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Abstract

Background: This study addresses a recurrent biological problem, that is to define a formal clustering structure for
a set of tissues on the basis of the relative abundance of multiple alternatively spliced isoforms mRNAs generated
by the same gene. To this aim, we have used a model-based clustering approach, based on a finite mixture of
multivariate Gaussian densities. However, given we had more technical replicates from the same tissue for each
quantitative measurement, we also employed a finite mixture of linear mixed models, with tissue-specific random
effects.

Results: A panel of human tissues was analysed through quantitative real-time PCR methods, to quantify the
relative amount of mRNA encoding different IGF-1 alternative splicing variants. After an appropriate, preliminary,
equalization of the quantitative data, we provided an estimate of the distribution of the observed concentrations
for the different IGF-1 mRNA splice variants in the cohort of tissues by employing suitable kernel density estimators.
We observed that the analysed IGF-1 mRNA splice variants were characterized by multimodal distributions, which
could be interpreted as describing the presence of several sub-population, i.e. potential tissue clusters. In this
context, a formal clustering approach based on a finite mixture model (FMM) with Gaussian components is
proposed. Due to the presence of potential dependence between the technical replicates (originated by repeated
quantitative measurements of the same mRNA splice isoform in the same tissue) we have also employed the finite
mixture of linear mixed models (FMLMM), which allowed to take into account this kind of within-tissue
dependence.

Conclusions: The FMM and the FMLMM provided a convenient yet formal setting for a model-based clustering of
the human tissues in sub-populations, characterized by homogeneous values of concentrations of the mRNAs for
one or multiple IGF-1 alternative splicing isoforms.

The proposed approaches can be applied to any cohort of tissues expressing several alternatively spliced mRNAs
generated by the same gene, and can overcome the limitations of clustering methods based on simple
comparisons between splice isoform expression levels.
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Background

Alternative splicing, which can be detected in more than
90 % of multiexon genes [1], is considered a leading
process giving rise to cellular and tissues diversity in
higher eucariotes [2]. It has been estimated that there
are, on average, at least seven alternative splicing events
per multiexon human gene [1]; considering that each tis-
sue can potentially express a peculiar set of splice iso-
forms, it is easy to deduce that splicing complexity can
profoundly contribute to tissue diversity.

In this study, we employed a finite mixture model
(FMM) to cluster a cohort of tissues on the basis of
the relative abundance of multiple alternatively spliced
mRNAs. We show how this clustering approach, based
on a probabilistic model, can overcome the limitations
of clustering methods based on simple comparisons be-
tween splice isoform expression levels.

FMM have been used for several decades in the ana-
lysis of high-dimensional complex data, and are now ex-
periencing a progressive popularity, due to the increase
in the computing power [3, 4]. The classical areas of ap-
plication for FMMs are social sciences and economics,
but several applications of FMMs are extending to gen-
etics, biology, natural sciences, psychology, medicine [4].

FMMs are probabilistic models that can be applied to
complex data whenever the experimental observations
are drawn from several subpopulations which are not
known a priori [5]. While the clustering context is cer-
tainly a major area of application, FMMs may also be
employed to produce a semiparametric (kernel-type) es-
timate for a multimodal distribution, with the feature of
being more parsimonious than standard kernel-based es-
timators [5]. For this reason, FMMs can be fruitfully
employed also in the presence of high dimensional data.

In this manuscript we aim at solving a recurrent prob-
lem in molecular biology that is to define an appropriate
clustering structure for a set of tissues that display dif-
ferential concentrations in multiple alternatively spliced
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mRNA variants generated by the transcription of the
same gene. To better explain how a suitable solution to
this problem can be found, we describe the analysis of a
paradigmatic case, where we aim at clustering a cohort
of human tissues on the basis of the relative abundance
of IGF-1 mRNA splicing variants. However, since the
data measurement consist in three technical replicates
for each observed splice isoform in each observed tissue,
a dependence issue may arise, and standard finite mix-
ture models for clustering cannot be the appropriate
choice. For this reason, in this study we have also
employed the method described by Celeux et al. [6] to
cluster tissues in presence of replicated data.

