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Abstract The close passage of Comet C/2013 A1 (Siding Spring) to Mars provided a unique opportunity to
observe the interaction of cometary materials with the Martian ionosphere and atmosphere using the sounding
radar SHARAD (SHAllow RADar) aboard Mars Reconnaissance Orbiter. In two nightside observations, acquired in
the 10 h following the closest approach, the SHARAD data reveal a significant increase of the total electron
content (TEC). The observed TEC values are typical for daylight hours just after dawn or before sunset but are
unprecedented this deep into the night. Results support two predictions indicating that cometary pickup O*
ions, or ions generated from the ablation of cometary dust, are responsible for the creation of an additional
ion layer.

1. Introduction

The Oort-cloud Comet Siding Spring C/2013 A1 (CSS) was discovered on 3 January 2013 at Siding Spring
Observatory and made its close encounter with Mars on 19 October 2014. The closest approach distance
was around 139,500 km, less than a third of the Earth-Moon distance. Images taken by the High Resolution
Imaging Science Experiment camera on NASA’s Mars Reconnaissance Orbiter showed that the comet’s
nucleus was between 400 and 700 m in diameter. Regarded as icy small solar system bodies, comets heat
up and outgas when passing close to the Sun. The volatile materials within the comet sublimate and
stream out of the nucleus, carrying dust away. The cometary coma, composed of dust and gas, was
expected to impinge upon the upper atmosphere of Mars for about 1h [Yelle et al., 2014; Tricarico et al.,
2014; Kelley et al., 2014], providing a unique opportunity to infer the physical consequences of the passage
of a planet through a cometary coma. Preliminary investigations predicted considerable variations in the
atmospheric constituents [Yelle et al., 2014] and the temporary formation of a new ion layer [Gronoff et al.,
2014; Withers, 2014]. According to Gronoff et al. [2014], the cometary pickup O" ion precipitation was
expected to be a significant nightside ionization source, originating from photo-dissociated H,O molecules
from the comet. The ablation of interplanetary dust in a planetary upper atmosphere introduces metal
species into the atmosphere [Withers, 2014; Grebowsky et al., 2002]. Withers [2014] provided a relationship
between properties of the dust population of the cometary coma and density of metal species in the
atmosphere and ionosphere of Mars. The study focused on Mg, as it is abundant, readily ionized, and
otherwise absent from the Martian upper atmosphere [Pesnell and Grebowsky, 2000]. Dust particles will
ablate entering the atmosphere at orbital speeds. The Mg* ion is generated from impact ionization.
Withers [2014] neglected ions produced from Mg atoms by photoionization or charge exchange and
assumed the impact ionization to be the dominant ionization source for high-speed meteors like Comet
Siding Spring. Withers [2014] predicted a subsequent increase of the density of metal ions of more than an
order of magnitude. Such an event should lead to a drastic change in the structure of the lower
ionosphere, and the Mg lifetime was predicted to be hours to days. The comet activity, modeled as a flux
of mass and energy, and the solar activity at the time of the encounter were indicated as key factors in all
these predictions [Yelle et al., 2014; Gronoff et al., 2014; Withers, 2014]. Among the instruments operating in
Mars orbit, the Shallow Radar (SHARAD) and the Mars Advanced Radar for Subsurface and lonospheric
Sounding (MARSIS) provide information regarding the Martian ionosphere. Instruments on board the Mars
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Figure 1. Map showing the planned observations for latitudes between 70°N and 70°S. The red color shows observations
acquired in the first 12 h after the closest approach time; the green color shows those acquired from 12 to 0 h before
the closest approach time; and the yellow color shows those acquired from 12 to 24 h after the closest approach time.
Other observations are reported in white. The red-colored observations are identified with both the orbit (3858X) and the
observation number (_0X). The region in blue represents the area predicted to be most influenced by the cometary material
[Tricarico et al. 2014]. The white square encloses the nighttime observation 38583_01 acquired on Solis Planum roughly 2.5 h
after the comet’s passage. The influence of the comet is clearly visible in (b) the second radargram, which appears blurry
because of the increase of the TEC when compared to (a) a nighttime observation acquired 1 year previously unaffected by
ionospheric distortion. (Map credit: Mars Orbiter Laser Altimeter Science Team.)

