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1. Introduction

The analysis of the dynamic response induced in a structure by ambient vibrations is
important for two reasons. On the one hand, the environmental impact of vibrations
is a common cause for concern in many cities throughout the world on account of
both the consequences of such vibrations on buildings, especially those in structurally
weak conditions, and on people in terms of annoyance. On the other hand, the
measured data contain information on the dynamic characteristics of the structures, such
as modal parameters (frequencies, damping ratios and mode shapes). Several techniques of
experimental modal analysis are nowadays well established and make it possible to extract
modal parameters from the measurements of the dynamical response. Books on this topic
are by (Bendat & Piersol, 1980; Ewins, 2000; Juang, 1994; Maia & Silva, 1997; Van Overschee
& De Moor, 1996). A knowledge of modal parameters is a basic step for updating a finite
element model which not only replicates the real response (Friswell & Mottershead, 1995),
but also enables to build damage identification procedures based on the variation of the
structural response (Morassi & Vestroni, 2009; Vestroni & Capecchi, 1996). Furthermore,
periodical repetition of the measurement process over time, together with observation of
possible variation of modal parameters, forms the basis for a structural health monitoring
procedure (Farrar et al., 2001). These issues are especially important for ancient buildings,
marked by complex geometry, heterogeneous materials and in poor conditions, which are
often very sensitive to deterioration.
Experimental modal analysis usually deals with frequency response functions (FRF) in the
frequency domain or impulse response functions in the time domain and requires that the
response to an assigned input is measured. In civil structures, the system should be excited
with heavy shakers (De Sortis et al., 2005), which makes these tests expensive and often
impracticable, especially in the case of very large structures. The measurement of the ambient
vibration response, which is the response to an unknown input due to natural and human
actions (for instance wind, microtremors, traffic), makes it possible to overcome the difficulties
that often arise when artificial excitation is used. The drawbacks in this kind of measurements
are that there is the need to deal with signals with small amplitude and, furthermore, the
hypothesis that the spectrum of the forcing function is approximately flat in the frequency
band where the modes are to be estimated, which can not be fully experimentally proved,
must be accepted. Of the several ambient vibration modal identification techniques, three
will be described in this chapter: peak picking from the power spectral densities (PP) (Bendat
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& Piersol, 1980), singular value decomposition (SVD) (Brincker et al., 2001) and stochastic
subspace identification (SSI) (Peeters, 2000; Van Overschee & De Moor, 1993; 1994; 1996). The
mentioned techniques have been successfully used for the modal identification of numerous
civil structures, such as bridges (Ren et al., 2004) or tall buildings (Brownjohn, 2003), but
less frequently applied to historical structures and monuments (Gentile & Saisi, 2007; Pau
& Vestroni, 2008; 2010). This chapter aims to describe their application to selected cases of
historical masonry structures in Italy.
Of late, some of the most important monuments in Rome have been investigated because
of the proximity of these structures to a new underground line that is at present under
construction. These tests include the recording of the ambient vibration response. The
Colosseum, the Basilica of Maxentius and the Trajan Column are some of the investigated
monuments. The availability of such data enables a dynamic characterization and
identification of modal parameters of the structures, which presents a challenging task in
such large and geometrically complex monuments, built with heterogeneous materials. Parts
of the results of these experimental tests are reported in the works by (Pau & Vestroni,
2008; 2010). Here, the case of the Trajan Column will be discussed in detail together with
another application to a railway masonry bridge of the 19th century. For each of these cases,
a comparison between experimental and numerical modal parameters is discussed, in the
perspective of the evaluation and updating of the finite element models according to the
measured behavior. This comparison may enable the identification of the possible causes
of discrepancies between predicted and measured properties. In particular, the information
obtained may relate to the current state of a structure: lower natural frequencies than those
predicted by the finite element model may indicate deterioration in the stiffness of the
structure and anomalous mode shapes may point to the independent motion of structural
parts due to major cracks. In many cases, notwithstanding the severe simplifications, mainly
regarding the material behavior introduced in the numerical modeling, the comparison
between numerical and experimental frequencies and mode shapes provides sufficient
agreement, after an adjustment of the mechanical characteristics to tune the two models.
This adjustment has shown to have a significant mechanical meaning indicating the effective
presence of cracks and discontinuities (Pau & Vestroni, 2010).

