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The present research investigates the neurophysiological activity elicited by fast observations of faces of real candidates during
simulated political elections. We used simultaneous recording of electroencephalographic (EEG) signals as well as galvanic skin
response (GSR) and heart rate (HR) as measurements of central and autonomic nervous systems. Twenty healthy subjects were
asked to give judgments on dominance, trustworthiness, and a preference of vote related to the politicians’ faces. We used high-
resolution EEG techniques to map statistical differences of power spectral density (PSD) cortical activity onto a realistic head
model as well as partial directed coherence (PDC) and graph theory metrics to estimate the functional connectivity networks
and investigate the role of cortical regions of interest (ROIs). Behavioral results revealed that judgment of dominance trait is the
most predictive of the outcome of the simulated elections. Statistical comparisons related to PSD and PDC values highlighted an
asymmetry in the activation of frontal cortical areas associated with the valence of the judged trait as well as to the probability to
cast the vote. Overall, our results highlight the existence of cortical EEG features which are correlated with the prediction of vote
and with the judgment of trustworthy and dominant faces.

1. Introduction

A growing number of research laboratories are involved in
investigating cerebral areas activated during the observation
of pictures showing politicians, as well as videos supporting
them during electoral campaigns. In the pioneering study in
the field, faces of coupled candidates for political elections
in the USA Senate were presented for less than a second [1].
Judgments based on such a “superficial” observation could
predict the election results, being linearly correlated with
the candidate’s margin of victory. In other words, emotional
inferences formed on the basis of the observation of a
face for less than a second could even overcome rational
considerations about the hypothetical future work of the

candidate. The consequence of this result is that the appeal
of a politician’s face might be the principal factor for the
citizen’s choice, even more than rational considerations.
In fact, such a phenomenon has also been confirmed by
subsequent studies [2], suggesting that the scenic presence
by itself mostly influence the decision of vote. These results,
concerning the behavioural psychology, are surprising if
we think about the USA midterm elections of 2006 when
candidates and their supporting groups spent about 1 billion
dollars in advertisements in order to inform electors about
their political affiliation, qualities, and ideas to promote
[3]. Afterwards, researchers moved to understand whether
this first impression is more due to positive effects (i.e.,
pleasantness, adaptation to particular a priori requirements)
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or negative ones (i.e., negative judgement about pleas-
antness implicitly extended to the competence field) [4].
The surprising result of this study was that an emotionally
“negative” judgement towards a candidate (as being “less
appealing” than the opponent) is a prevailing reason for his
defeat, even in a contest of simulated elections. In addition,
the cerebral activity generated from an emotional state of
“rejection” of the candidate is completely different from the
one generated from an emotional state of acceptation or
satisfaction [5]. Neuropolitical studies have found that the
activation of emotion-related areas in the brain is linked to
political preferences, identifying the neural correlates in the
prefrontal cortices of changes in political attitudes toward
others that are linked to social cognition [6]. In particular, in
a study performed by functionalmagnetic resonance imaging
(fMRI), Spezio and colleagues [5] revealed that activation
in the insula/parainsula and anterior cingulate cortex (ACC)
correlates with election loss in a simulated voting paradigm.

Another study [7] investigated how political party affil-
iation and political attitudes modulate neural activity while
viewing faces of presidential candidates. They found that
viewing the candidate from the opposing political party
produced signal changes in cognitive control circuitry in
the dorsolateral prefrontal cortex and anterior cingulate, as
well as in emotional regions such as the insula and anterior
temporal poles.

From the traditional political research that is performed
without any neurophysiologicalmeasurements, it was already
known that the negative vote plays an important role in the
final vote decision [8–10]. In this context, it is important to
understand the role of people’s emotional behaviour after
observing a politician compared with the one of a whole
electoral campaign.

It is very well known that the hemodynamic measure-
ments of the brain activity have the spatial resolution of the
order of cubic mm, being capable of detecting activations
also in deep brain structures such as amygdala and nucleus
accumbens. However, the lack of time resolution, due to the
delay of the cerebral bloodflow increment after the exposition
to the stimuli, makes the fMRI unsuitable to follow the
brain dynamics. For this reason, other authors also adopt
different tools such asmagnetoencephalography (MEG).This
technique is sensitive to changes of magnetic fields that are
induced by the electrical brain activity, and it is able to detect
rapid changes of the neural activity on a temporal scale of
milliseconds and on a spatial scale of centimetres [11].

It is worth noting that in the past several studies elec-
troencephalography (EEG) was also used as brain imaging
tool for the analysis of brain activity during the observation
of faces and emotional stimuli (for a review see [12]). High-
resolution EEG technology has been developed to enhance
the poor spatial information content of the EEG activity in
order to detect the brain activity with a spatial resolution of
a squared centimetre and the unsurpassed time resolution of
milliseconds [13–17].

Recently, it was realized that the functional connectivity
networks [18, 19] estimated frombrain-imaging data obtained
by EEG, MEG (magnetoencephalography), and fMRI can be
investigated using graph theory [20–29]. Since a graph is

a mathematical representation of a network that has been
essentially reduced to nodes and connections between them,
the use of a graph-theory approach is potentially relevant
and useful to quantify and describe the degree and modality
of communication among different cerebral areas, as first
demonstrated on a set of anatomical brain networks [30, 31].

The use of EEG allows following the brain activity on a
millisecond base, but it has the problem that the recorded
EEG signals are mainly due to the activity generated in
the cortical structures of the brain. In fact, the electromag-
netic activity elicited by deep structures advocated for the
generation of emotional processing in humans is almost
impossible to gather from usual superficial EEG electrodes
[13, 32]. It has been underlined that a positive or negative
emotional processing of the commercial advertisements is an
important factor for the formation of stable memory traces
[6]. Hence, it became relevant to infer the emotional engage
of the subject by using indirect signs for it. In fact, indirect
signs of emotional processing could be gathered by picking
variations of the activity of the anatomical structures linked
to the emotional processing activity in humans, such as the
activity of sweat glands on the hands and/or the variation of
the heart rate [33]. In particular, by monitoring autonomic
activity using devices able to record the variation of the skin
conductivity (galvanic skin responses (GSR)) and the heart
rate (HR), it is possible to assess the “internal” emotional state
of the subject [34]. In fact, galvanic skin response (GSR) activ-
ity is actually viewed as a sensitive and convenientmeasure of
sympathetic arousal associated with emotion, cognition, and
attention [35]. Studies using functional imaging techniques
[35, 36] have related the generation and level of electrodermal
activity to specific brain areas. These specific regions are
the ventromedial prefrontal cortex, orbitofrontal cortex, left
primary motor cortex, and the anterior and posterior cingu-
late, which have been shown to be associated with emotional
and motivational behaviours [35, 36]. Such findings indicate
the close association of peripheral and central measures of
arousal, emphasising the close connections between electro-
dermal activity, arousal, attention, cognition, and emotion. In
addition, the link between the heart rate (HR) or the heart rate
variability (HRV) and the sympathovagal balance has also
been suggested [37–39].

In this study, we were interested in analyzing the neuro-
electrical and autonomic activity elicited during the obser-
vation of real politicians’ faces who actually participated in
municipal and regional elections held in Italy in the 2004
and 2008. The aim of the present research was to investigate
the EEG activity of a group of twenty healthy subjects while
they were asked to both vote in simulated elections and give
a judgment about personal traits of real politicians shown.
By means of high-resolution EEG technique, we mapped sta-
tistical differences of cortical spectral activity elicited during
the observation of candidates while subjects were asked to
give a judgment on dominance, trustworthiness traits, and
a preference of vote on the faces seen. To measure both
the electrical brain activity and the autonomic responses,
we used simultaneous EEG, GSR, and HR measurements
during the whole experiment. Moreover, analysis of the
electrodermal activity and the heart rate variability related
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to such as stimuli has also been performed, along with the
study of the participant’s choice. Thus, these measurements
have been able to analyze the proposed social paradigm
from several perspectives, by collecting the explicit judgment
of simulated voters and by analyzing their cognitive and
emotional aptitude through the estimation of cortical spectral
activity and the related functional connectivity as well as
parameters of the autonomic nervous system.

In particular, the objectives of the present study can
be summarized through the formulation of the following
experimental questions.

(1) Is it possible to predict the elections outcome through
the subjects’ rapid and explicit judgment of domi-
nance and trustworthiness traits?

(2) Are there any EEG features able to predict subjects’
preference of vote?Are there any correlations between
the cortical functional activity and the judgment of
trustworthiness and dominance?

(3) Is there any autonomic signature correlating with
dominance and trustworthiness traits of politicians’
faces?

2. Material and Methods

2.1. Experimental Design and Stimuli. Twenty healthy volun-
teers (mean age 26.7±3.7 years; 9women) have been recruited
for this experiment. Participants were asked to vote for real
political candidates who run against each other during the
municipal and provincial elections of the years 2004 and
2008. Pictures of thewinner and the runner-upwere collected
from various Internet sources (e.g., website of the Italian
Ministry of the Interior and local media sources). Each photo
has been processed by a professional photographer in order
to convert it into black and white, balance contrast, and
luminance. Some races were unusable because of the low
resolution of candidate’s photos. For the remaining 70 races,
the image of each politician was cropped to a common size
(250 × 361 pixels) and placed on a grey background. All faces
have been adapted to fit the same size and to occupy the visual
field of around 5.9×9.1 degrees on a screenwith dimension of
337×270mmand resolution of 1024×768 pixels. Participants
were sitting at 80 cm from the screen.