In human tissues, the transcription from a single IGF-1
gene can generate multiple splicing isoforms (summarized
in Fig. 1; for an exhaustive review see [7—9]) which encode
multiple proteins, comprising variable amino- and carboxy-
terminal amino acid sequences.

In particular, splicing in the 3'-region of the IGF-1
transcripts give rise to different mRNA splicing variants
(Fig. 1) and as a consequence, this generates an import-
ant molecular variability in the carboxy-terminus of the
mature IGF-1 peptide that represents the so-called “E-
peptide” [10]. The different E-peptides might modulate
the biological actions, the stability or the bioavailability
of the IGF-1 protein [10, 11]. For this reason, different
IGF-1 mRNA splicing variants could be preferentially
abundant in some tissues, and scarce or even absent in
other.

In spite of the great importance of IGF-1 in physiology
and pathology [8, 11, 12], no comprehensive quantitative
studies or detailed analyses of the relative abundance of
IGF-1 splice isoforms mRNAs in panels of human tis-
sues have been reported so far.

In human, alternative splicing in the 3'-region of the
IGF-1 transcripts give rise to three different mRNA spli-
cing variants: IGF-1 Ea, IGF-1 Eb and IGF-1 Ec (Fig. 1)
[11, 13]. IGF-1 is bona fide expressed by all human
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Fig. 1 Schematic representations of the human IGF-1 NCBI RefSeq transcripts. A schematization of human IGF-1 gene locus (on chromosome 12)
is also shown. Exons (black rectangles), introns (black lines), and UTRs (blue rectangles) size are not proportional to the real size of the corresponding
portions of the IGF-1 transcripts. The correct proportion of the transcripts can be visualized at University of California Santa Cruz Genome Browser
Gateway (https.//genome-euro.ucsc.edu/cgi-bin/hgGateway). Refer to “Methods” section to deduce which transcripts were detected by each specific
TagMan assay used in the quantitative real-time PCR experiments
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tissues; however, it remains unknown whether all human
tissues are also able to splice all the three splice variants
Ea, Eb and Ec.

IGF-1 Ea is considered the “standard isoform” ex-
pressed locally in muscle [12, 13], and the predominant
splicing variant in liver [14]; for this reason, this particu-
lar isoform is often referred to as a “local muscle spe-
cific’ IGF-1 isoform (mIGF-1) or “muscle/liver type”
isoform [14-16]. The isoform IGF-1 Ec has been de-
tected in muscles subjected to damage or exercise, and it
is often defined as a “mechano growth factor” (MGF)
[14—16]. However it is not clear whether IGF-1 Ec is also
significantly spliced in non-muscular tissues or its pres-
ence can alter the relative balance of the two other spli-
cing isoforms IGF-1 Ea and IGF-1 Eb.

To gain a better understanding of IGF-1 alternative
splicing, we performed a quantitative analysis of the
IGF-1 mRNA splice variants in human tissues. In a panel
of human tissues, after a preliminary data equalization
(which allows us to compare relative mRNAs levels of the
different IGF-1 variants across the different tissues), an ex-
ploratory quantitative analysis on IGF-1 mRNA splice var-
iants was performed. This analysis showed that IGF-1 Ea,
Eb and Ec were spliced in all human tissues, and that their
concentrations is characterized by multimodal distribu-
tions. This was clearly appreciated by employing kernel
density estimation to smooth the observed empirical fre-
quency distributions.

We then proposed a finite mixture model (FMM) with
multivariate Gaussian kernel to formally cluster human
tissues into subgroups with homogeneous values of
concentration for the IGF-1 splice variants. Since this
model-based clustering approach does not allow to con-
sider repeated measurements, and since the analysed
quantitative data contains technical replicates for each
measurement, we have also applied the method of Finite
mixture of linear mixed models (FMLMM) by Celeux
et al. [6], which has been defined to produce a finite
mixture clustering of repeated measurements. The two
proposed approaches show substantial similarities in the
obtained results, with a clear cut biological interpretation.

