
 

Sustainability 2015, 7, 9664-9680; doi:10.3390/su7079664 
 

sustainability 
ISSN 2071-1050 

www.mdpi.com/journal/sustainability 

Article 

Energy Optimization of Road Tunnel Lighting Systems 

Ferdinando Salata 1,*, Iacopo Golasi 1, Simone Bovenzi 1, Emanuele de Lieto Vollaro 2, 

Francesca Pagliaro 1, Lucia Cellucci 1, Massimo Coppi 1, Franco Gugliermetti 1 and  

Andrea de Lieto Vollaro 1 

1 DIAEE—Area Fisica Tecnica, Università degli Studi di Roma “Sapienza”, Via Eudossiana, 18, 

00184 Rome, Italy; E-Mails: iacopo.golasi@uniroma1.it (I.G.); 

bovenzi.1382310@studenti.uniroma1.it (S.B.); francesca.pagliaro@uniroma1.it (F.P.); 

lucia.cellucci@uniroma1.it (L.C.); massimo.coppi@uniroma1.it (M.C.); 

franco.gugliermetti@uniroma1.it (F.G.); andrea.delietovollaro@uniroma1.it (A.L.V.) 
2 DIMI—Università degli Studi “Roma TRE”, Via Vito Volterra, 62, 00146 Rome, Italy;  

E-Mail: emanuele.delietovollaro@uniroma3.it 

* Author to whom correspondence should be addressed; E-Mail: ferdinando.salata@uniroma1.it;  

Tel.: +39-06-4458-5661; Fax: +39-06-4880-120. 

Academic Editors: Francesco Asdrubali and Pietro Buzzini 

Received: 28 May 2015 / Accepted: 14 July 2015 / Published: 17 July 2015 

 

Abstract: A road tunnel is an enclosed and covered infrastructure for the vehicular traffic. 

Its lighting system provides 24 h of artificial sources only, with a higher amount of electric 

power used during the day. Due to safety reasons, when there is natural lighting outside the 

tunnel, the lighting levels in the stretches right after the entrance and before the exit must 

be high, in order to guide the driver’s eye towards the middle of the tunnel where the 

luminance must guarantee safe driving, avoid any over-dimensioning of the lighting 

systems, and produce energy savings. Such effects can be reached not only through the 

technological advances in the field of artificial lighting sources with high luminous 

efficiency, but also through new materials for road paving characterized by a higher 

reflection coefficient than other ordinary asphalts. This case study examines different 

technical scenarios, analyzing and comparing possible energy and economic savings. 

Traditional solutions are thus compared with scenarios suggesting the solutions previously 

mentioned. Special asphalts are interesting from an economic point of view, whereas the 

high costs of LED sources nowadays represent an obstacle for their implementation. 
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1. Introduction 

Lighting systems are designed to ensure that the vehicular traffic traverses the road tunnel in the 

most comfortable and safe way possible, aspiring to have the same conditions that characterize the 

zones preceding and following the tunnel. This case study focuses on the so-called long tunnels; such 

name derives from the fact that they present a length, between the entrance and exit zones, which is 

higher than 125 m [1]. 

During the entire day, the interior zone of the tunnel must have a minimum amount of lighting [2,3] to 

allow safe driving without overloading energy consumption and management costs. Lighting a tunnel 

becomes even more onerous when there is high luminance outside the structure. For this reason, the 

tunnel lighting system consumes more electric power by day, especially during the summer months, 

with the longest time intervals between dawn and dusk determining higher luminance levels outside 

the structure due to an apparent higher sun position and clearer skies. 

In accordance with the current regulations [4–6], to avoid a decrease of the drivers’ visual 

perception while passing from the outside (highly illuminated due to solar radiation) through to the 

inside of the tunnel with a different lighting level, it is necessary to realize a particularly illuminated 

zone in the tunnel (threshold zone + transition zone, complying with CIE 88 [2]) which introduces the 

drivers to the new conditions of visual perception they will find inside the tunnel. 