Atmosphere and Volatile Evolution (MAVEN) spacecraft return information on the pickup ion densities
and speeds, atmospheric neutrals and ions, and UV emission profiles. This paper focuses on SHARAD
observations during Comet Siding Spring’s passage.

2. The Shallow Radar

The Shallow Radar (SHARAD) is a subsurface sounding radar [Croci et al., 2011; Seu et al., 2007] provided
by the Italian Space Agency for the NASA Mars Reconnaissance Orbiter mission. Principal objectives
include the detection of liquid and solid water below the surface and the mapping of subsurface geologic
structures. The spacecraft’s orbit is nearly circular with an altitude between 255km and 320 km. Thirteen
orbits per day are performed. SHARAD operates in the high frequency band between 15 and 25 MHz, with
a 10 MHz bandwidth that yields a free-space range resolution of 15m. For each measurement, SHARAD
transmits a short (85 ps) pulse within which the frequency sweeps from 15MHz to 25 MHz. The pulse
repetition interval is 1428 ps. Typical observations last from 60s up to about 700s. For a typical onboard
pulse presumming of 4, ~10,000 to ~122,000 individual echoes are obtained. The transmitted radio wave
leads to a significant penetration depth in low-conductivity materials such as dry soil and ice due to its
long wavelength (15 m). After the initial encounter with the surface, the transmitted energy is partially
reflected back to the receiver and partially transmitted into the subsurface. The largest reflection typically
occurs at the Martian surface [Seu et al.,, 2004], while other interfaces, such as layered ice deposits in the
subsurface, produce smaller reflections related to contrasts in the electrical properties, as well as
attenuation of the signal (path loss). SHARAD data [Seu et al., 2004] reveal subsurface structures with a
great amount of detail when radio wave propagation is facilitated by the medium (e.g., low dielectric and
magnetic losses). The along-track resolution after on-ground synthetic aperture radar (SAR) processing
ranges from 300 m to 1000 m. Images showing the surface and subsurface profiles along the orbit track
are known as radargrams (Figure 1a).

The ionosphere [Safaeinili et al., 2003] induces attenuation and distortion in the propagating signals due to its
complex refractive index. The attenuation is due to the electron collisions with the neutrals and ions, and the
signal distortion is due to the frequency dependence of the refractive index. The plasma frequency is related
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to the electron density N.(2) (m ) by f,(z) = 8.98 1/N,(z), whereas the complex refractive index is equal to

7?=1- fz‘f]zf)‘/ where v is the collision frequency and z is the height. The induced distortion causes an overall
delay and a frequency-dependent phase dispersion given by Ap(f) = —“Ciof Z)real(;y — 1) dz, where fis the

signal frequency and z, and z; are the lower and upper limits of the ionosphere where the signal
propagates. The dispersion leads to a blurred radar image (Figure 1b).

The magnitude of dispersion depends on the ionized particle density, mostly electrons, integrated over
the propagation path. The density is related to the total electron content TEC =[N.(2)dz. The TEC is a
basic characterization of the ionosphere, giving the total number of electrons in a 1 m square column
between the spacecraft and the surface of Mars. The TEC can be estimated by applying frequency- and
TEC-dependent correction factors during ground data processing. When properly corrected [Campbell
et al, 2014; Safaeinili et al, 2007], the radargram is sharply focused at the expected time delay.
Attenuation of the signal due to the ionosphere increases as the frequency decreases, but SHARAD
operates well above the plasma frequency and total attenuation is relatively low. SHARAD is not
capable of revealing the height of ion layers as the transmitted frequencies are significantly higher
than the plasma frequency, which typically varies from 800 kHz (deep night) to around 2.8 MHz (noon).
MARSIS, whose range of frequencies is between 0.1 MHz and 5.5 MHz, can provide this information as
its signal is reflected when the electron plasma frequency is equal to the transmitted frequency [Picardi
et al., 2004].