The approaches presented in this work can be
regarded as a general framework for the formal cluster-
ing of any cohort of tissues (or cells) expressing alterna-
tively spliced mRNAs, and can overcome the limitations
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of clustering methods based on the simple comparison
between splice variants levels.

Results and discussion

Data pre-processing and exploratory analysis on IGF-1
splice variants concentration in human tissues

A panel of 20 human tissues was analysed through
quantitative real-time PCR, using specific IGF-1 splicing
isoforms assays, to detect the mRNAs encoding IGF-1
Ea, IGF-1 Eb and IGF-1 Ec splice variants (Fig. 1).

Data derived from real-time PCR analysis (the compara-
tive Ct method was used to obtain a quantitative measure
of each IGF-1 splice variant mRNA, see Methods) were
equalized by means of the “compositional ratios” (or “con-
centration ratios”, see Methods), referred to as Ratio 1,
Ratio 2, Ratio 3, as shown in Table 1 and Fig. 2. This
transformation allows to compare the relative mRNA con-
centrations for the IGF-1 splicing isoforms across the dif-
ferent tissues in the panel. However, it also results in
permanent loss of the original amplitude (magnitude) in
the expression levels of each isoform in each tissue.

Additionally, the formal constraint [Ea]+[Eb]+[Ec]=1
holds, i.e. the sum of the relative concentrations for the
three IGF-1 splicing isoforms is constant (and equal to
one) in all the analysed tissues. The constraint is not
only a simple theoretical assumption: in this respect, we
used a IGF1pay specific TagMan assay that simultaneously
detects all the human IGF-1 isoforms (see Methods), and
we performed preliminary ad hoc tests to verify the null
hypothesis that [IGF1pan]= [Ea]+[Eb]+[Ec]; our empirical
findings suggested that we have not enough empirical evi-
dence to reject the null hypothesis (data not shown). In
other words, according to experimental observations, in
each human tissue the sum of relative concentrations for
the three mRNA IGF-1 splicing variants Ea, Eb and Ec, is
not substantially different from the total IGF-1 mRNA
pool, and this result is consistent with the theoretical
assumptions.

A preliminary exploratory data analysis was performed
on the equalized data; we report some summary statis-
tics for the compositional ratios in Table 1. We then
summarized the distribution of the concentration ratios,
by looking at the within-tissues variability, as shown by
the boxplots in Fig. 2a, b and ¢, where the observed tis-
sues are ordered by increasing mean values.

Table 1 Descriptive statistics for the human IGF-1 splice variants mRNA compositional ratios

Min. 1st quartile Median Mean 3rd quartile Max.
Ratio 1 (IGF-1 Ea) 0.6560 0.8000 0.8335 0.8276 0.8733 0.9293
Ratio 2 (IGF-1 Eb) 0.06916 0.10820 0.13910 0.15380 0.17750 0.32690
Ratio 3 (IGF-1 Ec) 0.000721 0.007274 0.014130 0.018560 0.023310 0.063630
Ratio 1 = %; Ratio 2 = [fa]+[[§?]+[fcﬁ Ratio 3 = [EGH{@Z]H[&]

Descriptive statistics for the observed human IGF-1 splice variants mRNA compositional ratios in the cohort of 20 different human tissues. Minimum, maximum,
1st quartile, median, 3rd quartile and mean are shown for each compositional ratio. Compositional ratios are defined in the lowest part of the table
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Fig. 2 Boxplots of the relative abundance of IGF-1 splice variants mRNA in a cohort of 20 human tissues. a IGF-1 Ea compositional ratio values;
b IGF-1 Eb compositional ratio values; ¢ IGF-1 Ec compositional ratio values. The bottom and top of each box represent the first and third
quartile, whereas the band inside the box represents the median. The whiskers represent the minimum and maximum of the distributions. Tissues

are ordered according increasing mean values

According to the findings in Table 1 and Fig. 2, we
could deduce the following:

i) all the human tissues we have analysed are able to
splice the three IGF-1 mRNA isoforms Ea, Eb
and Ec;

ii) all human tissues in the cohort can splice, on a
relative scale, a greater amount of the variant Ea, a
smaller amount of the variant Eb, and a minimal
amount of the variant Ec.