The length of such zone (threshold zone and transition zone) must ensure the driver an amount of 

time to adapt their eyes to the different luminance levels they find outside (high luminance levels) and 

inside (low luminance levels) the tunnel in a way that possible obstacles can be detected. The length 

will be directly proportional to the luminance value of the entrance zone. In these zones, the eye of the 

driver must adapt while passing from photopic to mesopic or scotopic conditions; this time interval is 

very long in humans. This fact requires high lighting levels in this section of the tunnel. Moreover, 

those drivers who are approaching, from the outside, the tunnel entrance characterized by a low 

lighting level, are affected by the so called “black hole effect”.  That is, they perceive the first section 

of the tunnel as a very dark zone as soon as they enter and they are not able to identify possible 

obstacles on the road in the first zone of the tunnel. 

The final stretch, immediately before the exit, is characterized by contrasting requirements: the 

intensity of the artificial lighting must be progressive to guarantee the eye to adapt to the high levels of 

the outside luminance. While trying to find a solution to this kind of problem, some researches exploit 

solar energy to light the beginning and end of the tunnel [7]. Conversely, some other studies [8,9] 

suggest the implementation of solar energy to light the beginning and end of the tunnel [7], while other 

studies [8,9] suggest the exertion of pergols and diffusers materials in the zones preceding and 

following the tunnel. 

Standards require a luminance level (expressed in cd/m2) of a few units in the interior zone of 

tunnels, while in the threshold, transition, and exit zones it can reach values of 102 cd/m2. To comply 
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with the required lighting demand (both at the beginning and end of the tunnel) with artificial lighting 

systems, it is necessary to use a significant amount of electric power. This implies that the lighting 

system must be formed by a high number of light sources, presenting high costs due to the construction 

of the structure and energy management of the road tunnel [10]. 

For the optimization of the financial management of a road tunnel, it is necessary to invest in new 

technologies that guarantee an economic return during the lifetime of the systems. Those technologies, 

examined here, are not prototypes or at an embryonic stage, but are developed technologies already on 

the market. Two different strategies can be assumed. The most obvious one is to execute a direct 

intervention on lighting systems, substituting (where possible) the lamps now used (high pressure 

sodium lamps) with the latest highly efficient light sources such as LED lamps with an extended 

service life (in this way the light source needs to be changed less frequently than traditional artificial 

light sources and ordinary maintenance costs will decrease) [11,12]. Indeed, they permit savings in 

terms of electricity and maintenance, with respect to other light sources. Conversely, another solution 

concerns the road surface, with the idea being to replace the asphalt commonly used with a type of 

special asphalt (already on the market, but with low amounts of production). Even though this asphalt 

is more expensive, it is characterized by higher reflection coefficients of the visible radiation; this 

feature ensures the same lighting results on the usable surfaces while using systems with a lower 

luminous flux and, therefore, consuming less electric power. 

2. The Case Study 

The “Genzano” tunnel, on the A24 highway right in the middle of the Italian peninsula, is the object 

of this study to analyze how choosing the lighting devices and a certain type of asphalt affect the 

financial management of the tunnel. In particular, it was taken into consideration the entrance of the 

tunnel from Rome directed to L’Aquila. The tunnel (Figure 1) is a double-arch, lacking any 

longitudinal slope, whose length is of 1.5 km. 

 

Figure 1. Entrance to the tunnel. 
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It is characterized by a medium-high traffic flow [13] and the maximum speed limit, for the 

vehicles, is 130 km/h. Standards [5], for this type of road, in case of need, require a maximum stopping 

distance of 163 m. Solar radiation outside the tunnel depends on its geographical position and the 

geographical coordinates of the site are: 42°20′38.45N for the latitude and 13°19′06.74E for the 

longitude. Those regulations concerning the atmospheric luminance, hence the section of the sky that 

the driver sees when he is about to enter the gallery (thanks to the polar Diagram developed by  

Adrian (Figure 2) [14,15]), according to the maximum estimated speed of the vehicle, the typology of 

the artificial lighting system currently used, and the luminance of the vehicle dashboard and 

windshield, allows one to make an estimation of the debilitating luminance affecting the visual 

perception while producing glare phenomena. 