2. Ambient vibration modal identification techniques

Very often, when dealing with large engineering structures such as building or bridges, it is
impractical to measure the response to an ad hoc and controlled artificial excitation for different
reasons, such as costs concern or even the unwanted possibility of activating nonlinear
phenomena.
Reasonable estimates of modal properties can be obtained from an output-only analysis
of the ambient vibration response to the natural dynamic environment. This excitation,
which is random in its nature, is due to various human and artificial sources, such as
traffic, wind and microtremors. When dealing with output-only analysis of the vibration
response, it is fundamental to cope with signals with small amplitude and contaminated
by noise. Although the input is unknown, which prevents from measuring the proper FRF,
a hypothesis that the spectrum of the forcing function is flat in the frequency band where
the modes are to be estimated must be made, which can only be partially proved from
experiments. This paragraph describes three techniques of modal identification, which are
important for different reasons. The peak picking from the power spectral densities is a
frequency domain based technique and is important for historical reasons, since it was one of
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the first output-only modal identification techniques to be presented in the late ’70s (Bendat &
Piersol, 1980), and its simplicity. The singular value decomposition is an extension of the peak
picking (Brincker et al., 2001). With respect to the peak picking, it enables to deal better with
close frequencies and damped modes. Its advantage over other recent techniques consists
mainly in its preserving the user’s understanding of the data he is dealing with through a
frequency approach. In the early ’90s, the stochastic subspace identification, which is a time
domain technique, was described in research papers (Van Overschee & De Moor, 1993; 1994)
and in the fundamental book by (Van Overschee & De Moor, 1996). Today, the SSI is one
of the most widespread techniques for output-only modal identification and is implemented
not only in commercial softwares for data analysis (Artemis) but also in Matlab routines and
freely available software (http://homes.esat.kuleuven.be/ smc/sysid/software/).

2.1 Peak picking
This method is very often used for its simplicity in analysing the ambient vibration response,
when the input is unknown (Bendat & Piersol, 1980). The ambient vibration response of
a structure cannot be predicted by deterministic models, within reasonable error. Each
experiment produces a random time-history that represents only one physical realization
of what might occur. In general, the response x(t) of the structure to ambient excitation
is recorded for a very long time, even for hours, which enables to cut the random process
x(t) into a collection of subregistrations xk(t) which describe the phenomenon. The
Fourier Transforms of the kth subregistrations of two random processes xk(t) and yk(t) are
respectively:

Xk( f , T) =
∫ T

0
xk(t) exp−i2π f t dt (1)

Yk( f , T) =
∫ T

0
yk(t) exp−i2π f t dt. (2)

The auto (or power) spectral density (PSD) and cross-spectral density (CSD) and related
coherence function between the two random processes are respectively:

Sxx( f ) = lim
T→∞

1
T

E[| Xk( f , T) |2] (3)

Sxy( f ) = lim
T→∞

1
T

E[X∗k ( f , T)Yk( f , T)] (4)

γxy( f ) =
| Sxy( f ) |2

Sxx( f )Syy( f )
(5)

where the symbol E[.] indicates an averaging operation over the index k and the asterisk
denotes complex conjugate.
Let us now assume that x(t) is the input and y(t) is the output. The auto-spectral and
cross-spectral density functions satisfy the important formulae:

Syy( f ) = |Hxy( f )|2Sxx( f ) Sxy( f ) = Hxy( f )Sxx( f ) (6)

where Hxy( f ) is the frequency response function. The simple peak picking method is based on
the fact that the autospectrum (61), at any response point, reaches a maximum either when the
excitation spectrum peaks or the frequency response function peaks. To distinguish between
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peaks that are due to vibration modes as opposed to those in the input spectrum, a couple
of criteria can be used. The former concerns the fact that in a lightly damped structure, two
points must oscillate in-phase or out-of-phase. Then, the cross spectrum (62) between the two
responses provides this information, which can be used to distinguish whether the peaks are
due to vibration modes or not. The second criterion uses the coherence function (5), which
tends to peak at the natural frequencies, as the signal-to-noise ratio is maximised at these
frequencies.