Therefore, it emerges a general concept that should be
taken into consideration when we perform a quantitative
analysis of mRNA splice variants: when we refer to “high
values” or “low values” of expression for one specific
splice mRNA variant, it is always relatively to the values
of concentration for the other splice variants in the same
tissue or in a specific cohort of tissues. For example, in
our specific cohort, high values of concentration for the
isoform Eb will be always lower to Ea, even with respect
to low values of concentration for isoform Ea (this can
be evinced by looking at Table 1). Also, in our cohort,
high values of concentration for the isoform Ec will be
lower to Eb, even with respect to low values of concen-
tration for isoform Eb (Table 1).

The boxplots in Fig. 2 do not provide a formal cluster-
ing of tissues. However, they are very interesting from a

general observational perspective, and they can suggest
which are the tissues showing more marked expression
levels for a specific splice variant. For example, the tis-
sues [Liver A and Liver B] seem to contain high concen-
trations of variant Ec, while the tissues [Brain A, Brain B
and Brain C] seem to contain low concentrations of vari-
ant Ec, relatively to the cohort of all the observed tissues
(Fig. 2¢).

Kernel density estimates of the distribution of IGF-1
splicing isoforms mRNA concentrations in human tissues
We employed kernel density estimates (KDE) to get a
further step in the characterization of the distribution of
the observed values for the three IGF-1 splicing variants
Ea, Eb and Ec mRNA concentrations in the cohort of
human tissues (Figs. 3, 4 and 5).

The quality of a kernel estimate heavily depends on
the value of the bandwidth [17]. By using a small value,
we may have a very local (i.e. extremely variable) esti-
mate, while a too high value may result in over-
smoothing. For this reason, we have employed different
choices for the bandwidth. In Figs. 3, 4 and 5, that cor-
respond to KDE for the variants Ea, Eb and Ec, respect-
ively, panel A refers to the Scott rule of thumb [18],
panel B to the Silverman rule of thumb [17], panel C to
the unbiased cross-validation based bandwidth [19],
while panel D refers to the Sheather and Jones plug-in
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Fig. 3 Kernel density estimates of the distribution of IGF-1 Ea splice variant mRNA compositional ratios in a cohort of 20 different human tissues.
IGF-1 Ea splice variant mRNA compositional ratio (Ratio 1) is defined in Fig. 2 and in Table 1. Bandwidth selection: a Scott rule of thumb,
b Silverman rule of thumb, ¢ unbiased cross-validation, d Sheather-Jones plug-in

\

method [20] (see also the section Methods and Refs. [21]
and [22] for a critical discussion on density estimation).

As it can be easily evinced by looking at Figs. 3, 4 and
5, the kernel density estimates suggest the presence of at
least two subpopulations in each of the analysed IGF-1
splicing variants, thus resulting in multimodal density
estimates (Figs. 3, 4 and 5).

To be more specific, with respect to the human splice
isoform IGF-1 Ea, we may observe that at least two tis-
sue subpopulations can be recognized in the analysed
cohort: the first one has higher frequency and, likely,
represents what we can roughly call the “IGF-1 Ea

mRNA standard population”, while the second one is
more on the left side of the range of the observed values
and shows a lower frequency (Fig. 3). On the basis of the
boxplot shown in Fig. 2, we may speculate that the latter
subpopulation likely includes those tissues having a con-
centration of the splice isoform IGF-1 Ea lower than the
average.

Opposite conclusions can be inferred by looking at the
kernel density estimates for variants IGF-1 Eb and IGF-1
Ec, which are displayed in Figs. 4 and 5.