 

Figure 2. Adrian diagram applied to the tunnel entrance. 

In such circumstances the human eye cannot see an obstacle correctly on the highway, thus 

endangering the road safety. A well-planned lighting system must properly strengthen the artificial 

lighting in the tunnel entrance to avoid dangerous situations, whatever the solar luminance level 

outside the tunnel. At first, this luminance must diminish progressively during the stretch that follows, 

that is the threshold and transition zone, and then balance with the lighting required in the interior zone 

of the tunnel. 

By applying the principles of the regulations to this case study (a tunnel with a length of 1.5 km) in 

the daytime, the minimum luminance estimated by the plan in the entrance (whose length is about 165 m) 

is 148 cd/m2; it must diminish progressively in the threshold and transition zone (whose total length is 

about 515 m) until reaching a value of 3 cd/m2 in the interior zone (whose length is about 675 m), then 

increase again in the exit zone (whose length is about 145 m), reaching a value of 15 cd/m2  

(Figure 3). 

During the night, all of the problems related to the daylight and the adaptation of the drivers’ eye to 

the different levels of exterior luminance and its solar radiation disappear. For this reason the 

luminance in the tunnel must decrease until reaching 1 cd/m2. This is important to save energy and 

avoid the opposite problem: the driver passes from the dark of the outside to the artificial light of the 

tunnel and, while entering, he must not be dazzled by a light which is too strong [16,17]. In order to 

modulate both diurnal and nocturnal luminance values, the system must have sources with an 

uninterrupted service able to guarantee permanent lighting and sources able to reinforce the lighting 

used by day only. 
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In accordance with the lighting standards imposed by the regulations, thanks to the Dialux light 

planning software, four different planning scenes were examined. Table 1 shows their characteristics. 

For each case the number of light sources necessary to guarantee the proper luminance levels in every 

stretch of the gallery was determined (Figure 3). 

 

Figure 3. Luminances based on the plan and lengths of the tunnel zones that must be 

lighted in different ways (a: access zone; b: threshold zone; c: transition zone; d: interior 

zone; e: exit zone; f: parting zone [2]). 

Table 1. Scenes examined. 

 
Lighting System Asphalt Type 

HPS HPS + LED Traditional Special 

Case 1 X  X  
Case 2  X X  
Case 3 X   X 
Case 4  X  X 

Case 1 presents a more traditional configuration: it suggests the implementation of a lighting system 

with high-pressure sodium (HPS) lamps only. This type of technology is the one with the highest 

number of installations in road tunnel lighting systems similar to the one examined here. The case 

study is characterized by a symmetrical geometric lighting device; that means it presents an equal 

emission in both directions (the one in which the driver is traveling and the opposite one). In this way, 

if the tunnel manager, due to accidental reasons, decides to reverse the vehicle traffic, the lighting 

system is always adequate. The road paving examined here is a traditional asphalt formed by a 

bituminous mix with a reflection coefficient of the luminous radiation of 7%. 
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Case 2 is different from Case 1 due to the substitution, where possible, of HPS lamps with LED 

lights. This kind of light source can be used especially in the interior zone where low levels of lighting 

are required. The strong luminous flux, for the light reinforcement (in particular in the entrance zone 

and in the final stretch before the exit zone), prevents a total substitution of HPS lights with LED 

lamps. LED lamps, nowadays, still present specific luminous fluxes which are not strong enough. This 

is the reason why the light must be reinforced in those zones with both HPS and LED lamps. HPS 

lamps provide light in the daytime and will be off during the night (since, by night, the level of 

required lighting is lower) and substituted by LED lamps. The implementation of LED sources wants 

to result in a significant financial saving, regardless of their luminous efficiency (right now the world 

of technology reports that LED lamps have luminous efficiency values which are close to those 

characterizing HPS lamps), but rather result in maintenance savings due to their substitution. These 

solid-state lighting sources have a longer service life than HPS lamps. Table 2 shows the main 

technical features of both sources used. The difference between the power supply of lamps and a  

grid-connected power system, vital for the right functioning of the whole lighting device, is provoked 

by the consumption of the electronic supply. LED lamps are characterized by a light source 

incorporated on the printed circuit board supplying them and this does not allow the substitution of the 

transmitting element only. In case of damage the whole electronic device must be substituted. 

