuring 
a good quality of life, the identification of new com-
pounds is needed. Furthermore, the advent of not 
expensive individual genomic analysis could lead to a 
new era of patient-specific, personalized care. More-
over, the personalization of the treatment could be 
achieved testing these novel drugs in primary ATC 
cells (obtained from each patient) in vitro to avoid 
the administration of inactive therapeutics.
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