Our subjects were asked to give a preference of vote
(vote condition) according to the images of political candi-
dates. Moreover, subjects were also asked to judge the same
politicians for their traits of dominance and trustworthiness
(dominance and trustworthiness conditions, resp.). At the
beginning of each trial, a neutral face was shown [40]. Sub-
sequently, the question that subjects were asked was shown,
followed by the pictures of the two candidates presented
one by one for 1 s, intermingled by blank screens of length
2-3 s (random variable uniformly distributed). Finally, the
pictures of both politicians, side by side, were presented for a
maximumof 2 s. During that time, subjects were asked to give
their vote and judgment according to the former question, by
pressing the left/right arrow button on the keyboard. If they
did not express any preferencewithin 2 s interval, the trial will
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Figure 1: Epochs of a typical trial. Each trial began with the
image of a neutral face (1 s) to allow a washout of the neurophys-
iological variables. Afterwards, subjects were asked to express a
judgment about the subsequent political candidates related to traits
of trustworthiness, dominance, and preference of vote which were
randomized among trials (3 s).Then, each single face of the political
candidates racing for the same election appeared separately and in
random order (1 s) among subjects and judgment. Finally, both faces
were presented together for the decision stage (2 s). All stimuli were
intermingled by a black screen (∼[2, 3] s).

be classified as an abstention.The order of presentation of the
candidates, as well as their position of appearance in the trial,
was fully randomized to show each pair of faces in all three
conditions. Epochs of a representative trial are illustrated in
Figure 1.

2.2. Behavioural Data. For each couple of politicians and
judgment (vote, dominance, and trustworthiness), we col-
lected the subject’s choice. For each experimental condition,
we calculated the percentage of correct prediction: each
judgement has been compared with the outcome of the
election through the following formula:

PR =

∑
𝑁

𝑖=1
𝛿 (𝑉
𝑖
, �̃�)

𝑁
× 100, (1)

where 𝛿 is the Kronecker delta, 𝑉
𝑖
is the given vote or judg-

ment explicitly expressed by subjects, and �̃� is the outcome
of the real elections. If the subject chose the politician who
actually won the race, we considered that the related outcome
of the simulated race has been correctly predicted. Subjects
were not aware of the outcome of the real elections. At the
end of the experiment, participants were asked to report if
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they recognized some of the seen faces and if they knew
the real outcome of the elections. In such a case, the related
trials were discarded from the analysis. Repeated-measures
analysis of variance (ANOVA) was performed to assess
differences between percentage of correct prediction among
judgements. For each couple of judgment (vote/dominance,
vote/trustworthiness, and dominance/trustworthiness) the
Pearson’s correlation has been calculated between the rates of
correct prediction of election races.

2.3. EEG Recordings and Preprocessing. The cerebral activity
has been recorded with a 61-channel system (Brain Amp,
Brainproducts GmbH, Germany) with a sampling rate of
200Hz. The EEG signals have been band pass filtered at 1–
45Hz and depurated of ocular artefacts by employing the
independent component analysis (ICA): the components due
to eye blinks and ocular movements have been detected by
eye inspection and then removed from the original signal.
The collected data have been segmented in order to analyze
the neurophysiological activity elicited during the 1 s observa-
tion of the politicians.Thus, each segment was 1 s long for the
EEG signal. All of them have been classified into six subsets.
They were associated, for instance, with the observation of
faces which have casted the vote (𝑉+) and those which did
not (𝑉−). In the sameway, we grouped the segments related to
faces which have been judged more/less dominant (𝐷+/𝐷−)
and more/less trustworthy (𝑇+/𝑇−), respectively. For each
dataset, a semiautomatic procedure has been also adopted
to reject trials presenting muscular and other kinds of arte-
facts. Only artefacts-free trials have been considered for the
following analysis. The extra-cerebrally referred EEG signals
have been transformed by means of the common average
reference (CAR). The individual alpha frequency (IAF) has
been calculated for each subject in order to define six bands
of interest according to themethod suggested in the literature
[41]. Such bands were in the following reported as IAF+𝑥,
where IAF is the individual alpha frequency, in Hertz, and
𝑥 is an integer displacement in the frequency domain which
is employed to define the band. In particular, we defined
the following six frequency bands: theta (IAF−6, IAF−2), for
example, theta ranges between IAF−6 and IAF−2Hz, alpha
(IAF−2, IAF+2), beta (IAF+2, IAF+15), and gamma (IAF+15,
IAF+30).

2.4. Estimation of Cortical Power Spectral Density. The high-
resolution EEG technologies [13, 15, 17, 42–44] have been
adopted in order to obtain an estimation of the cortical
power spectral density (PSD). The scalp, skull, and dura
mater compartments were built by using 1200 triangles for
each structure, and the boundary element model was then
employed to solve the forward electromagnetic problem.
For each subject, the electrodes disposition, in terms of
coordinates, on the scalp surface was calculated through a
nonlinear minimization procedure [45]. The cortical model
consisted of 7953 dipoles uniformly distributed on the corti-
cal surface, and the estimation of the current density strength
for each dipole was obtained by solving the electromagnetic
linear inverse problem according to the minimum norm

solution as described in the previous papers [17, 45–49].
Each dipole was modeled to be perpendicular to the cortical
surface.The cortical power spectral density (PSD), calculated
with the Welch method [50], has been computed for each
equivalent cortical current dipole of the realistic average head
model (Colin template, 7953 cortical dipoles) by solving the
electromagnetic linear inverse problem. This procedure has
allowed us to obtain a measure of PSDs values for each
cortical dipole and for each trial for all datasets. In order
to take into account subjects’ personal baseline activity, we
used the neurophysiological signals (mean and standard
deviation) related to the observation of the neutral face to
transform into 𝑧-score variables the values of spectral power
of vote, dominance, and trustworthiness datasets according
to the following formula:

𝑍
𝑉,𝐷,𝑇

=
𝑋
𝑉,𝐷,𝑇

− 𝜇
𝑁

𝜎
𝑁

, (2)

where 𝑍
𝑉,𝐷,𝑇

is the 𝑧-score value related to the vote, dom-
inance, and trustworthiness dataset, whereas 𝜇

𝑁
and 𝜎

𝑁

are mean and standard deviation related to the neutral face
dataset.

To improve the normality properties of such distri-
butions, all variables have been transformed into normal
distributions [51]. Finally, for each of the three conditions, we
used the 𝑡-test (𝑃 < 0.05) to compare the transformed PSD
distribution, for each equivalent cortical current dipole and
the aforementioned frequency bands of interest, and adopted
the false discovery rate correction for multiple comparisons
[49].

2.5. Partial Directed Coherence. The partial directed coher-
ence PDC [52] is a full multivariate spectral measure used
to determine the directed influences between any given pair
of signals in a multivariate data set. PDC is a frequency
domain representation of the existing multivariate relation-
ships between simultaneously analyzed time series that allows
the inference of functional relationships between them. This
estimator was demonstrated to be a frequency version of
the concept of Granger causality [53], according to which
a time series 𝑥[𝑛] can be said to have an influence on
another time series 𝑦[𝑛] if the knowledge of past samples of
𝑥 significantly reduces the prediction error for the present
sample of 𝑦. In this study, the PDC technique was applied
to the set of several regions of interest (ROIs) in which the
cortical surface has been segmented according to Brodmann
areas (BAs). Namely, we defined the following bilateral areas
of interest: 10, 8, 5, 7, 37, 19, 9/46, 21/22, and 41/42. This
choice of the selected ROIs can be justified at the light of
the results provided by the published literature [5–7] showing
how these cerebral areas are involved during the observation
of political candidates (photos and videos) as well as in
their judgment. Due to computational limitations of the PDC
method, we could not cover the whole cortical surface but
only select the most representative regions. However, this
cortical segmentation has not been taken into account for
the PSD analysis because we preferred to exploit the enhance
of the spatial resolution and to highlight changes of activity
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of single equivalent cortical current dipoles estimated. In
such a way, a total of eighteen ROIs has been taken into
account for the subsequent functional connectivity analysis
performed via partial directed coherence (PDC) and graph-
theory metrics. In the following, we denote the ROIs signals
𝑆:

𝑆 = [𝑠
1 (𝑡) , 𝑠2 (𝑡) , . . . , 𝑠𝑁 (𝑡)]

𝑇
. (3)

Let us to suppose that the following MVAR process is an
adequate description of the data set 𝑆:

𝑝

∑

𝑘=0

Λ
𝑘
𝑆 (𝑡 − 𝑘) = 𝐸 (𝑡) with Λ

0
= 𝐼. (4)

In this expression, 𝐸(𝑡) = [𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑁
(𝑡)]
𝑇 is a vector

of multivariate zero-mean uncorrelated white noise process,
Λ
1
, Λ
2
, . . . , Λ

𝑝
are the𝑁×𝑁matrices of model coefficients,

and 𝑝 is the model order, chosen, in this case, by means of
the Akaike information criteria (AIC) for MVAR processes
[54]. Once an MVAR model is adequately estimated, it
becomes the basis for subsequent spectral analysis. In order
to investigate the spectral properties of the examined process,
(2) is transformed to the frequency domain:

Λ (𝑓) 𝑆 (𝑓) = 𝐸 (𝑓) , (5)

where

Λ (𝑓) =

𝑝

∑

𝑘=0

Λ
𝑘
𝑒
−𝑗2𝜋𝑓Δ𝑡𝑘

, (6)

and Δ𝑡 is the temporal interval between two samples.
It is then possible to define PDC as

𝜋
𝑖𝑗
(𝑓) =

Λ
𝑖𝑗
(𝑓)

√∑
𝑁

𝑘=1
Λ
𝑘𝑗
(𝑓)Λ

∗

𝑘𝑗
(𝑓)

. (7)

Such formulation was derived by the well-known concept
of partial coherence [52]. The PDC from 𝑗 to 𝑖, 𝜋

𝑖𝑗
(𝑓),

describes the directional flow of information from the signal
𝑠
𝑗
(𝑛) to 𝑠

𝑖
(𝑛), whereupon common effects produced by other

electrodes 𝑠
𝑘
(𝑛) on the latter are subtracted leaving only a

description that is exclusive from 𝑠
𝑗
(𝑛) to 𝑠

𝑖
(𝑛).