Table 2. Lighting properties of the light sources used. 

Type 
Luminous Flux Power Connected Power Service Life Cost (€) 

(lm) (W) (W) (h) Device Lamp 

HPS (1) 28,600 1 × 400 470.6 5000 ÷ 12,000 361.1 41.2 

HPS (2) 51,000 2 × 400 880.0 5000 ÷ 12,000 485.0 41.2 

LED 21,000 90 188.0 50,000 ÷ 90,000 723.8 - 

Case 3 is different from Case 1 because of the exertion of a special asphalt with a high reflection 

coefficient. Particular attention was paid to the technical features of Kromatis road surfaces formed by 

a special binder made of hydrocarbon resin with low asphaltene content. It is characterized by a yellow 

light color. In order to have this type of color, this special asphalt can present (with a maximum of 2%) 

the following pigments: (i) iron oxide; (ii) chrome oxide; (iii) yellow 3R; (iv) blue 100. The average 

reflection coefficient, in the range of visible radiations, is of 15%. This asphalt, tested through the 

method ASTM D1500 [18] (which allows to determine the color of the petroleum products according 

to a standardized scale) and lighted by an artificial light source with a color temperature of 2750 K, has 

an index ≤7. According to such regulations the corresponding chromaticity coordinates are those 

reported in Table 3. 

Table 3. ASTM D1500-03: color scale for petroleum products. 

ASTM Color 

Chromaticity Coordinates * 

(RGB USC System) [19] 

Luminous Transmittance 

(CIE Standard Source C)  

TW Red Green Blue 

7.0 0.877 0.123 0.000 0.016 ± 0.004 

* Tolerances on the chromaticity coordinates are ±0.006. 
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Different from traditional asphalts, its production is more complex and expensive; hence, it results 

in higher production costs. Lighting performances being the same, its use can reduce the power 

required by the lighting systems, thus decreasing installation and energy costs caused by electric 

consumption. Moreover, this type of asphalt helps drivers to see possible obstacles on the road more easily. 

Case 4 combines a lighting system formed by HPS and LED lamps with a road surface 

characterized by a special asphalt. The result is a high investment in new technologies, but the 

solutions suggested should lead to a lower number of lamps and a decrease in management costs. 

Case 1 will be taken as a point of reference to compare the other scenes and evaluate their  

good qualities. 

In order to compare all scenes they must guarantee equal lighting performances. The regulations 

suggest higher luminance values (about 20%) than the minimum values recommended without causing 

a waste of electric power. 

3. Lighting Results 

The lighting planning was performed with Dialux Evo [20] software by reproducing the examined 

tunnel in 3D and placing a proper number of artificial light sources in every zone of the tunnel (Figure 3) 

in a way the luminance values corresponded to those suggested by the regulations. Figure 4 shows the 

trends of these values: the dotted curve represents the minimum values required by the regulations to 

ensure a proper lighting during the day in the tunnel, whereas the continuous curve shows all those 

values estimated while planning the four scenes examined. 

 

Figure 4. Luminances: minimum limit, in accordance with standards and lighting planning. 
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The lighting measures were estimated on calculus surface areas placed in the tunnel at regular 

intervals. Longitudinal luminance values were calculated on calculus surface areas placed in the 

interior zone of the tunnel, each with a distance of 20 m from one another. In addition to the 

luminance, in order to obtain a uniform distribution of lighting in every orthogonal zone in the road 

direction, the ratio between minimum and average luminance (diagonally, with respect to the roadway) 

was maintained higher than 0.7. For every scene assumed, it was possible to make an estimation of the 

numbers of artificial light sources necessary to satisfy the lighting requirements. 

While observing Figure 5 it can be noticed how, in the daytime and in accordance with the 

regulations about road safety, it was necessary to use a very high number of lamps in the threshold 

zone [21,22]. The sources were installed on five parallel rows. The number of lamps decreases in the 

transition zone until reaching a single-row disposition in the interior zone and then increase again in 

the exit zone. 