2.2 Singular value decomposition
The second method referred to also relies only on the response to ambient excitations (output
only). The method is based on the singular value decomposition of the response spectral
matrix (Brincker et al., 2001), exploiting the relationship:

Syy (ω) = H∗ (ω)Sxx (ω)HT (ω) (7)

where Sxx(ω) (r × r, r number of inputs) and Syy(ω) (m × m, m number of measured
responses) are the input and output power spectral density matrices, respectively, and H(ω) is
the frequency response function matrix (m× r). Supposing the inputs at the different points
are completely uncorrelated and white noise, Sxx is a constant diagonal matrix, independent
of ω. Thus:

Syy (ω) = S H (ω)HT (ω) (8)

whose term jk can be written, by omitting the constant S, as:

Syyjk (ω) =
r

∑
r=1

(
n

∑
p=1

φjpφrp

λ̄2
p −ω2

)(
n

∑
q=1

φkqφrq

λ2
q −ω2

)
. (9)

In the neighbourhood of the ith resonance, the previous equation can be approximated by:

Syyjk (ω) ∼=
r

∑
r=1

φjiφri

λ̄2
i −ω2

φkiφri

λ2
i −ω2

=
φjiφki(

λ̄2
i −ω2

) (
λ2

i −ω2
) r

∑
r=1

φ2
ri. (10)

By ignoring the constant
r
∑

r=1
φ2

ri, Syy can thus be expressed as the product of the three matrices:

Syy (ω) = ΦΛiΦ
T (11)

which represents a singular value decomposition of the matrix Syy, where:

Λi =

⎡
⎢⎢⎢⎢⎣

1
(λ2

i−ω2)(λ̄2
i−ω2)

0... 0

0 0... 0
...

...
...

0 0... 0

⎤
⎥⎥⎥⎥⎦ . (12)

This is valid in the neighbourhood of every natural frequency of the system, that hence
emerges as a peak of the first singular value. The first column of the matrix Φ contains the
first singular vector, which, in the neighborhood of the ith resonance, coincides with the ith
eigenvector. This occurs at each resonance, when the prevailing contribution is given by the
related mode. This procedure has recently had great diffusion mainly in in situ experimental
tests and has also been implemented in commercial codes.
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2.3 Stochastic subspace identification
The stochastic subspace identification belongs to the wide class of time domain methods. The
continuous-time dynamics of a discrete or a discretized (in space) mechanical system in the
state-space can be written as:

ẋ(t) = Acx(t) + Bcf(t) (13)

which is a representation deriving from the control theory (Juang, 1994). In this relationship,
x(t) = [u(t)T u̇(t)T ] ∈ R

2n is the state vector of the process. This vector contains the 2n states
of the system, where u(t) and u̇(t) are respectively the displacement and velocity vectors and
n is the number of degrees-of-freedom. Ac ∈ R

2n×2n is the continuous-time state matrix,
which is related to the classical matrices of mass M, damping Cd and stiffness K by:

Ac =

[
0 I

−M−1K −M−1Cd

]
, (14)

f(t) ∈ R
n is the load vector and Bc ∈ R

2n×n is the system control influence coefficient matrix:

Bc =

[
0

M−1

]
. (15)

In a vibration experiment, only a subset l of the responses at the n degrees-of-freedom
can be measured. The vector of the measured outputs y(t) ∈ R

l is written as: y(t) =
Caü(t)+Cvu̇(t)+Cuu(t), where Ca, Cv and Cu are output location matrices for accelerations,
velocities and displacements respectively, which are matrices of zeros and ones made up to
select the measured degrees of freedom. The vector y(t) can be written as:

y(t) = Ccx(t) + Dcf(t) (16)

where Cc ∈ R
l×2n is the output matrix and Dc ∈ R

l×n is the direct transmission matrix:

Cc = [Cu − CaM−1K Cv − CaM−1Cu] and Dc = CaM−1. (17)

Then, in conclusion, the continuous-time state-space model can be written as:{
ẋ(t) = Acx(t) + Bcf(t)
y(t) = Ccx(t) + Dcf(t)

. (18)

It can be shown that the eigenvalues Λc and eigenvectors Ψ of the continuous state-space
matrix Ac which solve the eigenvalue problem AcΨ = ΨΛc contain the eigenvalues Λ and
eigenvectors Θ of the original second-order system:

Λc =

(
Λ 0
0 Λ

∗

)
, Ψ =

(
Θ Θ

∗

ΘΛ Θ
∗
Λ
∗

)
. (19)

In practice, experimental data are discrete. Therefore, the model of equation (18) has to be
converted to discrete time, in order to fit the models to measurements. The continuous-time
equations are discretized and solved at all the discrete time instants tk = kΔt, k ∈ N, where
Δt is the sampling period. Let us suppose to focus the analysis on time-invariant state-space
models. These deterministic-stochastic systems, excited both by deterministic and random
actions, are described by the following set of difference equations:
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{
xk+1 = Axk + Bfk + wk
yk = Cxk + Dfk + vk