PDC values are in the interval [0, 1] and the normaliza-
tion condition

𝑁

∑

𝑛=1


𝜋
𝑛𝑗
(𝑓)



2

(8)

is verified. According to this condition, 𝜋
𝑖𝑗
(𝑓) represents

the fraction of the time evolution of electrode 𝑗 directed to
electrode 𝑖, as compared to all of 𝑗’s interactions to other
electrodes.

Even if this formulation derived directly from informa-
tion theory, the original definition was modified in order to
give a better physiological interpretation to the estimation
results achieved on electrophysiological data. In particular,
two modifications have been proposed. First, a new type of

normalization, already used for another connectivity estima-
tor such as directed transfer function [55], was introduced by
dividing each estimated value of PDC for the root squared
sums of all elements of the relative row, and then a squared
version of the PDC was introduced [56]:

sPDC
𝑖𝑗
(𝑓) =


Λ
𝑖𝑗
(𝑓)



2

∑
𝑁

𝑚=1

Λ 𝑖𝑚 (𝑓)


2
. (9)

The better performances of sPDC have been demonstrated
in simulation studies which revealed reduced error levels
both in the estimation of connectivity patterns on data
characterized by different lengths and SNR and in distinction
between direct and indirect paths [56]. Such formulation
was used in this study for the estimation of functional
connectivity.

2.6. Statistical Validation of Connectivity Patterns. Random
fluctuations of signals, induced by environmental noise,
could lead to the presence of spurious links in the con-
nectivity estimation process. In order to avoid such false
connections, it is necessary to apply a method for the
statistical validation of estimated connectivity patterns. In
order to assess the significance of the estimated connectivity
patterns, the value of effective connectivity for a given pair
of electrodes, obtained by computing PDC [57, 58], must
be statistically compared with a threshold level which is
related to the lack of transmission between considered ROIs
(null hypothesis). Threshold values were estimated using
asymptotic statistic [59], a recently introduced method based
on the assumption that PDC in the null case follows a
𝜒
2 distribution [60]. The statistical threshold for the null

case is achieved by applying a percentile, related to a given
significance level, on a 𝜒

2 distribution derived by means
of Monte Carlo method directly from the data. The high
accuracy of the asymptotic statistic method in the assessment
process has been demonstrated in a simulation study inwhich
this new method was compared with the shuffling procedure
[61, 62], a time consuming methodology currently available
in the functional connectivity field [63].

The statistical validation process had to be applied on each
couple of signals for each frequency sample. This necessity
led to the execution of a high number of simultaneously
univariate statistical tests with evident consequences in the
occurrence of type I errors. The statistic theory provides
several techniques that could be usefully applied in the
context of the assessment of connectivity patterns in order
to avoid the occurrence of false positives [64]. In particular,
we chose the false discovery rate (FDR) method [65, 66]
because it has been demonstrated to be a good compromise
in preventing both type I and type II errors occurred during
connectivity estimation [67, 68].

After the validation process, the PDC estimation is
averaged within four frequency bands defined according to
individual alpha frequency (IAF) [41] in order to take into
account the variability among subjects of the alpha peak in the
spectrum.The range for each frequency band is theta [IAF−6;
IAF−2], alpha [IAF−2; IAF+2], beta [IAF+2; IAF+15], and
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gamma [IAF+15; IAF+30]. PDC connections of the three
judgments (𝑉, 𝑇, and 𝐷) have been separately compared
between valence (+, −), for each band of interest, by perform-
ing multiple Student’s 𝑡-test on ROIs, FDR corrected.

2.7. Graph Theory. A graph consists of a set of vertices (or
nodes) and a set of edges (or connections) indicating the
presence of some sort of interaction between the vertices.
The adjacency matrix 𝐴 contains the information about the
connectivity structure of the graph. When a directed edge
exists from the node 𝑖 to 𝑗, the corresponding entry of the
adjacencymatrix is𝐴

𝑖𝑗
= 1; otherwise,𝐴

𝑖𝑗
= 0.The existence

of an edge is stated on the basis of its statistical significance
assessed by means of asymptotic statistic approach. The
higher reliability of the statistical approach for extracting the
adjacency matrix has been demonstrated in [67] where a
detailed comparison with the empirical methods is provided.
In graph theory, a path or a walk is a sequence of vertices in
which from each of its vertices, there is an edge to the next
vertex in the sequence. Such adjacencymatrix can be used for
the extraction of salient information about the characteristic
of the investigated network by defining several indexes based
on the elements of such matrix.

Density. Density is the fraction of present connections to
possible connections. Connection weights are ignored in
calculations. Density is defined as follows:

𝐷 =

∑
𝑁

𝑖=1
∑
𝑁

𝑗=1
𝐴
𝑖𝑗

𝑁(𝑁 − 1)
× 100, (10)

where 𝐴
𝑖𝑗
represents the entry 𝑖𝑗 of the adjacency matrix 𝐴.

For each judgment (𝑉, 𝑇, and 𝐷), we performed a
repeated measure ANOVA with factor BAND (theta, alpha,
beta, and gamma) to compare the density value among bands
of interest.

Degree.Thedegree of a node is the number of links connected
directly to it. In directed networks, the indegree is the number
of inward links and the outdegree is the number of outward
links. Connection weights are ignored in calculations [69]. It
can be defined as follows:

𝑘
𝑖
= ∑

𝑗∈𝑁

𝐴
𝑖𝑗
, (11)

where 𝐴
𝑖𝑗
represents the entry 𝑖𝑗 of the adjacency matrix 𝐴.

Indegree and outdegree of the three judgments (𝑉,𝑇, and
𝐷) have been separately compared between valence (+, −), for
each band of interest, by performing multiple Student’s 𝑡-test
on ROIs, FDR corrected.

2.8. Autonomic Data Recording and Signal Processing. The
autonomic activity, both the Galvanic Skin Response (GSR)
and the Heart Rate (HR), has been recorded by means of the
PSYCHOLABVD13S system (SATEM, Italy) with a sampling
rate of 100Hz. Skin conductancewas recorded by the constant
voltage method (0.5 V). Ag-AgCl electrodes (8mm diameter
of active area) were attached to the palmar side of the middle

phalanges of the second and third fingers of the participant’s
non dominant hand by means of a velcro fastener. The com-
pany also provided disposable Ag-AgCl electrodes to acquire
the HR signal. Before applying the sensors to the subjects’
skin, their surface has been cleaned following procedures and
suggestions published in the international literature [70–72],
and GSR and HR signals have been continuously acquired
for the entire duration of the stimulation and then filtered
and segmented with in-house MATLAB software in order to
analyse the autonomic activity related to the observation of
the politician faces.

The GSR signal has been downsampled to 20Hz and
subsequently low pass filtered at 4.5Hz to filter out noise and
suppress artefacts caused by Ebbecke waves [70, 73]. In order
to split the phasic component of the electrodermal activity
(skin conductance response (SCR)) from the tonic one (skin
conductance level (SCL)) we acted as follows on the filtered
GSR signal:

(1) minima points detection within a 100 samples sliding
window (5 seconds);

(2) linear interpolation of minima points;
(3) smoothing by means of a moving average (100 sam-

ples sliding window). This operation generates the
SCL signal;

(4) subtraction of the SCL signal from the filtered GSR.
This operation generates the SCL signal.

In such a way, we split the GSR signal into a phasic (SCR)
and a tonic (SCL) component and then segmented the traces
by taking into account 3 s long segments from the beginning
of the face exposition. Afterwards, we generated the same
type of datasets as defined for the EEG analysis. As far as
concerns the SCL, we calculated the time average for each
segment and experimental condition, whereas for the SCRwe
took into account the average peak number within the data
segment. The results of these parameters will be showed in
the following section.

The HR signal has been low pass filtered at 1Hz in
order to analyse the frequency components due to variations
of the sympathetic and parasympathetic nervous system
regardless the ones associated with thermoregulatory cycles
[74, 75]. Hence, this waveform has been segmented by taking
into account 3 s length segments from the beginning of the
face exposition. Afterwards, we generated the corresponding
datasets defined for the EEG analysis. From each segment,
we calculated the average beats per minute and the power
spectrum density (PSD) according to theWelchmethod [50].
In this way, we obtained a signal in the frequency domain
for the all experimental conditions and subjects. Spectral
components were identified and then assigned, on the basis
of their frequency, to one of two bands: low frequency
(LF), [0.04, 0.15]Hz; high frequency (HF), [0.15, 0.6]Hz
[37]. The very low frequency (VLF) band, located in the
lowest part of the spectrum, has been excluded from the
present analysis since it is physiologically connected with
long-term regulation mechanisms [74, 75], not of interest
for our purpose. Several studies indicate that the LF band
corresponds to baroreflex control of the heart rate and
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reflects mixed sympathetic and parasympathetic modulation
of heart rate variability (HRV); instead, HF band corresponds
to vagally mediated modulation of HRV associated with
respiration [37, 74–76]. For this reason, some researchers [37]
propose the ratio LF/HF as index of the balance between the
sympathetic and vagal activity.