 

Figure 5. Render of different tunnel zones lighted both in the daytime and nighttime.  

The transition zone, “c”, (which is visible in two different pictures) presents a number of 

lights diminishing progressively to wire up with the luminous conditions required by the 

threshold zone, “b”, and the interior zone, “d”. 

Table 4 shows the number of those light sources, divided according to their typology, used by day.  

It should be noticed how in Scenes 2 and 4, thanks to the light color of the special pavement, the 

number of luminous devices required is lower than those necessary to Scenes 1 and 3. 

Table 4. Number of light sources (divided by typology) turned on in the daytime in all the 

scenes examined. 

Daytime 
Zone 

Threshold Transition Interior Exit 

Case 
HPS 

LED 
HPS 

LED 
HPS 

LED 
HPS 

LED 
(1) (2) (1) (2) (1) (2) (1) (2) 

1 356 - - 58 200 - - 128 - 21 66 - 

2 356 - - 58 178 35 - - 191 21 24 24 

3 169 15 - - 172 - - 45 - 21 55 - 

4 184 - - - 159 26 - - 129 21 16 39 

  



Sustainability 2015, 7 9672 

 

 

Since in the nighttime the reinforcement lighting operating in the daytime is not necessary, it will be 

turned off to save energy and, consequently, the light sources turned on will be distributed uniformly 

in the entire tunnel. In Scenes 1 and 3 800 W HPS lamps are turned off, while only a minimum number 

of 400 W HPS lamps will be kept operative. Scenes 2 and 4 are characterized by LED lights in the 

interior zone and in the entrance and exit zones: in this way the result will be an optimization of energy 

consumptions and maintenance reduction. Table 5 shows the number of lights turned on during the night. 

Table 5. Number of operating light sources during the night in all the scenes examined. 

Nighttime 
EntireTunnel 

HPS LED 

Case (1) 90 W 

1 132 - 
2 - 250 
3 100 - 
4 - 194 

4. Economic and Energy Analysis 

Simulations performed through Dialux EVO helped to determine, for each scene, the number of 

lights necessary in every zone of the tunnel. Table 2 shows the data that helped to determine the total 

amount of power installed in each case. Table 6 refers to the daytime, whereas Table 7 to nighttime. 

Table 6. Installed power necessary in the daytime in the scenes examined. 

Daytime 
N° of Ceiling Mount Lights Installed Power (kW) 

HPS 
LED 

HPS 
LED TOT 

Case (1) (2) (1) (2) 

1 394 435 - 185.4 382.8 - 568.2 
2 202 435 250 95.1 382.8 47.0 524.9 
3 287 190 - 135.1 167.2 - 302.3 
4 205 174 194 96.5 153.1 36.5 286.1 

Table 7. Installed power necessary in the nighttime in the scenes examined. 

Nighttime 
Installed Power (kW) 

HPS 
LED 

Case (1) 

1 62.1 - 
2 - 47.0 
3 47.1 - 
4 - 36.5 

Case 1, the most traditional one in terms of types of technology used, requires a high-power system. 

This amount of power will decrease in Case 2 due to the substitution, in the interior zone, of HPS 

lamps with LED lights. This will result in an increase in the realization costs, but at the same time, 

during the managing phase of the system, the result will be a reduction of both energy costs and those 
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expenses caused by the substitution and maintenance of light sources [23–25]. Lighting performances 

being equal, the decrease of the installed power in Case 3 is significant, due to the implementation of 

the special asphalt, with installation costs of 5.56 €/m2 more than a traditional one. In Case 4 the 

amount of power required is lower due to the substitution, in the interior zone, of HPS lamps with LED 

lights, though the installation costs are even higher. 