3. The Planning of the Observations

In our investigation, the SHARAD was not used for sounding the subsurface, but instead, it focused on the
search, using the dispersion and delay of the surface radar echo, for anomalies in the TEC due to
interactions between the cometary materials and the Martian atmosphere. Because the nominal
ionosphere electron density is primarily dependent upon solar irradiation, described in terms of solar
zenith angle (SZA), a crucial point of the analysis was the planning of observations at desirable SZAs while
also considering that other instruments on board the orbiter were involved in the study of the comet’s
passage. The first step was to consider the area most influenced by the cometary debris. This region was
identified by Tricarico et al. [2014] and is reported in blue in Figure 1 along with a plot of the planned
observations. Temporal variations of the ionospheric electron density due to the comet’s passing were
anticipated; Yelle et al. [2014] predicted that the variation of hydrogen in the atmosphere could persist for
tens of hours; Withers [2014] predicted that enhanced metal ion densities could persist for hours to days;
and Gronoff et al. [2014] indicated the temporary creation of an extra ionospheric layer at 110 km altitude.
For this reason, we planned the observations over a time window starting 2days before the closest
approach (19 October 2014) and finishing 2days after. This approach was taken both to follow the
possible temporal variations of the ionospheric electron density and to create different groups of
observations at a variety of SZA values, which facilitated subsequent comparisons between observations
collected with and without the comet’s presence. As long as the radar receives a surface echo with a
sufficient signal-to-noise level, models can be used to compensate distortions and estimate ionospheric
parameters. A set of 127 observations was planned and executed, avoiding regions of strong crustal
magnetic fields or severe surface roughness that could hamper or bias the results. In particular, 13
observations were collected during four orbits in the 12 h following the closest approach which occurred
on 19 October 2014 at 18:28 UTC. Observations collected at latitudes between 70°N and 70°S are shown in
red in Figure 1. Additional observations were made in the polar regions. The first observation following
closest approach, 38583_01, was acquired on 19 October 2014 at 21:05 UTC and had a duration of 300s.
The second orbit, 38584, started at 23:28 UTC and included four 60s observations and one 180s
observation (38584 _04). The third orbit, 38586, started on 20 October 2014 at 03:13 UTC and included four
60 s observations and two 180 s observations (38586_04 and _06). The fourth orbit, 38588, started at 07:00
UTC and included a single 60s observation (38588_01). The majority of the observations belong to three
groups having SZA around 80° 93°, and 120°, respectively. The long time window combined with these
groups of observations permits analysis of the temporal extent of cometary influence on the Martian
atmosphere and ionosphere.
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4, Results

Enhancements over the typical total electron content were found in two nighttime observations acquired in
the 12 h following the comet’s passage, during two different orbits. The closest approach point was reached
by the comet on 19 October 2014 at 18:28 UTC. SHARAD began post-CSS observations around 1 h after the
expected peak of cometary dust reaching Mars [Tricarico et al, 2014]. The duration of the influence of
cometary dust was predicted to be hours to days [Withers, 2014]. The first observation, 38583_01, was
acquired at 21:05 UTC over the smooth volcanic plains of Solis Planum. The average SZA was 113°, deep
into the night, and the location of the observation is near the center of the hemisphere of Mars predicted
to receive maximum dust flux (shaded region in Figure 1). The resulting radargram, when processed with
normal parameters for nightside observations (i.e, no correction of phase distortion), shows a smeared
surface echo indicative of dispersion of the radar pulse by the ionosphere (Figure 1b). This is a highly
unusual occurrence for nightside SHARAD passage. A nightside pass over the same track taken a year
earlier with an average SZA of 140° shows no such dispersion (Figure 1a). Similarly, all the planned
nightside passes (SZA~110°-120°) of the comet observation campaign that were acquired before the
comet’s passage have no such signature. In fact, such an effect has never been observed in hundreds of
previous nightside SHARAD observations. A second nighttime observation, 38586_05, showing a similar
feature, was collected on 20 October 2014 at 03:54 UTC near the North Pole. No other SHARAD CSS
observations reveal unusual ionospheric behavior. TEC enhancements were found in two regions in the
area indicated by Tricarico et al. [2014], suggesting that a persistent layer was present during the 10h
following the closest approach.