All autonomic variables of interest (SCL, SCR, HR,
and LF/HF) and experimental datasets (𝑉+, 𝑉−, 𝐷+, 𝐷−,
𝑇
+, and 𝑇

−) have been standardized by means of the 𝑧-
score transformation by using the dataset referred to the
neutral face (𝑁) as reference baseline. Repeated-measures
analyses of variance (ANOVA) were performed to assess
differences in SCL, SCR, HR, and LF/HF. Mauchly’s test
evaluated the sphericity assumption and, where appropriate
correction of the degrees of freedom was made according
to the Greenhouse-Geisser procedure. Bonferroni correction
was applied to all post hoc tests (pairwise comparisons). The
statistical analysis has been performed by the SPSS (v.16)
software.

According to the presentedmethodology, the intersubject
variability has been taken into account by computing the 𝑧-
score standardization of the experimental conditions datasets
(observation of faces during judgments of vote, dominance,
and trustworthiness) and the mean and standard deviation
related to the neutral condition (observation of neutral
face). Moreover, also the chosen statistical method (paired
Student’s 𝑡-test) avoids intersubject variability. Instead, in
order to address the interstimuli variability, according to
the illustrated experimental paradigm, the single politicians
faces have been observed and judged differently by each
participant. In this way, each participant has his/her own
personal datasets (𝑉+/𝑉−, 𝐷+/𝐷−, and 𝑇+/𝑇−). In fact, the
aim of the present analysis is to investigate the cerebral
reaction due to personal judgments rather than objective
features and expressions of singles candidates.Hence, data are
compared for a population analysis by means of the paired 𝑡-
test.

3. Results

3.1. Behavioural Results. In order to asses significant dif-
ferences among rates of correctly predicted races in the
three experimental conditions, we employed a multivariate
repeated measures ANOVA design with judgment (vote,
dominance, and trustworthiness) as a factor and the per-
centages of correctly predicted races as a dependent vari-
able. Average values of correct percentages are reported in
Figure 2.

The statistical analysis of correct percentages showed
a significant difference for the factor judgment across the
different levels [vote = (44.65±7.04)%, dominance = (51.15±
6.68)%, and trustworthiness = (43.99 ± 7.48)%; 𝐹(38,2) =
9.34, 𝑃 < 0.01]. Hence, the percentage of correct pre-
diction depends on the judgment. Specifically, the pairwise
comparisons revealed significant differences for the contrast
vote versus dominance (𝑃 < 0.01) and dominance versus
trustworthiness (𝑃 < 0.01), whereas no difference has been
found between vote and trustworthiness (𝑃 > 0.05).

0
10
20
30
40
50
60
70

Vote Dominance Trustworthiness

(%
)

Rates of correct prediction
∗ ∗

Figure 2: Average rates of correct prediction for the three judgments
of vote, dominance, and trustworthiness. Error bars indicate stan-
dard deviations. Significant pairwise comparisons are highlighted
with asterisks.

Subjects’ judgment about vote, dominance, and trust-
worthiness underwent a correlation analysis. For each pair
of judgments (vote/dominance, vote/trustworthiness, and
dominance/trustworthiness) we computed the Pearson’s cor-
relation among the number of subjects who expressed their
preference for the real election winner.

The results show that judgments concerning vote and
trustworthiness are positively correlated (𝑅 = 0.85, 𝑃 < 0.01)
while the ones regarding vote anddominance (𝑅 = −0.64,𝑃 <

0.01) and dominance and trustworthiness (𝑅 = −0.60, 𝑃 <

0.01) are negatively correlated. Figure 3 shows the correlation
between vote and trustworthiness conditions.

3.2. Cortical Patterns of Power Spectral Density. The EEG
signals gathered during the observation of the politicians
were subjected to the estimation of the cortical power spectral
density by using the techniques described in theMethods sec-
tion. In each subject, the cortical PSDwas evaluated in the fre-
quency bands adopted in this study and contrasted between
experimental conditions. These cortical distributions of PSD
obtained during the observation of politicians were then
organized in six datasets (𝑉+/𝑉−, 𝐷+/𝐷−, and 𝑇+/𝑇−). The
Student’s 𝑡-test has been performed between these cortical
PSD distributions of homologous datasets (i.e., 𝑉+ versus
𝑉
−). The resulting statistical spectral maps highlight cortical

areas in which the estimated PSD statistically differs between
two conditions. In the following statistical spectral maps, we
show only the results in the theta and alpha frequency bands
because they resulted the ones with most activations.

Figures 4, 5, and 6 present cortical maps in which the
brain is viewed from a frontal perspective.Themaps are rela-
tive to the contrast regarding the conditions vote, dominance,
and trustworthiness (i.e., 𝑉+ versus 𝑉−) in the frequency
bands of interest. The colour scale on the cortex codes
the statistical significance: where there are cortical areas in
which the power spectrum does not differ between the two
conditions, the grey colour is used. The red colour presents
statistically significant power spectral activity greater in the
condition 𝑉+(𝐷+, 𝑇+) with respect to 𝑉−(𝐷−, 𝑇−), while the
blue colour codes the opposite situation.
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Figure 3: Scatterplots of number of subjects expressing their preference for the real election winner related to judgments of trustworthiness
(𝑥-axis) and vote (𝑦-axis) on (a), vote (𝑥-axis) and dominance (𝑦-axis) in (b), and dominance (𝑥-axis) and trustworthiness (𝑦-axis) on (c).
Each dot represents a single election race with the corresponding number of subjects whomade their choice for the real winner of the election.
In each scatterplot, there is the related Pearson’s correlation coefficient, all significant at 𝑃 < 0.01.
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Figure 4: The picture presents four cortical 𝑡-test maps of PSD values for the vote condition in the theta (upper row) and alpha (lower row)
bands. As to the theta band, the cortex model is seen from a front-left side (left) and from a frontal perspective (right). As to the alpha band,
the cortexmodel is seen from a front-right side (left) and from a frontal perspective (right). Colour bar indicates in red cortical areas in which
increased statistically significant activity occurs in the 𝑉+ dataset when compared to the 𝑉− dataset. Blue colour is used when the activity is
statistically higher in the 𝑉− than in the 𝑉+ condition (𝑡 values at 𝑃 < 0.05, FDR corrected). Grey colour is used to map cortical areas where
there are no significant differences between the cortical activity in the two experimental conditions.
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Figure 5: The picture presents four cortical 𝑡-test maps of PSD values for the trustworthiness condition in the theta (upper row) and alpha
(lower row) band. As to the theta band, the cortex model is seen from a front-right side (left) and from a frontal perspective (right). As to the
alpha band, the cortex model is seen from a front-left side (left) and from a frontal perspective (right). Colour bar indicates in red cortical
areas in which increased statistically significant activity occurs in the 𝑇+ dataset when compared to the 𝑇− dataset. Blue colour is used when
the activity is statistically higher in the 𝑇− than in the 𝑇+ condition (𝑡 values at 𝑃 < 0.05, FDR corrected). Grey colour is used to map cortical
areas where there are no significant differences between the cortical activity in the two experimental conditions.

Figure 4 presents the four statistical cortical maps related
to the comparisons of PSD values in the theta and alpha
bands for the vote condition. These maps highlight a frontal
asymmetry which discriminates 𝑉+ and 𝑉

− conditions in
both theta and alpha bands. Specifically, it is possible to
observe an increase of PSD across frontal and central areas
in the theta band for the 𝑉

+ condition. Findings in the
alpha band return a significant desynchronization for the 𝑉−
condition in the frontal, central, and parietal cortical regions
of the right hemisphere. In addition, a smaller frontal region
of the left hemisphere accounts for a desynchronization for
the 𝑉+ condition.

Figure 5 presents the contrast between the 𝑇+ and 𝑇
−

conditions in the theta and alpha bands. As similarly
observed for the vote condition, the comparison between 𝑇+
and 𝑇− also revealed an asymmetrical pattern of activation.
In this case, most of the increase of PSD in the theta band is
due to the 𝑇− condition, involving left frontal cortical areas.
However, a significant spot of activation for the 𝑇+ condition
is also visible around right frontal regions. The significant
desynchronization of the frontal activity in the alpha band
is associated with the 𝑇+ condition. From Figure 5, it is also
possible to observe a sparse activation in left central and
temporal areas.

Figure 6 presents the contrast between the 𝐷+ and 𝐷
−

conditions in the theta and alpha bands. In this case, the
significant activations in the theta band show an involvement
of the frontal midline regions for the 𝐷− condition, whereas

a significant desynchronization of the alpha rhythm is visible
across left frontal areas for the opposite condition𝐷+.

3.3. Analysis of Functional Connectivity Patterns and Degree.
The two-way ANOVA performed on the density index indi-
cated significant difference for factor BAND for all the three
experimental conditions [vote, 𝐹(3,57) = 4.55, 𝑃 < 0.01;
dominance, 𝐹(3,57) = 4.52, 𝑃 < 0.01; and trustworthiness,
𝐹(3,57) = 4.23, 𝑃 < 0.01]. This result led us to consider only
theta and alpha bands for the following analysis. In fact, both
beta and gammapresent smaller density values than the lower
frequency ranges, and they are close to zero.