EcoCALC [26] was used to make an estimation of the good qualities, from an economic 

perspective, of the four scenes examined. It is a software tool able to evaluate the amortization of 

different system solutions while comparing them to a basic case (in this study it would be Case 1) 

according to the energy and maintenance savings produced through an investment in alternative 

technologies. In order to perform the calculation of the amortization of the first major investment costs, 

with respect to a basic system, the software requires the following information: electric energy cost 

(furnished with an hourly and weekly variability) with the taxes on the power installed; the number, 

flux, electric power and prices of the lighting devices and artificial light sources chose to be compared 

in all the different scenes; hourly costs of maintenance expenses of the lighting system and the spaces 

examined; the time intervals between the maintenance intervention and realization periods; the 

dimensions of the space examined; financial data such as interest and inflation rate. With these data, by 

applying the economic principles on the costs amortizations, [27] the software allows a comparison of 

the different scenes to perform an economic classification of the most advantageous solution from an 

economic point of view. 

In order to make such comparison it was assumed a return period corresponding to the service life 

of the tunnel lighting system, about 10 years. This time interval is compatible with the lifespan of LED 

sources, before the whole luminous device gets substituted. Table 8 shows the data necessary for the 

financial estimation. 

Table 8. Data necessary for the financial estimation of the scenes examined. 

Annual fee based on the installed power 0.0125 €/kW 
Electricity pricing 0.153 €/kWh 
Energy costs evolution 5.00 % yearly 
Maintenance hourly wage 28.00 €/h 
Maintenance costs for the tunnel repainting 5.00 €/m2 
Maintenance cycle for the tunnel repainting 10 years 
Inflation rate 2.50 % yearly 
Interest rate 5.65 % yearly 

The software allows one to take into consideration the costs of the tunnel repainting, as well. A 

proper maintenance of the inside surfaces characterizing the tunnel (in this case study, this 

maintenance was assumed to be performed every 5 years) implies periodic high expenses, keeping in 

mind the extent of the inside surface of a long road tunnel. This expense is useful to maintain a good 

reflection coefficient of the inside surfaces, which seems to be an affecting element for a good 

distribution of the luminous fluxes in an enclosed space as a road tunnel. 

EcoCALC provides several outputs useful to perform an evaluation of the most advantageous 

choice, from an economic point of view, of the different system solutions. Table 9 shows the results of 

the economic analysis. 
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Table 9. Summary of the economic analysis and comparison of the different scenes examined. 

 Case 1 Case 2 Case 3 Case 4  

Total costs of the solution 5,240,990.00 5,176,595.00 3,105,856.00 3,105,856.00 € 

Relative total costs - 98.8 60.3 59.3 % 

Total saving - 64,395.00 2,082,148.00 2,135,134.00 € 

Average annual total costs 524,099.00 517,659.00 315,884.00 310,586.00 €/year 

Investment expenses ratio vs. exertion costs 1:11.2 1:8.6 1:7.6 1:5.0 - 

Annual Energy consumptions 2,630,102 2,561,584 1,539,185 1,483,734 kWh/year 

Annual Energy saving - 68,518 1,090,918 1,146,369 kWh/year 

Annual energy costs 446,602.00 434,940.00 261,360.00 251,944.00 €/year 

Annual energy saving - 11,663.00 185,242.00 194,658.00 €/year 

Annual maintenance costs 23,542.00 19,735.00 12,873.00 4736.00 €/year 

Annual maintenance saving - 3806.00 10,669.00 18,805.00 €/year 

Annual exertion costs 470,144.00 454,675.00 274,233.00 256,681.00 €/year 

Annual exertion costs saving - 15,469.00 195,911.00 213,463.00 €/year 

5. Discussion 

Case 1 reports the highest total expenses, though it is not the solution with the highest installation 

costs (Figure 6). At the end of the time interval examined for the costs amortization (10 years) energy 

and maintenance expenses make this solution the least advantageous from an economic perspective. 

Case 2 used, where possible, LED lights. Here installation costs increase 26%, with respect to Case 1 

(Figure 6). The luminous flux emanated by the devices that can be found nowadays on the market are 

characterized by low specific values, due to the fact that LED lamps are luminous sources that still 

must be improved. This is why a high number of these sources must be used in order to produce high 

illumination. Such choice is uneconomical, if we consider its current cost. Their installation in a tunnel 

is possible only in those zones requiring a lower amount of illumination, that is the interior zone.  