(20)

The vector xk ∈ R
2n is defined as the state vector of the process at the discrete time instant

k. This vector contains the numerical values of the 2n states of the system. When dealing
with mechanical systems, the state vector is xk = [uT

k u̇T
k ] ∈ R

2m, fk ∈ R
n and yk ∈ R

l are
respectively the experimental measurements at time instant k of the n inputs and l outputs.
wk ∈ R

2n and vk ∈ R
l are respectively process and measurement noise vectors, which

are unmeasurable quantities. The former is due to model inaccuracies, the latter due to
measurement inaccuracies. A is the discrete state matrix, B is the discrete input matrix, C
is the discrete output matrix and D is the direct transmission matrix. They are related to their
continuous-time counterparts by the relationships:

A = eAcΔt B =
(∫ Δt

0 eAcτdτ
)

Bc = (A− I)A−1
c Bc

C = Cc D = Dc.
(21)

These well-established relationships can be found in the literature (Juang, 1994). The
hypothesis:

E
[(

wp
vp

)(
wT

q vT
q

)]
=

(
Q S
ST R

)
δpq � 0 (22)

is further added, where E[.] indicates the expected value and δpq is the Kronecker delta. The
matrices Q ∈ R

2n×2n, S ∈ R
2n×l and R ∈ R

l×l are the covariance matrices of the noise
terms wk and vk, which are supposed to be independent of each other and both with zero
mean. It must be remarked that in output-only modal identification, the input sequence fk
is unmeasured and only the response yk is known. Hence, it is impossible to distinguish
the input term fk from the noise terms wk and vk in equation (20). This results in a purely
stochastic system: {

xk+1 = Axk + wk
yk = Cxk + vk

. (23)

In equation (23), the white noise assumption on the terms wk and vk cannot be omitted.
If the input contains some dominant frequency components, they will not be separated
from the eigenfrequencies of the system. The stochastic subspace identification then moves
from equations (23) to estimate the state-space matrices A and C from the measured output
yk, with k = 1, 2, . . . , N and N −→ ∞. The estimate of state-space matrices can be
performed by different algorithms. In the applications, the procedure described in the work
by (Van Overschee & De Moor, 1994) is used. In short, this procedure is based on selected
theorems of linear algebra illustrated in (Van Overschee & De Moor, 1994; 1996), which
demonstrate that the state space matrices can be calculated from the knowledge of the block
Hankel matrix. This matrix is obtained by casting the finite dimensional output vector yk into
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the columns of a semi infinite 2i × j matrix:

U0|2i−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0 y1 y2 . . . yj−1
y1 y2 y3 . . . yj
. . . . . . . . . . . . . . .

yi−1 yi yi+1 . . . yi+j−2
yi yi+1 yi+2 . . . yi+j−1

yi+1 yi+2 yi+3 . . . yi+j
. . . . . . . . . . . . . . .

y2i−1 y2i y2i+1 . . . u2i+j−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

where the horizontal line divides past inputs from future inputs. Once the matrix A is known,
the natural frequencies and mode shapes can be evaluated. In fact, as shown in (Peeters,
2000), the eigenvalues Λd and eigenvectors of the discrete state-space matrix are related to
their continuous counterparts by the relationships:

A = eAcΔt = eΨΛcΨ
−1Δt = ΨeΛcΔt

Ψ
−1 = ΨΛdΨ

−1. (25)

That is, the eigenvectors are the same for both systems, while the discrete eigenvalues μi are
related to the continuous eigenvalues λi by:

λi =
ln(μi)

Δt
. (26)

three-axial

bi-axial

bi-axial

bi-axial

(b)

Ch1-2

Ch3-4

Ch5-6

Ch7-8-9

Fig. 1. A view of the Trajan column (a), its survey (b) and accelerometer setup (c).
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3. Applications