The connectivity patterns have been estimated by partial
directed coherence (PDC) to the spatially averaged wave-
forms related to different ROIs considered in the study
and statistically compared as described in the Methods
section. Student’s 𝑡-tests have been performed between PDC
distributions of homologous datasets (i.e.,𝑉+ versus𝑉−).The
resulting statistical connectivitymaps highlight cortical areas,
alongwith the related strength of the connection, inwhich the
estimated PDC statistically differs between two conditions.
Similarly, the analysis of indegree and outdegree has been
computed by Student’s 𝑡-test for each ROI and experimental
condition.

Figures 7, 8, and 9 present cortical maps, as well as values
of indegree and outdegree, in which the brain is viewed
from above. The results are related to the contrast regarding
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Figure 6:The picture presents four cortical 𝑡-test maps of PSD values for the dominance condition in the theta (upper row) and alpha (lower
row) bands.The cortex model is seen from a front-left side (left) and from a frontal perspective (right) for both theta and alpha bands. Colour
bar indicates in red cortical areas in which increased statistically significant activity occurs in the𝐷+ dataset when compared to the𝐷− dataset.
Blue colour is used when the activity is statistically higher in the 𝐷− than in the 𝐷+ condition (𝑡 values at 𝑃 < 0.05, FDR corrected). Grey
colour is used tomap cortical areas where there are no significant differences between the cortical activity in the two experimental conditions.

the conditions vote, dominance, and trustworthiness (i.e.,
𝑉
+ versus 𝑉−) in the activated frequency bands of interest.

The colour scale on the cortex codes the ROIs, and the grey
colour is used otherwise. The red colour presents statistically
significant connections in the condition 𝑉

+
(𝐷
+
, 𝑇
+
) with

respect to 𝑉
−
(𝐷
−
, 𝑇
−
), while the blue colour codes the

opposite situation.
Figure 7 presents the two statistical connectivity maps

related to the comparisons of PDC values in the theta and
alpha bands for the vote condition, on the right side of the
picture. On the left side, the related comparison for values
of in- and outdegrees are reported. These results highlight
a strong involvement of frontal and parietal right areas in
both theta and alpha bands. Particularly, in the theta band
the largest amount of significant inter- and intrahemispheric
connections emerges in the left hemisphere related to the
𝑉
+ condition. An interhemispheric flow between the BA10 L

and BA8 R is the strongest for the 𝑉− condition. From the
statistical comparison of in- and outdegrees we may observe
that the only significant result highlights the BA19 R as the
ROIwith highest value of outdegree for the condition𝑉−.The
statistical pattern in the alpha band presents an involvement
of inter- and intrahemispheric connection, thickened in the
right hemisphere, in the𝑉+ condition. However, a significant
connection between BA37 R and BA9/46 R for the 𝑉

−

condition appears. These results are supported by in- and
outdegrees values which return the BA10 R as a source of
information in the𝑉+ condition, whereas the BA37 R source
in the 𝑉− condition.

Figure 8 presents the two statistical connectivity maps
related to the comparisons of PDC values in the theta and
alpha bands for the trustworthiness condition, on the right

side of the picture. On the left side, the related comparisons
for values of in- and outdegrees are reported. These results
highlight an involvement of frontal and parietal left areas in
both theta and alpha bands although only a few significant
connections emerge. Particularly, in the theta band there is
a parietal-frontal connection in the 𝑇+ condition, whereas
two parietal BAs are connected in the 𝑇− condition. From
the statistical comparison of in- and outdegrees, there are
no ROIs resulting different between the two experimental
conditions in the theta band. The statistical pattern in the
alpha band shows the existence of two intrahemispheric con-
nections related to the 𝑇− between frontal and parietotem-
poral regions. There is only one significant link between the
BA21/22 L and BA5 R regarding the 𝑇

+ condition. From
the statistical comparison of in- and outdegrees, there are
no ROIs resulting different between the two experimental
conditions in the alpha band.

Figure 9 presents the two statistical connectivity maps
related to the comparisons of PDC values in the theta and
alpha bands for the dominance condition, on the right side
of the picture. On the left side, the related comparison for
values of in- and outdegrees are reported. These results
highlight a strong involvement of frontal and parietal right
areas in both theta and alpha bands. Particularly, in the
theta band intrahemispheric parietofrontal connections are
related to the𝐷− condition whereas intrahemispheric frontal
connections regard the 𝐷+ condition. From the statistical
comparison of in- and outdegrees, we may observe that
the BA37 R and BA21/22 R are source of information for
the 𝐷+ condition, whereas BA8 R for the 𝐷− condition is
a sink. The statistical pattern in the alpha band presents
an involvement of inter- and intrahemispheric connection,
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Figure 7: In- and outdegree values (left side) and PDC links (right side) in the theta (upper row) and alpha (lower row) bands for the vote
condition. The cortex model is seen from above for both theta and alpha bands. Colour bar indicates PDC connections in which increased
statistically significant activity occurs in the 𝑉+ dataset when compared to the 𝑉− dataset in red. Blue colour is used when the increase for
the𝑉− activity is statistically higher than the one in the𝑉+ condition (𝑡 values at 𝑃 < 0.05, FDR corrected).The arrows depict the statistically
significant connections estimated between the activities recorded in the vote condition.The color and size of the arrows code for the strength
of the interaction, as reported by the color bar on the right. A color map highlights the ROIs, whereas grey colour is used to map cortical
areas that have not been used in the analysis. Red circles in the left part of the figure highlight significant difference of in- and outdegrees for
the theta and alpha bands.

thickened in the left hemisphere, in both the 𝐷+ and 𝐷
−

conditions. In particular, the information flow is directed
from right parietal to left and temporal frontal areas in 𝐷+
condition and vice versa for𝐷− condition. From the statistical
comparison of in- and outdegrees, there are noROIs resulting
different between the two experimental conditions in the
alpha band.

3.4. Analysis of the SCL and SCR. To assess the effect of
questions on answers, we performed a two-way repeated-
measures ANOVA on SCL and on SCR, with judgment (𝐷,
𝑇, and 𝑉) and valence (+, −) as factors. As far as the SCL
is concerned, we did not find significant difference for any
factor [judgment: 𝐹(2,36) = 1.77, 𝑃 = 0.18; valence: 𝐹(1,18) =
0.04,𝑃 = 0.83; judgment × valence:𝐹(2,36) = 0.63,𝑃 = 0.54].
However, we also performed Student’s 𝑡-tests to compare
pairs of judgments.These statistical analyses returned that the
SCL values for the dominance condition are higher than those

in trustworthiness [𝑡(19) = 2.1, 𝑃 < 0.05] and no difference
between the other conditions.

As to the analysis of the SCR, the two-way repeated-
measures ANOVA did not highlighted any significant dif-
ference for any factor [judgment: 𝐹(2,36) = 0.21, 𝑃 = 0.82;
valence: 𝐹(1,18) = 1.98, 𝑃 = 0.18; judgment × valence:
𝐹(2,36) = 0.18, 𝑃 = 0.80]. However, there is a trend as to the
𝑧-score of SCR values since for all the six conditions they are
always positive with SCR values related to the condition “+”
larger than those related to the condition “−”.

3.5. Analysis of the HRV. To assess the effect of judg-
ments on the choices of subjects, we performed a two-
way repeated-measures ANOVA on HR and LF/HF with
judgment (𝐷, 𝑇, 𝑉) and valence (+, −) as factors.

The two-way ANOVA on the HR parameter did not
return any significant result for this comparison [judgments:
𝐹(2,36) = 1.99, 𝑃 = 0.15; valence: 𝐹(1,18) = 0.01, 𝑃 = 0.95;
judgments × valence: 𝐹(2,36) = 0.184, 𝑃 = 0.83]. Picture
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Figure 8: In- and outdegree values (left side) and PDC links (right side) in the theta (upper row) alpha (lower row) bands for the vote
condition. The cortex model is seen from above for both theta and alpha bands. Colour bar indicates PDC connections in which increased
statistically significant activity occurs in the 𝑇+ dataset when compared to the 𝑇− dataset in red. Blue colour is used when the increase for
the 𝑇− activity is statistically higher than the one in the 𝑇+ condition (𝑡 values at 𝑃 < 0.05, FDR corrected). The arrows depict the statistically
significant connections estimated between the activities recorded in the trustworthiness condition. The color and size of the arrows code for
the strength of the interaction, as reported by the color bar on the right. A color map highlights the ROIs, whereas grey colour is used to map
cortical areas that have not been used in the analysis.

highlights that HR values related to the condition dominance
are both negative with respect to the baseline (neutral face),
whereas the factor vote presents positive values. As to the
factor trustworthiness, the conditions “+” and “−” have
a positive (0.01) and negative (−0.03) values, respectively.
However, we also performed Student’s 𝑡-tests to compare
pairs of judgments. These statistical analyses returned that
the HR values for the vote condition are higher than those in
dominance [𝑡(19) = 2.11, 𝑃 < 0.05] and no difference between
the other conditions.

The two-way ANOVA on the LF/HF parameter did not
return any significant result for this comparison [judgment:
𝐹(2,36) = 1.47, 𝑃 = 0.24; valence: 𝐹(1,18) = 0.66, 𝑃 = 0.43;
judgment × valence: 𝐹(2,36) = 0.12, 𝑃 = 0.99]. In each
condition, the average value of the sympathovagal balance
is negative. This means that the LF/HF values are always
larger during the observation of the neutral face compared
to the exposition of politicians. Moreover, the LF/HF values
related to the condition dominance are the smallest ones.
However, we also performed Student’s 𝑡-tests to compare

pairs of judgments.These statistical analyses returned that the
HR values for the trustworthiness condition are lower than
those in dominance [𝑡(19) = 2.1, 𝑃 < 0.05] and no difference
between the other conditions.