In threshold and exit zones, where there is a necessity for reinforcement lighting, to avoid an excessive 

number of LED lights, it is necessary to use HPS sources as reinforcement lamps. LED lights, even 

though they produce financial savings for their lower management costs (3.3% respect to Case 1), are 

not advantageous with respect to total costs (only 1.2%); this is determined by an increase in 

installation costs, as LED devices are expensive (even if, requiring less installed power, they allow the 

use of electrical cables of smaller dimensions [28,29]). This solution, with respect to Case 1, is 

amortized about seven years later (instead of the 10 years, which is the time interval of the study) 

coinciding with the service life of the systems before the necessary, significant maintenance occurs. 

Case 3, the one with special asphalt, presents interesting financial results. Even though the 

installation of road pavements (with high reflection coefficients in the visible spectrum) increases 

installation costs with respect to traditional asphalts, the total costs are lower (14% less than Case 1). 

The lower number of illumination sources, necessary to fulfill the lighting requirements imposed by 

the current standards, determines installation savings for what concerns the lighting system in this way, 

balancing the higher expenses of the road paving. The power installed, with less energy than those 

cases with traditional asphalt, produces an annual energy savings, allowing the initial investments to 
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amortize quickly. During the time interval examined the amount of the electricity saved is significant, 

hence the result is a decrease in total costs. 

 

Figure 6. Incidence, in percentage, of the cost items and the financial saving produced in 

each case, with respect to Case 1. Total costs are determined by installation and 

management costs. Management costs are determined by energy and maintenance costs. 



Sustainability 2015, 7 9676 

 

 

Case 4 is characterized by both road surface and LED sources installation; due to the special 

asphalt, as seen in Case 3, it is possible to install a lower number of lamps, with respect to Cases 1 and 2, 

with the result of producing lower total costs (respectively 40.7% and 39.5%). This solution, if 

compared to Case 3, reports higher installation costs (21% more than Case 1 and 6% more than Case 3), 

due to the high installation expenses of LED sources. Their implementation determines both energy 

and financial savings (because of less maintenance expenses, Figure 6). Case 4 presents, with respect 

to Case 1, 43.6% of energy saving and 79.9% of maintenance saving. Case 4, if compared to Case 3, 

determines small energy savings of 2.1%, but, conversely, it presents a maintenance saving of 36.4%. 

During the time interval examined, Case 4 represents the least expensive solution, even though (with 

respect to Case 3) it is necessary to wait until the seventh year to recover the installation costs and the 

final savings obtained are not that substantial. 

6. Conclusions 

The lighting of road tunnels, defined by the regulations as “long”, requires high luminous fluxes  

(to avoid that the drivers passing from the outside to the inside of the tunnel, and vice versa, are 

affected by a visual discomfort caused by an insufficient luminance) and this implies a high energy 

consumption due to the electric power used by the artificial light system. Consumptions are higher, 

especially during the daytime, in particular in those geographical areas with high solar radiation [30]. 

In order to let the drivers’ eye to adapt while passing from the high luminance levels of the outside to 

the one characterizing the inside of the tunnel (in the interior zone the luminance must guarantee safe 

driving but, at the same time, it should not be too energy-consuming) it is necessary to develop a 

threshold, a transition, and an exit zone with a proper reinforcement lighting. Thus, it is important to 

have high luminous flux and this is possible with a high number of lighting devices. The case study 

examined reports that both the electric power necessary and the energy consumption are significant. 

By night, the energy requirements of the tunnel decrease since the lighting support is not necessary 

anymore. Companies managing roads presenting long tunnels are always looking for new solutions 

able to reduce such requirements to optimize both installation and management costs. 

Since the 1970s tunnels have been lighted with gas-discharge lamps; sodium lamps in particular. 

Recently, the technological evolution of these sources led to the implementation of high-pressure 

sodium lamps (HPS). Usually, the asphalt used for the road surface presents a reflection coefficient in 

the visible spectrum of 7%. In the past few years new and alternative solutions have been suggested. 