3.1 The Trajan Column
The Trajan Column is a honorary monument that, in 113 A.D., was dedicated to Trajan the
emperor to celebrate his triumph over the Dacians, the inhabitants of the present Romania.
Over the surface of the column, a helical bas-relief depicts the story of Trajan’s victory. The
monument consists of a marble column about 30m tall, with a circular section having an
external diameter of 3.55m, placed over a square-section pedestal 6.23m high (Figures 1 a-b).
It represents a peculiarity in archaeological heritage because of its slenderness. The column is
formed by nineteen cylindrical elements, dug-out to form an internal helical staircase going to
the top level. The helical geometry is perturbed by tiny windows along the external surface.
The response of this structure was measured by one three-axial set of accelerometers at the
base and three biaxial horizontal sets at the upper levels. The measurement points with their
related channels are reported in Figure 1c. The recordings were performed at a sampling
frequency of fs = 300Hz for a duration of about 2 hours.
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1 2 3 4 5 6 7 8
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0.2

0.4

0.6

0.8
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γ

γ13

γ15

(a)

(b)

1.5

detail of the PSD

in the neighbourhood

of 1.5 Hz

Fig. 2. Power Spectral Densities of accelerations measured on the top of the column (a) and
coherence function among channel 1 and channels 3 and 5(b).

As a first step, the power spectral densities of the accelerations are observed. Figure 2a reports
the PSDs of the two measurement points on the top of the column, in the frequency band
where natural frequencies are expected. Two peaks in the neighborhood of 1.5 Hz emerge
quite clearly (see details in Figure 2), while two other peaks appear in the range 5-8 Hz, but
with strong damping. In such an unclear situation, the observation of the coherence (Figure 2
b) may be of some help. The coherence peaks are at the same frequencies as those observed
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in the PSDs, suggesting that all these four peaks may in fact be representative of natural
frequencies, as reported in Table 1.
Analogous results can be obtained from the singular value decomposition. Figure 3 reports
the first singular value of the spectral matrix as a function of frequency, showing the two close
peaks related to the first and second natural frequencies and the other peaks related to the
third and fourth frequencies. The identified frequencies coincide with those detected with the
peak picking, as reported in Table 1.

f1 f2 f3 f4
PP, SVD 1.46 1.53 5.83 6.83

SSI 1.45 1.52 5.69 6.56
FE 3.14 3.32 15.68 17.52

Table 1. Experimental and numerical natural frequencies [Hz] of the Trajan column

1 2 3 4 5 6 7 8
f [Hz]

0

1E-006

2E-006

3E-006

4E-006

5E-006

Fig. 3. First singular value of the spectral matrix as a function of frequency.

As a final step, the data are analyzed following the stochastic subspace decomposition. In
this case, the evaluation of the model order is fundamental. A good model for modal analysis
applications can be obtained by constructing stabilization diagrams, that is, by evaluating a
set of models with different orders (Peeters, 2000). A criterion to state when an eigenvalue is
stable must be defined; for instance, eigenvalues do not have to change more than 1% when
the model order is increased. When an eigenvalue satisfies this stability criterion, its value
is determined. Figure 4 shows the eigenvalue stabilization when increasing the model order
and enables to define the natural frequencies that are reported in Table 1. The difficulties
in the interpretation of the third and fourth frequencies, and related mode shapes, remain,
in fact these frequencies stabilize for higher model order than the first and second. These
difficulties, which concern in fact all the employed methods, are not surprising. In fact, the
third and fourth frequencies are close to 6 Hz, which is the cutoff frequency of the ground, as
was observed in other experimental tests on the Colosseum and Basilica of Maxentius (Pau
& Vestroni, 2008; 2010). The ground attenuates frequencies which are smaller than 6 Hz and
guarantees a white-noise spectrum in the frequency band 0-6 Hz. Therefore, for frequencies
higher than 6 Hz, the hypotheses on the input, on which the present modal identification
methods are based, are not satisfied.
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Fig. 4. Eigenvalue stabilization diagram for the Trajan column.