4. Discussion

4.1. Explicit Judgment. The analysis conducted on the partic-
ipant’s choice returned low percentages of correct prediction
for all the three possible judgments. Two of them are below
the 50% (vote, 44.6%; trustworthiness, 43.9%) while the only
judgment about dominance shows a percentage of 51.15. In
fact, for our subjects, the judgment on the dominance trait
resulted the most predictive, with respect to trustworthiness
and preference of vote, of the election outcome. This result
could appear contrasting the findings previously published
in the literature [1, 2], since they reported a goodness of
prediction around 70% in guessing the elections outcome.
This difference could be due to the exiguous number of
participants enrolled in our study (20) if compared to the



Computational and Mathematical Methods in Medicine 13

Dominance

3

2

1

0

−1

−2

−3

t
va

lu
es

−3

−2

−1

1

2

3

0

t
va

lu
es

𝛼

−1.5

−0.5

0.5

1.5

2.5

−2

−1

1

2

0

t
va

lu
es

Indegree
Outdegree

𝜗
D+

> D−

D−
> D+

D
+
> D

−

D
+
> D

−

D
−
> D

+

1
0

L
1
0

R

3
7

L
3
7

R
1
9

L
1
9

R
9

/4
6

L
9

/4
6

R
2
1

/2
2

L
2
1

/2
2

R
4
1

/4
2

L
4
1

/4
2

R8
L

8
R 5
L

5
R 7
L

7
R

1
0

L
1
0

R

3
7

L
3
7

R
1
9

L
1
9

R
9

/4
6

L
9

/4
6

R
2
1

/2
2

L
2
1

/2
2

R
4
1

/4
2

L
4
1

/4
2

R8
L

8
R 5
L

5
R 7
L

7
R

D
−
> D

+

Figure 9: In- and outdegree values (left side) and PDC links (right side) in the theta (upper row) alpha (lower row) bands for the vote
condition. The cortex model is seen from above for both theta and alpha bands. Colour bar indicates PDC connections in which increased
statistically significant activity occurs in the 𝐷+ dataset when compared to the 𝐷− dataset in red. Blue colour is used when the increase for
the𝐷− activity is statistically higher than the one in the𝐷+ condition (𝑡 values at 𝑃 < 0.05, FDR corrected).The arrows depict the statistically
significant connections estimated between the activities recorded in the trustworthiness condition. The color and size of the arrows code for
the strength of the interaction, as reported by the color bar on the right. A color map highlights the ROIs, whereas grey colour is used to
map cortical areas that have not been used in the analysis. Red circles in the left part of the figure highlight significant difference of in- and
outdegrees for the theta band.

number of subjects utilized in their previous researches (more
than 100). In fact, a more recent study performed with fMRI
[5] enrolling 24 participants reported lower percentage in
judging winners of real elections as more competent (55%).
This evidence could suggest a positive correlation between
the traits of dominance and competence employed in the two
studies. Although Oosterhof and Todorov [40] established
mean ratings for computer modelled faces on 14 trait dimen-
sions, showing a certain correlation among them, the trait of
competence is not in the trait set used for the study. Hence,
we do not discuss about the degree of correlation between
the traits of competence and dominance. However, in the
same work, traits of dominance and trustworthiness appear
to be orthogonal. Instead, dominance appears to be correlated
with aggressiveness. Hence, it was not surprising for us to
get a similar result for real faces. This kind of dependence
could explain the positive result in predicting winners as
more dominant and the negative result in prediction about
the trustworthiness judgment. However, it is important to
remember that our participants were asked to give their

judgments according to a fast exposition of unknown face
of politicians. Therefore, they do not observe more than a
few physical traits and know nothing related to their public
behavior.

The correlation analysis concerning answers about the
three judgments revealed that our experimental subjects tend
to vote politicians appearing more trustworthy. However, we
observed that this judgment is not able to predict elections
outcomes.

4.2. Cortical Patterns of Power Spectral Density and Functional
Connectivity. Thehigh-resolution EEG analysis returned sta-
tistically significant activations in all experimental conditions
of vote, dominance, and trustworthiness judgments. Overall,
evidence highlights an asymmetrical cerebral activation,
mostly related to the frontal areas, during the observation
of politicians that will be judged trustworthy and dominant
and for those who will get the vote in simulated elections.
Thus, such neuroelectrical features seem to be able to predict
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judgments of trustworthiness and dominance as well as the
decision of vote.

Particularly, the vote condition elicited the most signif-
icant variations of the PSD in the alpha band. The related
cortical maps show a significant desynchronization of the
alpha rhythm among frontal and parietal areas of the right
hemisphere during the observation of politicians that have
not been voted in our simulated elections, along with a
smaller increase of PSD in left frontal areas for the opposite
condition. Analogously, the pattern of activations in the alpha
band for the trustworthiness condition show a desynchro-
nization of the left frontal regions associated with the obser-
vation of candidates that will be judged more trustworthy.
Instead, looking at the cortical maps in the theta band in both
experimental conditions, it is possible to appreciate almost
a reverse behavior of the frontal regions. Specifically, left
frontal areas are more involved during the observation of
candidates that will be voted whereas right frontal areas are
more activated during the observation of politicians that will
be judged less trustworthy. Hence, the asymmetrical pattern
of activation in these particular tasks seems to concern both
theta and alpha bands. In the dominance condition, it is
possible to observe that the desynchronization of the left
frontal regions is related to the observation of candidates that
will be judged more dominant. Adversely, the activations in
the theta bandmostly regard the frontalmidlinewhich results
activated during the observation of politicians resulting less
dominant.

Previous studies have shown that the frontal cortex (FC)
is anatomically and functionally connected to structures
linked to the emotional processing activity in humans [77].
Thus, indirect variables of emotional processing could be
also gathered by tracking variations of these cerebral cor-
tical frontal areas. In fact, although the frontal cortex is
structurally and functionally heterogeneous, its role in the
generation of the emotions is well recognized [78]. EEG
spectral power analyses indicate that the anterior cerebral
hemispheres are differentially lateralized for approach and
withdrawal of motivational tendencies and emotions. Specif-
ically, findings suggest that the left frontal and orbitofrontal
cortex is an important brain area in a widespread circuit that
mediates appetitive approach, while the right homologues
regions appear to form amajor component of a neural circuit
that instantiates defensive withdrawal [79, 80].

Sutton and Davidson [81] found that greater left-
sided activation predicted dispositional tendencies toward
approach, whereas greater right-sided asymmetry predicted
dispositional tendencies toward avoidance. In contrast, their
frontal asymmetry measurement did not predict disposi-
tional tendencies toward positive or negative emotions, sug-
gesting an association of frontal asymmetry with approach
avoidance rather than with valence. Other sources of data
converge on a similar model of frontal asymmetry. Of partic-
ular importance are studies that link anger, an unpleasant but
approach-related emotion, to greater left-hemispheric activa-
tion [82, 83]. Also, tendencies toward worry, thought to be
approach-motivated in the sense of being linked to problem
solving, have been linked to relatively greater left frontal EEG
activity [84]. Thus, the emerging consensus appears to be

that frontal EEG asymmetry primarily reflects levels of
approach motivation (left hemisphere) versus avoidance
motivation (right hemisphere), as also testified by previous
studies [85–88].

Hence, the present results could be interpreted by tak-
ing into account the approach-withdrawal theory [78–80]
explaining that there exists an EEG asymmetry, mostly
involving frontal regions, discriminating appealing, pleas-
antness situations from unattractive and unpleasant ones:
a desynchronization of the alpha rhythm in left frontal
areas is experienced when subjects are involved in positively
judged contexts, whereas a desynchronization of same areas
in the right hemisphere is often associated with rejecting
experiences. In addition, our experiment also highlights a
frontal-hemispheric asymmetry involving the theta band.
Therefore, the faces of politicians that will be voted and
judged trustworthy arise feelings of approach, whereas those
candidates that will be judged less trustworthy and not
adequate for winning the ballot generate emotions of detach
and refusal. This interpretation emerges from considering
the activations in both theta and alpha bands and is in
agreement with the behavioral results providing a high and
significant correlation between the judgment of trustworthi-
ness and the choice of vote. When subjects expressed judg-
ment on dominance trait, politicians judged more dominant
elicited an alpha desynchronization across left frontal and
orbitofrontal areas. As anger, also the trait of dominance
could be considered as an approach-related emotion, with a
negative valence and high arousal in a tentative to reconcile
the concept of discrete emotions in terms of combinations of
multiple dimensions [89, 90]. According to this perspective,
the alpha activity in the right hemisphere is in agreement
with the approach-withdrawal theory. On the contrary, low
dominance could lead to withdrawal-related emotions with
positive valence and low arousal. Observation of politicians
judged less dominant caused a significant activation of the
medial frontal cortex (mFC) in the theta band. Such signals
could be connected to the activity of the anterior cingulate
cortex (ACC). In fact, the circuit ACC-mFC is involved in
processing emotions. In particular, Phan et al. [91] reported
that 60% of the studies they reviewed found activation
in the medial frontal cortex (mFC), whereas Murphy et
al. [92] reported the strongest localization pattern in the
supracallosal ACC, both related to sadness which is a low
arousal emotion. Moreover, the link between frontal midline
and the activity in the anterior cingulate cortex is also shown
through listening to pleasant music since ACC is activated in
musical tasks [93, 94].This evidence shows thatACCcould be
involved in processing low arousal, pleasant, and withdrawal-
related emotions. Our result regarding the dominance trait
and the activation of ACC is also in agreement with the
study by Spezio et al. [5] showing that this specific brain
area is a predictor of the simulated election loss. In fact, the
observation of politicians judged less dominant elicited an
increase of activity in the frontal midline which is negatively
correlated with the lab vote share. In addition, the activation
related to the dominance condition could reflect neural
processing to disgusted facial expressions and angry faces
which exhibit involvement of the right putamen and the left
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insula cortex, enhancing activity in the posterior part of the
right gyrus cinguli and the medial temporal gyrus of the
left hemisphere. Fearful expressions also activate the right
fusiformgyrus and the left dorsolateral frontal cortex [95, 96].