HPS lamps are supported by LED sources and besides the traditional asphalts it is possible to find on 

the market special asphalts with a reflection coefficient of 15% as well. 

The case study is a 1500 m long road tunnel placed in the middle of the Italian peninsula. 

Four different scenes were examined:  

− Case 1: traditional asphalt + HPS lamps; 

− Case 2: traditional asphalt + HPS & LED lamps; 

− Case 3: special asphalt + HPS lamps; 

− Case 4: special asphalt + HPS & LED lamps. 
  



Sustainability 2015, 7 9677 

 

 

Lighting systems, of every scene examined, were planned in accordance with the current standards 

and in a way to be financially comparable with one another. The regulations expect proper lighting 

able to fit with the driver safety conditions and let the eye to adapt to the different lighting levels 

characterizing the inside and outside of the tunnel. 

Since the planning shows that LED lamps are characterized by low specific fluxes they are not 

suitable for the emergency zones in the entrance and at the exit of the tunnel. Due to their luminous 

efficiency they represent the proper lights for the interior zone and thanks to their longer service life 

they reduce maintenance expenses. 

The asphalt is useful to observe the lighting requirements imposed by the regulations through the 

exertion of systems characterized by a lower luminous flux than those using both LED lamps and 

traditional asphalt. The necessity of a lower luminous flux allows the implementation of less artificial 

sources; hence, a lower amount of installed power. 

Considering the amortization period of the expenses equal to the time interval between two 

extraordinary maintenances (10 years), the case study reports: 

− Case 2, with respect to Case 1, produces energy and maintenance savings caused by the low 

maintenance level of LED sources. Lower management costs repay the higher installation costs 

in a time interval of about six years. 

− Case 3 reports a decrease in installation costs, when compared to Case 1. This result is possible 

because, though the road paving with special asphalt is of 5.5 €/m2 more costly than the 

traditional one, the electric power of the system (thus its realization cost) is 53% of the type 

necessary in Case 1. Energy savings are significant and total costs, in a time interval of 10 years, 

are 60%, with respect to Case 1. 

− Case 4 presents higher installation costs than Case 1, due to the presence of special asphalt and 

LED lamps, which are more expensive and increase the system costs respect to Case 3. However 

these expenses will be amortized in about six months due to the lower energy requirements than 

Case 1. Case 4, after seven years, is financially more advantageous than Case 3. 

The results reported in this case study (in % from a more general point of view) show that the 

installation in road tunnels of special asphalts, with a high reflection coefficient, though it implies 

higher investment in installation costs, reduce the amount of power needed in the lighting systems, 

thus obtaining a fast economic return. If tunnel managers realize how fruitful these asphalts can be 

(economically speaking) the result will be an increase in the demand, a higher production, and lower costs. 

This type of road surface represents an advantage, but the installation of LED sources can add an 

extra saving due to the lower requirements and reduced maintenance. However LED lights can be even 

more effective, with respect to energy savings, due to their technological development and their 

control systems [31,32]. 

It should not be forgotten that LED technology is the most promising in terms of luminous 

efficiency, service life, and compactness of the device. Recently, LED devices, useful and effective for 

lighting wide spaces (as tunnel zones), were introduced on the market; it took a few years to pass from 

LEDs with a 60 lm/W efficiency to 276 lm/W LEDs (the latter are not on the market yet). In the future 

years, if this trend continues, the result will be the commercialization of LED sources with a higher 

efficiency (useful to control consumptions) and devices able to emit higher specific luminous fluxes 
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(useful to control the number of devices required). In this case study, the small amount of specific 

power prevented their installation in the reinforcement zones (unless there is the necessity of an 

enormous number of devices to reach lighting levels in accordance with the regulations). Nowadays 

the high installation costs delay their diffusion even though the distinguishing features are low 

maintenance costs and high energy performances. In order to make this kind of technology attractive, it 

is necessary to wait for the fifth-generation LED commercialization with an efficiency of 200–250 

lm/W, together with a decrease in production costs. 
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