A comparison between the experimental mode shapes is now performed. The modal
assurance criterion (MAC), which is a scalar product between the two mode shape vectors
under consideration, normalized to the product of the moduli, is a measure of the agreement
between two mode shapes. A comparison shows that the differences between the three
techniques are very small for the first two modes (MAC� 0.99), but increase for the third
and fourth modes (MAC � 0.8), which are identified with great difficulties in all the cases
because of the strong damping. However, the results obtained by SVD and SSI agree each
other better than those obtained by PP.
As regards the shapes of the modes, the mode shape pairs 1-3 and 2-4 strongly resemble those
of a cantilever beam, as shown in Figure 5. For the sake of brevity, this Figure shows only
the mode shapes determined by SSI method. Furthermore, the first two modes are nearly
contained respectively into the two planes parallel to the base, while the third and fourth
mode shapes are contained in planes which are not coincident with the measurement planes.
This is also evident from Figure 2, as the peaks related to the first and second frequencies are
present only in one of the two spectra, while the peaks related to the third and fourth are
present in both the spectra. This experimental result was verified by a laboratory experiment
on an axisymmetric clamped cylinder, a pipe with vertical axis, which was tested both in
its nominally perfect and perturbed configuration. Figure 6 reports the projection onto the
horizontal plane of the vertical planes containing the mode pairs 1-2, 3-4 and 5-6. Different
colors relate to different test conditions. The tests show that even in nominally perfect
conditions, the planes containing the mode shape pairs corresponding to the clamped beam
can be different for each pair, especially for higher modes. Furthermore, each pair is contained
in planes which only slightly deviate from orthogonality, consistent with the orthogonality of
modes. These results can be ascribed to imperfections in geometry, which cause a deviation
from perfect axisymmetry.
In conclusion, a comparison with the results provided by a numerical (FE) model is
performed. The column is simply represented as a cantilever beam with varying section.
In this model, the Young’s modulus E and mass density ρ come from literature values
determined by static tests on cores bored into the solid material. The natural frequencies
obtained are reported in Table 1. These values are much higher than the experimental ones,
and the reason is that the material parameters of the solid material are not representative of the
behavior of the assembled system, where the interactions among the blocks have considerable
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Fig. 5. Experimental mode shapes.

influence. A similar result was found by the authors in the analysis of the response of
the Colosseum (Pau & Vestroni, 2008), where a reduction in the elastic modulus based on
measurements of the wave propagation velocity in structural parts including joints brought
the analytical and experimental results into satisfactory agreement. Here also, the reduction
of the ratio E/ρ brings numerical and experimental results into satisfactory agreement. As
regards the mode shapes, Table 2 shows that, whichever modal analysis method is used, the
experimental modes 1 and 2 agree very well with the numerical ones. By contrast, for the pair
3-4 the mode shapes obtained by the SSI method have better quality.

1 2 3 4
PP–FE 1.00 1.00 0.47 0.36

SVD–FE 0.98 0.95 0.62 0.55
SSI–FE 0.98 0.98 0.84 0.79

Table 2. MAC between experimental and numerical modes for the Trajan column
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Fig. 6. Top view of the experimental mode shapes of a clamped pipe.
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Fig. 7. Picture of the Vallone Scarpa bridge (a), front view (b) and plans (c,d) of the two
accelerometer setups.

3.2 The Vallone Scarpa bridge
The Vallone Scarpa bridge was built at the end of the nineteenth century and is located along
the Roma-Sulmona railway line, which crosses the central Italian region of Abruzzo. It is a
masonry arch viaduct with thirteen bays, each with a span of 10 m. The piers are about 9
m in height (Figure 7). The plan has a radius of curvature of 400 m; the slope of the line is
2.7 %. The ambient vibrations of the bridge were recorded using two different arrangements
of accelerometers (Figure 7c,d) at a sampling frequency of fs = 120Hz. The measurement
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directions were: in the plan of the deck, tangent to the bridge axis (L, longitudinal) and related
orthogonal line (T, transverse), and the vertical direction (V) along the viaduct axis. In the first
setup (Figure 7c), transverse sensors were placed on top of each pier, together with triaxial sets
(T, L, V) located at the middle of each span. In the second setup (Figure 7d), triaxial sets of
accelerometers (L,T,V) were placed on the deck edges of the three central bays.
To start with, the PSDs are examined. Figure 8(a) shows the PSDs measured at channels
19-21 of the first arrangement of sensors, placed on the fifth bay of the bridge. This figure
immediately points out that, in this frequency range, the vertical and longitudinal components
of the modes are much smaller than the transverse ones. These PSDs, at a glance, also
enable to detect some peaks that are representative of the first natural frequencies of the
structure. However, the identification of their values is very difficult because of the closeness
of frequencies and strong damping, as is often the case with masonry structures. For instance,
two very close peaks are present in the neighborhood of 3.9 Hz. The coherence function, which
is shown in Figure 8(b), also shows peaks in correspondence with the peaks of PSDs, but does
not help in resolving the close resonances.
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Fig. 8. PSDs (a) and coherence (b) of the accelerations measured on the fifth bay of the
Vallone Scarpa bridge.