As the number of electrons per unit volume [Kelly, 2012] should be approximately equal to the number of
positive ions of all types N, ;ZN,—*, SHARAD measurements agree with predictions made by Withers

ions

[2014] and by Gronoff et al. [2014]. Withers [2014] related the ablation of cometary dust particles both to a
temporary increase of the density of metal ions (Mg*) and to a drastic change in the structure of the lower
ionosphere. Gronoff et al. [2014] indicated the temporary creation of an extra ionospheric layer and
suggested a close monitoring of the electron density at 110 km. According to Gronoff et al. [2014], the
cometary pickup O" ion precipitation was expected to be a significant nightside ionization source,
originating from photo-dissociated H,O molecules from the comet. SHARAD is not capable of detecting
either the height of the temporary ion layer or the ion species; however, MARSIS and instruments onboard
MAVEN were able to provide additional information. MARSIS detected an enhanced region of ionization at
the North Pole near 100 km altitude about 2.5 h before the SHARAD observation 38586_05 [Gurnett et al.,
2015]. Measurements made from ~10 h to 2.5 days after the passage of CSS by the Neutral Gas and lon
Mass Spectrometer onboard MAVEN revealed at least 12 species of positive metal ions [Benna et al., 2015].
MAVEN's Imaging Ultraviolet Spectrograph observed ultraviolet emission from Mg* and Fe* ions in the
Martian atmosphere for several hours after the closest approach [Schneider et al., 2015].

Three independent approaches were used to calculate the TEC values from SHARAD observations affected by
the comet. The approach adopted by the Italian team of the Dipartimento di Ingegneria dell'Informazione,
Elettronica e Telecomunicazioni (DIET) of Sapienza University of Rome corrected the ionosphere distortion
on individual echoes without applying SAR processing (see Text S1 in the supporting information). This
correction scheme is described in Restano et al. [2014] and supposes an ionosphere layer having a constant
plasma frequency value that is estimated, along with the additional time delay, by maximizing the amplitude
of the range-compressed SHARAD surface echo. The TEC value is calculated from the ionospheric time delay
as indicated in Garner et al. [2008].

Similarly, the TEC is routinely estimated as part of the processing of U.S. SHARAD team products delivered to
the Planetary Data System. This processing (see Text S2 in the supporting information) uses an autofocusing
approach to maximize the sharpness of surface echoes in data blocks that are typically 10-20s long (35 to
70km along track). The phase distortion parameter in this model, initially derived from empirical analyses
[Campbell et al., 2011], has been found to correlate well with the ionosphere-induced round-trip time delay
of the radar echoes [Campbell et al., 2014] and thus with the TEC. Comparison of the surface location at
cross-over points from hundreds of focused radargrams, collected under different ionospheric conditions,
shows that these TEC estimates are very robust.
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Figure 2. (a) Total electron content (TEC) as a function of SZA
derived from thousands of observations by MARSIS [Cartacci et al.,
2013]. Nightside is SZA > 90; dayside is SZA < 90. The red triangles
show SHARAD values from observations affected by Comet Siding
Spring. The mean value of the TEC estimates produced by the three
approaches is shown (see Texts S1-53 in the supporting information)
and is plotted at the mean SZA value of each observation. The cyan
triangles show SHARAD values from observations not affected by
Comet Siding Spring (see Text S1 in the supporting information).
Such values are in good agreement with MARSIS TEC estimates over
the 2006-2010 period [Cartacci et al., 2013]. (b) TEC enhancement
for the first observation of interest (38583_01), showing significant
spatial variation. (c) TEC enhancement for the second observation of
interest (38586_05).