The role of prefrontal cortex is also in agreement with
the experiment performed by Kato and colleagues [6] that
illustrate how stronger fMRI activation in the dorsolateral
prefrontal cortex lowered ratings of candidates originally
supported more than did those with smaller fMRI signal
changes in the same region. On the contrary, the subjects
showing stronger activation in the medial prefrontal cortex
tended to increase their ratings compared to subjects with less
activation.

The involvement of left ventral frontal cortex can be also
associated with neural response to facial emotions, regardless
of the conscious mediation [97]. In addition, the activity of
the temporal lobe has already been reported belonging to
judgments of trustworthiness trait [98].

Although it has not been investigated in the present
study, it could be debated that the discussed patterns of
activationmay vary according to the gender. In fact, previous
studies dealing with emotions processing report that females
respond strongly than males to emotional and negative faces,
judged unpleasant and high arousing stimuli. As reported
by Lithari et al. [99], these differences involve mechanisms
localized across central and left brain regions. Supporting
this evidence, Prause et al. [100] found that women elicited
a stronger frontal alpha asymmetry during the observation
of sexually motivating films, with a greater alpha power in
the left hemisphere. Similar gender differences have been also
specifically inspected during judgment of facial attractiveness
[101]. In fact, Zhang and Deng report a delayed P1 and
P3b latencies in response to attractive faces with slower
response times in men compared to women. A further study
also shows that women tend to prioritize the processing of
socially relevant and negative emotional information [102].
Overall, such results summarize that emotion processing
mostly involve central and left frontal regions both for men
and women, although the latter does it with a stronger
intensity and smaller latency. Instead, an important func-
tional gender differentiation could be investigated across the
right hemisphere [103]. In fact, right-lateralized anticipatory
activity selectively influenced the encoding of unpleasant
pictures in women but not in men. These findings indicate
that anticipatory processes influence theway inwhichwomen
encode negative events into memory. The selective use of
such activity may indicate that anticipatory activity is one
mechanism by which individuals regulate their emotions,
also in face processing although this affirmation needs to be
confirmed by further experiments.

4.3. Autonomic Variables. As far as the results of the elec-
trodermal activity are concerned, we reported that the tonic
component of the galvanic skin response is significantly lower
while participants observed politicians during the trustwor-
thiness judgment when compared with the judgment of
dominance and vote. Specifically, SCL in the trustworthiness
condition is lower than the average value elicited during the

observation of a neutral face, whereas SCL in dominance
and vote conditions is higher than that recorded in the
same baseline condition. According to Critchley [35, 104],
the tonic level of the galvanic skin response decreases during
attentional tasks. The SCL elicited in our experimental task
varies according to the judgment to be expressed. Since the
judgment about trustworthiness returned lower SCL values,
it seems that this task is more demanding if compared to the
question of dominance and vote. Instead, as to the phasic
component of the galvanic skin response, we did not find
any significant difference from the statistical point of view.
However, by observing the average peak amplitude of the
SCR, values related to the choice of subjects appear higher
than values associated with politicians that have not been
chosen, though not statistically significant. Hence, the obser-
vation of politicians that will be later judged, irrespective of
the proposed trait, could induce a stronger emotional state
reflected in a variation of the autonomic nervous system.

As to the analysis of the HRV, statistical tests performed
on average values of heart rate returned an increase of
the heart rate during the observation of politicians to be
voted, whereas the related values in the dominance and
trustworthiness judgments are negative when compared to
the observation of the neutral face. Also, the sympathovagal
balance returned negative values for all the experimental
conditions when compared to the baseline with an increase
for the dominance condition with respect to the trustwor-
thiness. Hence, the activity of the parasympathetic nervous
system seems to be prevailing during the observation of
politicians to be judged trustworthy. There are also several
studies reporting the increment of the vagal tone during states
of sustained attention [100] in agreement with the result of
the skin conductance level reporting an increase of attention
for the judgment of trustworthiness with respect to the trait
of dominance. In addition, the modulation of the HRV is
also correlated with attentional engagement to fearful faces
[101] and emotional face processing [102] which could be in
line with the results related to the observation of politicians
during the judgment of dominance.

Overall, autonomic results suggest that trait judgments
of dominance and trustworthiness are related to visceral
responses in terms of skin conductance level and vagal tone.

5. Conclusions

Theuse of the high-resolution EEG techniques [105–112] in an
evaluation of the efficacy of trustworthy and dominant faces
of political candidates has generated interesting results. Such
findings suggested the following answers to the questions
elicited in introduction.

(1) For the analysed population, we found out that the
judgment on the trait of dominance after a rapid
observation of politicians’ faces is themost predictive,
with respect to the one of trustworthiness and prefer-
ence of vote, of the election outcome. Preferences of
trustworthiness and vote are positively correlated.

(2) By analysing the PSD cortical maps and the related
PDC connectivity patterns, the results highlighted
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frontal asymmetrical activities characterizing all the
experimental conditions of vote, trustworthiness, and
dominance. These findings are in agreement with
the approach-avoidance theory and can predict the
decision of vote, as well as the judgment of trustwor-
thiness and dominance.

(3) Despite not being completely statistically significant,
the analysis of the autonomic parameters revealed a
decrease of skin conductance level and sympathova-
gal balance related to the observation of politicians to
be judged as trustworthy related to an increase of sus-
tained attention. These features could correlate with
modulation of attention and emotional engagement
to faces.
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[61] M. Kamiński, M. Ding, W. A. Truccolo, and S. L. Bressler,
“Evaluating causal relations in neural systems: granger causality,
directed transfer function and statistical assessment of signifi-
cance,” Biological Cybernetics, vol. 85, no. 2, pp. 145–157, 2001.

[62] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Doyne
Farmer, “Testing for nonlinearity in time series: the method of
surrogate data,” Physica D: Nonlinear Phenomena, vol. 58, no.
1-4, pp. 77–94, 1992.

[63] J. Toppi, F. Babiloni, G. Vecchiato et al., “Testing the asymptotic
statistic for the assessment of the significance of Partial Directed
Coherence connectivity patterns,” in Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC ’11), pp. 5016–5019, 2011.

[64] T. Nichols and S. Hayasaka, “Controlling the familywise error
rate in functional neuroimaging: a comparative review,” Statis-
tical Methods in Medical Research, vol. 12, no. 5, pp. 419–446,
2003.

[65] Y. Benjamini and Y. Hochberg, “Controlling the false discovery
rate: a practical and powerful approach to multiple testing,”
Journal of the Royal Statistical Society B: Methodological, vol. 57,
no. 1, pp. 289–300, 1995.

[66] Y. Benjamini andD.Yekutieli, “The control of the false discovery
rate in multiple testing under dependency,” The Annals of
Statistics, vol. 29, no. 4, pp. 1165–1188, 2001.

[67] J. Toppi, F. De Vico Fallani, G. Vecchiato et al., “How the
statistical validation of functional connectivity patterns can
prevent erroneous definition of small-world properties of a
brain connectivity network,” Computational and Mathematical
Methods inMedicine, vol. 2012, Article ID 130985, 13 pages, 2012.

[68] J. Toppi, M. Petti, F. De Vico Fallani et al., “Describing relevant
indices from the resting state electrophysiological networks,”
in Proceedings of the IEEE Annual International Conference of
the Engineering in Medicine and Biology Society (EMBC ’12), pp.
2547–2550, San Diego, Calif, USA, 2012.

[69] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag,
“Organization, development and function of complex brain
networks,” Trends in Cognitive Sciences, vol. 8, no. 9, pp. 418–
425, 2004.

[70] S. Schmidt and H. Walach, “Electrodermal activity (EDA):
state-of-the-art measurement and techniques for parapsycho-
logical purposes,” Journal of Parapsychology, vol. 64, no. 2, pp.
139–163, 2000.

[71] D. C. Fowles, M. J. Christie, and R. Edelberg, “Publication rec-
ommendations for electrodermal measurements,” Psychophysi-
ology, vol. 18, no. 3, pp. 232–239, 1981.

[72] P. H. Venables, “Autonomic activity,” Annals of the New York
Academy of Sciences, vol. 620, pp. 191–207, 1991.

[73] W. Boucsein, Electrodermal Activity, Plenum Press, New York,
NY, USA, 1992.

[74] G. G. Berntson, J.Thomas Bigger Jr., D. L. Eckberg et al., “Heart
rate variability: origins methods, and interpretive caveats,”
Psychophysiology, vol. 34, no. 6, pp. 623–648, 1997.

[75] M.Mendez, A.M. Bianchi, O. Villantieri, and S. Cerutti, “Time-
varying analysis of the heart rate variability during REM and
non REM sleep stages,” in Proceedings of the IEEE Engineering
in Medicine and Biology Society, vol. 1, pp. 3576–3579, 2006.

[76] S. D. Kreibig, F. H. Wilhelm, W. T. Roth, and J. J. Gross, “Car-
diovascular, electrodermal, and respiratory response patterns
to fear- and sadness-inducing films,” Psychophysiology, vol. 44,
no. 5, pp. 787–806, 2007.