The technique of singular value decomposition points out analogous difficulties, as can be
seen from Figure 9, that reports the first singular value of the spectral matrix for both setups as
a function of frequency. An advantage of this technique compared to peak picking is the easier
and faster determination of mode shapes, which enables to choose the peaks representative of
natural frequencies.
Using the SVD with the first arrangement of sensors, the first five frequencies listed in Table
3 were determined. The stabilization diagram shown in Figure 10 furnishes frequencies,
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obtained using SSI, similar to those obtained from SVD and PP (Table 3). Figure 10 also shows
that a high model order is necessary to detect natural frequencies, which is computationally
very much demanding, especially when using such a large number of accelerometers.
The mode shapes are bending modes of a beam over elastic supports in the plane of the deck,
as shown in Figure 11, which depicts the first five modes of the structure. As for frequencies,
SVD and SSI provide similar mode shapes. The main component of the mode shape is also
in the transverse direction, as shown in Figure 11, which reports a comparison between the
longitudinal and transverse components of each mode.
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Fig. 9. First singular value of the spectral matrix as a function of frequency.

f1 f2 f3 f4 f5
PP, SVD 3.87 3.88 4.24 4.73 5.49

SSI 3.82 3.98 4.57 4.74 5.33
FE 2.41 2.71 2.92 3.44 3.76

Table 3. Experimental and numerical natural frequencies [Hz] of the Vallone Scarpa bridge
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Fig. 10. Eigenvalue stabilization diagram for the Vallone Scarpa bridge.

The measurements performed with the second arrangement of sensors provided similar
results, but showed in addition that the identified modes presented a slight rotational
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component, shown by the opposite sign of the modal displacements measured on the right
and left edges of the deck. This is shown in Figure 12, only for modes 3 and 4 for brevity.
Furthermore, in the second arrangement of sensors there was a slight variation of frequencies,
with an inversion between the order of modes 1 and 2. According to these measurements,
the first mode presents one node, while the second one does not have any. This phenomenon
is related to the closeness between the two frequencies of the arch in the horizontal plane
and to the possible slight variation of the mechanical parameters between a measurement set
and the other. A complete explanation of the phenomenon would require a repetition of the
measurements and a verification of their robustness with regard to the ambient conditions.

mode 1 mode 2  mode 3

mode 4 mode 5

T
L

Fig. 11. Mode shapes of the Vallone Scarpa bridge and comparison between longitudinal
(crosses) and transverse components (asterisks).

A finite element model of the bridge was also built to perform a modal analysis. The natural
frequencies obtained are reported in Table 3 and are lower than those experimentally detected.
The observed differences may be considerably reduced with a magnification of the mechanical
parameters. In fact, the required updating is opposite in sign and smaller than that needed for
the Trajan column. This depends on the fact that in a brick masonry the mechanical behavior
of a specimen is much more representative of the behavior of the continuum than in the case
of a dry block masonry. Analogous results were observed by the authors in (Pau & Vestroni,
2010). A comparison between experimental and numerical mode shapes, reported in Figure
13, presents a good agreement.
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Fig. 12. Comparison between longitudinal, transverse and vertical components of
experimental modes 3 and 4.

4. Conclusions

The ambient vibration response of two masonry structures, the Trajan column and the
Vallone Scarpa bridge, has been analyzed using three widespread techniques, namely, the
peak picking, singular value decomposition and stochastic subspace identification. The two
structures are very different in masonry typology, with large blocks connected by clamps
and pins for the Trajan column and mixed brick masonry for the Vallone Scarpa bridge.
Notwithstanding the low level of excitation, the analysis has shown that the first frequencies
of the structures are quite easily detectable. However, when higher frequencies are sought,
difficulties may arise due to the lack in the verification of the hypothesis requiring that the
input is white noise. Among the three different techniques considered, the SSI is the most
demanding from a computational point of view and in general provides a better quality for
mode shapes. As regards the comparison with finite element models, it has been shown
that after an updating of the material properties of the finite element models, an agreement
between experimental and numerical frequencies can be obtained. When dealing with dry
masonry structures, this updating can imply a strong reduction of the Young’s modulus since
the material parameters of the solid material are not representative of the assembly, where the
interactions between the blocks have considerable influence. In other types of masonry, such
as the brick type, the behavior of a specimen is more representative of the continuum from
which it is extracted and the required updating is more limited.
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