Some asymmetries in the higher frequency kernel com-
ponent for the expression levels of the splice isoforms

rule of thumb, ¢ unbiased cross-validation, d Sheather-Jones plug-in
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Fig. 4 Kernel density estimates of the distribution of IGF-1 Eb splice variant mRNA compositional ratios in a cohort of 20 different human tissues.
IGF-1 Eb splice variant mRNA compositional ratio (Ratio 2) is defined in Fig. 2 and in Table 1. Bandwidth selection: a Scott rule of thumb, b Silverman
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Fig. 5 Kernel density estimates of the distribution of IGF-1 Ec splice variant mRNA compositional ratios in a cohort of 20 different human tissues.
IGF-1 Ec splice variant mRNA compositional ratio (Ratio 3) is defined in Fig. 2 and in Table 1. Bandwidth selection: a Scott rule of thumb, b Silverman
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IGF-1 Ea and IGF-1 Ec can also be easily noticed (Figs. 3
and 5). These asymmetries may indicate either the pres-
ence of a third subpopulation, not clearly distinguishable
from the high-frequency component, or, rather, a depart-
ure from symmetry of the population-specific density
(Figs. 3 and 5).

However, as we have already remarked on the grounds
of Fig. 2, the empirical evidence we obtain from Figs. 3,
4 and 5 is mainly observational, and cannot lead to any
formal inference on the existence of tissue subgroups
that show different values for the observed concentra-
tion of a given IGF-1 splice variants.

Finite mixture models to classify tissues with different
levels of IGF-1 splicing isoforms

As presented in the previous section, in human tissues
the analysed levels of IGF-1 mRNA splice variants Ea,
Eb and Ec are characterized by multimodal distributions,
which could be interpreted as being composed by several
sub-populations.

In this context the finite mixture models (FMM) with
Gaussian kernel could provide a formal, convenient,
model-based method to cluster the cohort of human tis-
sues in several, but potentially overlapping, subpopula-
tions with homogeneous values of mRNA concentration
for one or more IGF-1 splicing isoform. For the empirical
analysis, we employed simultaneously all the technical
replicates (usually triplicates, sometimes duplicates when
the experimental triplicates were not available) for each
human IGF-1 mRNA splice isoform (Ea, Eb and Ec), in
each different tissue (X, see the Methods section).

According to the FMM, the population of tissues is di-
vided in G components (i.e. in 2 or more “subpopulations”,

or “clusters”, or “subgroups”) [5]; each component is
graphically identified by an elliptical shape, which usually
represents a (multivariate) Gaussian density; in this case,
given the unit constraint, we have fitted the model to the
couple (Ea, Eb), so that the cluster-specific distribution we
are considering is a bivariate Gaussian density.

The clusters (components of the finite mixture) are
thus characterized by a center, defined by the corre-
sponding mean value, and by the elliptical contour, sum-
marized by the covariance matrix. By definition, the
latter may be parameterized as a function of 3 parameter
sets, which describe scale, shape and direction, respect-
ively [23]. Each of these parameter sets may be constant,
variable or, whenever appropriate, independent, leading
to 10 different association structures for each choice of
the number of components [23].

To choose the appropriate number of components (that
is clusters) in the population, the model was fitted for a
progressively increasing number of clusters (G =2, ...,10)
for each of the different structures for the cluster-
specific covariance matrix. The solution corresponding
to the lowest Bayesian Information Criterion score (BIC
score) [24] has been retained. In our analysis the best
model (i.e. the model with the lowest BIC score) corre-
sponds to G =3 components with an association struc-
ture defined by the acronym “EEV”, standing for Equal
scale, Equal shape and Variable orientation across the
components [25].

After fitting the model, we may define a formal cluster-
ing of the tissues by allocating each tissue to the cluster
with the highest probability of component membership,
see Methods. This procedure is often referred to as MAP
(maximum a posteriori) clustering.
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In our FMM there is a clear distinction in the center
of the distribution for clusters [#1 and #2] when com-
pared to cluster #3 (Table 2, and Fig. 6a). Components
#1 and #2 are both characterized by a higher concentra-
tion of isoform IGF-1 Ea when compared to component
#3 (Table 2); the latter component is characterized by a
relatively higher concentration of the isoform IGF-1 Eb,
even if it should be observed that in any tissue the con-
centration of the isoform IGF-1 Eb is lower when com-
pared to the concentration of the isoform IGF-1 Ea (as
already discussed, see Tables 1 and 2).