[77] R. J. Davidson and W. Irwin, “The functional neuroanatomy of
emotion and affective style,” Trends in Cognitive Sciences, vol. 3,
no. 1, pp. 11–21, 1999.

[78] R. J. Davidson, “Anxiety and affective style: role of prefrontal
cortex and amygdala,”Biological Psychiatry, vol. 51, no. 1, pp. 68–
80, 2002.

[79] R. J. Davidson, “Affective style, psychopathology, and resilience:
brain mechanisms and plasticity,” The American Psychologist,
vol. 55, no. 11, pp. 1196–1214, 2000.

[80] R. J. Davidson, “What does the prefrontal cortex ffkdoffk
in affect: perspectives on frontal EEG asymmetry research,”
Biological Psychology, vol. 67, no. 1-2, pp. 219–233, 2004.

[81] S. K. Sutton and R. J. Davidson, “Prefrontal brain asymmetry:
a biological substrate of the behavioral approach and inhibition
systems,” Psychological Science, vol. 8, no. 3, pp. 204–210, 1997.

[82] E. Harmon-Jones and J. J. B. Allen, “Anger and frontal brain
activity: EEG asymmetry consistent with approach motivation
despite negative affective valence,” Journal of Personality and
Social Psychology, vol. 74, no. 5, pp. 1310–1316, 1998.

[83] W. Heller, J. I. Schmidtke, J. B. Nitschke, N. S. Koven, and G.
A. Miller, “States, traits, and symptoms: investigating the neural
correlates of emotion, personality, and psycho-pathology,” in
Advances in Personality Science, D. Cervone and W. Mischel,
Eds., pp. 106–126, Guilford Press, New York, NY, USA, 2002.

[84] E. Harmon-Jones, L. Lueck, M. Fearn, and C. Harmon-Jones,
“The effect of personal relevance and approach-related action
expectation on relative left frontal cortical activity,” Psychologi-
cal Science, vol. 17, no. 5, pp. 434–440, 2006.

[85] G. Vecchiato, J. Toppi, L. Astolfi et al., “Spectral EEG frontal
asymmetries correlate with the experienced pleasantness of TV
commercial advertisements,” Medical and Biological Engineer-
ing and Computing, vol. 49, no. 5, pp. 579–583, 2011.

[86] G. Vecchiato, L. Astolfi, F. de Vico Fallani et al., “On the Use of
EEG or MEG brain imaging tools in neuromarketing research,”
Computational Intelligence and Neuroscience, vol. 2011, Article
ID 643489, 12 pages, 2011.

[87] A. B. Usakli, S. Gurkan, F. Aloise, G. Vecchiato, and F. Babiloni,
“A hybrid platform based on EOG and EEG signals to restore
communication for patients afflicted with progressive motor
neuron diseases,” inProceedings of the 35thAnnual International
Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 543–546, 2009.

[88] G. Borghini, G. Vecchiato, J. Toppi et al., “Assessment of mental
fatigue during car driving by using high resolution EEG activity
and neurophysiologic indices,” in Proceeding of the 34th Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBS’12), pp. 6442–6445, SanDiego, Calif,
USA, September 2012.

[89] C. S. Carver, “Self-regulation of action and affect,” in Hand-
book of Self-Regulation: Research, Theory, and Applications,



Computational and Mathematical Methods in Medicine 19

R. F. Baumeister and K. D. Vohs, Eds., pp. 13–39, Guilford Press,
New York, NY, USA, 2004.

[90] J. Haidt and D. Keltner, “Culture and facial expression: open-
ended methods find more expressions and a gradient of recog-
nition,” Cognition and Emotion, vol. 13, no. 3, pp. 225–266, 1999.

[91] K. L. Phan, T. Wager, S. F. Taylor, and I. Liberzon, “Functional
neuroanatomy of emotion: a meta-analysis of emotion activa-
tion studies in PET and fMRI,” NeuroImage, vol. 16, no. 2, pp.
331–348, 2002.

[92] F. C. Murphy, I. Nimmo-Smith, and A. D. Lawrence, “Func-
tional neuroanatomy of emotions: a meta-analysis,” Cognitive,
Affective and Behavioral Neuroscience, vol. 3, no. 3, pp. 207–233,
2003.

[93] A. J. Blood, R. J. Zatorre, P. Bermudez, and A. C. Evans, “Emo-
tional responses to pleasant andunpleasantmusic correlatewith
activity in paralimbic brain regions,” Nature Neuroscience, vol.
2, no. 4, pp. 382–387, 1999.

[94] A. J. Blood and R. J. Zatorre, “Intensely pleasurable responses
to music correlate with activity in brain regions implicated in
reward and emotion,” Proceedings of the National Academy of
Sciences of theUnited States of America, vol. 98, no. 20, pp. 11818–
11823, 2001.

[95] R. Sprengelmeyer, M. Rausch, U. T. Eysel, and H. Przuntek,
“Neural structures associated with recognition of facial expres-
sions of basic emotions,” Proceedings of the Royal Society B:
Biological Sciences, vol. 265, no. 1409, pp. 1927–1931, 1998.

[96] R. Sprengelmeyer, A. P. Atkinson, A. Sprengelmeyer et al., “Dis-
gust and fear recognition in paraneoplastic limbic encephalitis,”
Cortex, vol. 46, no. 5, pp. 650–657, 2010.

[97] R. J. Dolan, P. Fletcher, J. Morris, N. Kapur, J. F. W. Deakin,
and C. D. Frith, “Neural activation during covert processing of
positive emotional facial expressions,”NeuroImage, vol. 4, no. 3,
part 1, pp. 194–200, 1996.

[98] J. S. Winston, B. A. Strange, J. O’Doherty, and R. J. Dolan,
“Automatic and intentional brain responses during evaluation
of trustworthiness of faces,” Nature Neuroscience, vol. 5, no. 3,
pp. 277–283, 2002.

[99] C. Lithari, C. A. Frantzidis, C. Papadelis et al., “Are femalesmore
responsive to emotional stimuli? A neurophysiological study
across arousal and valence dimensions,” Brain Topography, vol.
23, no. 1, pp. 27–40, 2010.

[100] N. Prause, C. Staley, and V. Roberts, “Frontal alpha asymmetry
and sexually motivated states,” Psychophysiology, vol. 51, no. 3,
pp. 226–235, 2014.

[101] Z. Zhang and Z. Deng, “Gender, facial attractiveness, and
early and late event-related potential components,” Journal of
Integrative Neuroscience, vol. 11, no. 4, pp. 477–487, 2012.

[102] Y. Groen, A. A. Wijers, O. Tucha, and M. Althaus, “Are there
sex differences in ERPs related to processing empathy-evoking
pictures?” Neuropsychologia, vol. 51, no. 1, pp. 142–155, 2013.

[103] G. Galli, N.Wolpe, and L. J. Otten, “Sex differences in the use of
anticipatory brain activity to encode emotional events,” Journal
of Neuroscience, vol. 31, no. 34, pp. 12364–12370, 2011.

[104] H. D. Critchley, “Neural mechanisms of autonomic, affective,
and cognitive integration,” Journal of Comparative Neurology,
vol. 493, no. 1, pp. 154–166, 2005.

[105] C. Babiloni, F. Babiloni, F. Carducci et al., “Mapping of early and
late human somatosensory evoked brain potentials to phasic
galvanic painful stimulation,” Human Brain Mapping, vol. 12,
no. 3, pp. 168–179, 2001.

[106] C. Babiloni, F. Babiloni, F. Carducci et al., “Human brain oscil-
latory activity phase-locked to painful electrical stimulations: a
multi-channel EEG study,” Human Brain Mapping, vol. 15, no.
2, pp. 112–123, 2002.

[107] C. Babiloni, F. Babiloni, F. Carducci et al., “Human cortical
EEG rhythms during long-term episodic memory task. A high-
resolution EEG study of the HERAmodel,”NeuroImage, vol. 21,
no. 4, pp. 1576–1584, 2004.

[108] G. Borghini, L. Astolfi, G. Vecchiato, D. Mattia, and F. Babiloni,
“Measuring neurophysiological signals in aircraft pilots and
car drivers for the assessment of mental workload, fatigue and
drowsiness,” Neuroscience and Biobehavioral Reviews, vol. 44,
pp. 58–75, 2014.

[109] F. Cincotti, D. Mattia, F. Aloise et al., “High-resolution EEG
techniques for brain-computer interface applications,” Journal
of Neuroscience Methods, vol. 167, no. 1, pp. 31–42, 2008.

[110] A. B. Usakli, S. Gurkan, F. Aloise, G. Vecchiato, and F. Babiloni,
“On the use of electrooculogram for efficient human computer
interfaces,” Computational Intelligence and Neuroscience, vol.
2010, Article ID 135629, 5 pages, 2010.

[111] M. Zavaglia, L. Astolfi, F. Babiloni, and M. Ursino, “A neural
mass model for the simulation of cortical activity estimated
from high resolution EEG during cognitive or motor tasks,”
Journal of Neuroscience Methods, vol. 157, no. 2, pp. 317–329,
2006.

[112] J. del R. Millan, J. Mourino, F. Babiloni, F. Cincotti, M.
Varsta, and J. Heikkonen, “Local neural classifier for EEG-
based recognition of mental tasks,” in Proceedings of the IEEE-
INNS-ENNS International Joint Conference on Neural Networks
(IJCNN ’00), pp. 632–636, July 2000.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