In the approach adopted by the Jet
Propulsion Laboratory to estimate the
TEC (see Text S3 in the supporting
information), the total electron density
was scanned and the strength of surface
returns monitored. The maximum surface
return is expected when a correct electron
density is used. Pulse-by-pulse optimization
shows the statistical variation of the
total electron density. Moreover, radargrams
were also generated and compared using
different electron density parameters.
Unlike the pulse-by-pulse comparison,
a constant total electron density for
all the pulses for each radargram has
been applied. Both methods are in good
agreement.

Results obtained by the three approaches
are consistent (see Texts S1-S3 in the
supporting information). The mean value
of the TEC estimates produced by the three
approaches is shown for each observation
in Figure 2 along with typical TEC values
estimated by MARSIS for different SZA
values [Cartacci et al., 2013]. For a single
observation, the mean TEC value is
determined by averaging the TEC values
retrieved either from each individual
echo composing the observation (see
Text S1 in the supporting information)
or from a block of echoes (see Texts S2
and S3 in the supporting information).
The three approaches differ in the way
they process the individual echoes. The
mean values shown in Figure 2 can be
compared to typical TEC values, as the
TEC values are typically constant both for
SZA >110° (nighttime) and for observations
of short duration. To illustrate the spatial
variation during single observations,
the TEC enhancement along the two
observations of interest is shown in
Figures 2b and 2c. No significant variation
in the SHARAD signal attenuation has
been revealed, although such changes are
relatively modest in any case [Campbell
et al, 2014]. The first observation of

interest, 38583_01, lasted 300s and consisted of 52173 individual echoes. The measured ionosphere in
terms of total electron content is 5 to 10 times, which is measured at these times of night during
previous SHARAD observations (see Texts S1-S3 in the supporting information). The estimated TEC
(Figure 2b) increases to a maximum TEC of ~3e15 m~2 as the SZA decreases from 117° to 114°, then is
observed to decline abruptly as the track ends its coverage near a SZA of about 109° (see Text S2 in the

supporting information).
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For the comet observation during SHARAD
track 38586_05, it is possible to compare
the calculated TEC and associated delay
correction with those applied to a previous
dayside track 8001_01 near their cross-over
point at 72.75°N, 344.27°E (Figure 3). The
close correspondence of the surface
delay position at the intersection of these
radargrams validates our estimate of the
TEC during the comet’s close approach
to Mars. This observation shows a 1.6 to
2 times TEC enhancement with respect
to typical SHARAD observations having
a similar SZA (see Texts S1-S3 in the
supporting information). The estimated
TEC is quite stable along the observation
(Figure 2c), which is composed of 10,070
individual echoes and lasts only 60s.
The observed TEC values are typical for daylight hours just after dawn or before sunset but are
unprecedented for the nightside SZAs of these post-CSS observations (Figure 2a).

Intersection Near
72.75 N, 34427 E

Figure 3. Close correspondence of the surface delay position
between observation 38586_05 and observation 8001_01. This com-
parison validates the estimate of the TEC during the comet’s close
approach to Mars.

5. Conclusions

The SHARAD was successfully operated during the passage of Comet C/2013 A1 (Siding Spring) at Mars. The
use of SHARAD was motivated by studies indicating the possible production of a temporary ion layer created
by the interaction between cometary materials and the upper atmosphere of Mars. An extensive set of
observations was planned and executed to detect possible temporal variations of the ionospheric electron
density. Results indicate that the nightside developed a highly anomalous ionized layer that was observed
twice in the 10h following the comet’s closest approach. The two observations of interest belong to
different orbits separated by a time span of 7h and were collected south of the equator and near the
north pole, respectively. The TEC enhancement is time varying in the first observation of interest where
significant variability in the TEC was observed over a short distance and small interval of SZA. In
the second observation of interest, much shorter in duration, the TEC enhancement is relatively stable. The
nightside TEC enhancements have never been observed in hundreds of previous radar observations. The
obtained results support both predictions and investigations performed by MARSIS, NGIMS and IUVS
during Comet Siding Spring’s passage.
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