Components #1 and #2 differ mainly as a function of
the orientation of the ellipse, that is the orientation of
the corresponding covariance matrix estimates, showing
a different correlation between the observed values for
IGF-1 Ea and IGF-1 Eb, which is higher (in absolute
value) for component #1 with respect to component #2
(Table 2, and Fig. 6a).

We assigned each tissue to a cluster by using a MAP
criterion, as introduced above; the resulting classification
with an estimate of the classification entropy, is shown
in Table 3. It is worth considering that by allocating each
tissue replicate to a specific component, we force the
value of the posterior probability (which ranges from 0
to 1) to be 0 or 1 and, therefore, we insert some approxi-
mation error in our model. For some tissue replicate,
this produces a higher variability due to the uncertainty
in the allocation, which is higher when the tissue repli-
cate is characterized by values of posterior probability of
component membership that are very similar across the
different components.

To give an exemplification on how uncertainty is
generated by allocation of tissue replicates to specific
components, let us assume we have two components,
namely cluster A and cluster B, and that according to
MAP allocation we can assign a tissue replicate to clus-
ter A. Suppose now the posterior probabilities for the
tissue are equal to 0.99 for cluster A and 0.01 for cluster
B, respectively. In this case, the tissue can be allocated
to cluster A with a very low uncertainty. However, if the
posterior probabilities are equal to 0.51 and 0.49 for

Table 2 Finite Mixture Model (FMM): parameter estimates

Component #1 Component #2 Component #3

HGF1-Eak 08420 08443 06772
HiGF1-Ebk 0.1468 0.1166 02992
Ofcr1-Eak 00016 00023 00011
OfGF1Ebk 00013 0.0006 00018

Ofga, £tk -00014 ~0.0011 -00014
P(Ea, Eb)k -0,9884 -0,9827 -09878
T, 068322399 022616579 0.09061023

Finite Mixture Model (FMM): parameter estimates for the component specific
means (p), variances/covariances (o), correlations (p) and prior probabilities ()
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clusters A and B, respectively, the tissue can still be allo-
cated to cluster A, but the uncertainty of the classifica-
tion is higher.

In this work, model-based clustering has been per-
formed using the mclust library [25] developed for the
open-source software R; in this context, classification
uncertainty is measured by the Shannon entropy. Table 3
also describes the average uncertainty in the MAP classi-
fication for the human tissues data (see the column re-
ferring to entropy in Table 3). A higher classification
uncertainty can therefore be associated to points located
between components #2 and #3 when compared to
points located between components #1 and #3. Looking
in more details at these points, we observe that the high-
est values of uncertainty are associated to the following
tissues: Brain B, Brain C, Fetal kidney and Skeletal
muscle B, and range between 0.16 and 0.32 (with a max-
imum value of 1).

As shown in Table 3 each tissue was allocated to the
specific component with a score of 3 replicates out of 3
(or 2 out of 2 if the third technical replicate was not
available for experimental reasons). Only the Skeletal
muscle B (which, as discussed, was characterized by a
relatively high allocation uncertainty) was associated to a
partial allocation discrepancy: in fact, two experimental
replicates were assigned to component #1, whereas the
remaining technical replicate was assigned to the com-
ponent #2 (Table 3).

Finite mixture of linear mixed models to classify tissues
with different levels of IGF-1 splicing isoforms accounting
for dependence between replicates

As we have noticed in the previous section, using FMM
to analyze quantitative real-time PCR data was very ef-
fective, and only in one case a technical replicate was
not assigned by the FMM to the same component as the
other two replicates (Table 3).

FMM clustering approach is based on considering the
technical replicates (originated by repeated quantitative
measurements of the concentration of same mRNA
splice isoform in the same tissue) as independent units,
increasing the sample size. To take into account poten-
tial dependence between technical replicates we adopted
a further clustering strategy, i.e. the finite mixture of
linear mixed models (FMLMM) [6]. This method, devel-
oped by Celeux et al. [6] can be considered as a particu-
lar specification of the method proposed by Basford and
McLachlan [26] for the analysis of three way data (in this
case, tissues by isoforms by replicates). However, applica-
tion of FMLMM to cluster tissues in presence of repli-
cated data required a specific implementation (mclust
does not allow for this extension) and generated some less
favourable effects: i) a reduced sample size (in fact the rep-
licates were not treated as statistical independent units
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Fig. 6 Plots of the observed IGF-1 values. a contours and classification obtained through the FMM (mclust) and b classification obtained through
the FMLMM. Legend: blue dots: component #1; red squares: component #2; green triangles: component #3. Ratio 1 and Ratio 2 are defined in
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anymore) and, ii) each individual (tissue-specific) sequence
became a KR-dimensional sequence, where K denotes the
number of splice variants and R the number of replicates.
Consequently, this reduced the number of possible models
to be fitted, due to joint increase in the number of param-
eters and the decrease in the sample size.

According to FMLMM, the population of tissues is di-
vided into G components; each component is now iden-
tified by a regression model with a component-specific

Table 3 Finite Mixture Model (FMM): maximum a posteriori

allocation

Component # tissue 1 2 3 Entropy (average)
Brain A 3 0 0 0.0204
Brain B 3 0 0 03287
Brain C 2 0 0 0.1691
Fetal heart 2 0 0 0.0000
Fetal kidney 3 0 0 0.1690
Fetal lung 3 0 0 0.0000
Fetal sk. muscle 3 0 0 0.0000
Fetal spleen 3 0 0 0.0199
Fetal thymus 3 0 0 0.0150
Heart A 3 0 0 0.0000
Heart B 0 0 3 0.0067
Kidney 2 0 0 0.0000
Liver A 0 3 0 0.0008
Liver B 0 3 0 0.0005
Lung 2 0 0 0.0000
Pancreas 0 0 2 0.0001
Placenta 3 0 0 0.0000
Sk. muscle A 3 0 0 0.0010
Sk. muscle B 2 1 0 0.1928
Uterus 0 3 0 0.0035

Finite Mixture Model (FMM): posterior classification of human tissues into
components. The table shows the maximum a posteriori allocation (MAP) of
each tissue of the panel to the highest probability component of the finite
mixture. The associated Entropy (average) is also shown

intercept (playing the role of overall mean), a tissue-
specific effect that accounts for technical variability and
dependence between replicates from the same tissue [6].
Altogether these different sources of variation define an
elliptical shape, which represents a (multivariate) Gauss-
ian density in a higher dimension (2 by R, where R is the
number of replicates), with all the sources of variation
(included the measurement error) concurring to define
the covariance matrix (see the Methods section).

To choose the appropriate number of components
(that is the appropriate number of clusters) in the popu-
lation, we have considered the solution corresponding to
the lowest Bayesian Information Criterion score (BIC
score) [24]. However, it should be noted that given the
reduced sample size, and given the highly parameterized
model specification, we had the chance to estimate the
model only for G = 2,3 and the best model, i.e. the model
with the lowest BIC corresponded to G =3 components.
As described in the previous paragraph for FMM, after
fitting the model with FMLMM, we may define a MAP
clustering of the tissues by allocating each tissue to the
cluster with the highest probability of component mem-
bership (see Methods).

As for FMM, FMLMM shows a clear distinction in the
centers of the distributions corresponding to clusters [#1
and #2] when compared to cluster #3 (Tables 4-5 and
Fig. 6b). The latter component is characterized by a rela-
tively higher concentration of the isoform IGF-1 Eb
(Table 4), even if it should be observed (as already dis-
cussed, see Tables 1 and 2) that in any tissue the concen-
tration of the isoform IGF-1 Eb is lower when compared
to the concentration of the isoform IGF-1 Ea. In the con-
text of FMLMM, however, the difference between compo-
nents #1 and #2 is not due to a difference in the
orientation of the covariance matrix as seen for the FMM
(Table 2 and Table 5). Rather, the two components #1 and
#2 seem to share the same orientation, with higher values
in the second component (Table 4 and Fig. 6b).

We assigned each tissue to a cluster, by using a MAP
criterion as introduced above; the resulting classification
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Table 4 Finite Mixture of Linear Mixed Models (FMLMM):
parameter estimates |
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Table 6 Finite Mixture of Linear Mixed Models (FMLMM):
maximum a posteriori allocation

Component #1 Component #2 Component #3 Tissue Component Entropy
H(GF1-Ea)k 08171 0.8629 06742 Brain A 2 0.0000
TH— 0.1546 0.1262 03033 Brain B 2 0.0000
OﬁGH,Ea)k 0.00059 0.00014 0.00010 Brain C 2 0.0000
Oﬁer—Eb)k 0.00046 0.00014 0.00014 Fetal heart 1 0.0000
Tk 03229 05772 0.0999 Fetal kidney 2 0.0000
Finite Mixture of Linear Mixed Models (FMLMM): parameter estimates for the Fetal lung 2 0.6804

component specific means (), variances/covariances (o), and prior probabilities (1)
Fetal sk. muscle 1 0.1189
Fetal spleen 2 0.0097
is shown in Table 6, with an estimate of the classification  Fetal thymus 1 0.0000
entropy. For some tissue, the allocation produces a  Heart A P 0.0000
higher variability due to the uncertainty in the alloca- . .5 3 00102

tion, which is higher when the tissue presents similar i
K . . Kidney 2 0.1573
values for posterior probability across the different com- ‘

ponents. Looking in more details at these points, we ob- Liver A ! 00041
serve that in FMLMM the highest values of uncertainty  LiverB 1 00002
are associated to the following tissues: Fetal lung, Fetal  Lung 2 0.1039
skeletal Muscle, Kidney, Lung. These values are not con-  pancreas 3 0.0000
sistent with the entropy values we have derived from the ..., . 00311

application of FMM (Table 3). Moreover, the very low
. . Sk. muscle A 2 0.0501

entropies we could often observe in FMLMM (Table 6)
are partially due to the higher number of parameters re- Sk muscle B 2 00001
Uterus 2 0.0001

spect to the sample size. Fig. 6a and b shows the parti-
tion of tissues obtained adopting the FMM and the
FMLMM, respectively. Table 7 reports the same infor-
mation under the shape of a confusion matrix.

In our perspective, for the resolution of this specific
biological problem the mclust library [25] still represents
the methods of choice: is a straightforward analysis tool
which can be easily handled by practitioners, geneticists
and biological researchers. Additionally, though more
appropriate clustering methods might be proposed for
the case of replicated measurements, FMM still remains,
at least to our opinion, a quite reliable and flexible
approach.

Table 5 Finite Mixture of Linear Mixed Models (FMLMM):
parameter estimates Il

1st component IGF1Ea IGF1Eb
IGF1Ea 0.00006 —0.00008
IGF1Eb —0.00008 0.00016
2nd component
IGF1Ea 0.00182 —-0.00176
IGF1Eb -0.00176 0.00171
3rd component
IGF1Ea 0.00021 —0.00028
IGF1Eb —0.00028 0.00038

Finite Mixture of Linear Mixed Models (FMLMM): posterior classification of
human tissues into components. The table shows the maximum a posteriori
allocation (MAP) of each tissue of the panel to the highest probability
component of the finite mixture. The associated Entropy is also shown

A comprehensive analysis of the abundance of IGF-1
mRNA splice variants in human tissues
From the FMM posterior classification listed in Table 3
we could finally infer a formal clustering structure for
the human tissues, based on the relative abundance of
the mRNAs for the IGF-1 alternative splicing isoforms.
As shown in Table 3, each tissue was allocated to the
specific component with a score of 3 replicates out of 3, or
2 out of 2 when the third technical replicate was not avail-
able for experimental reasons (a recurring circumstance in
real-time PCR measures). Only the Skeletal muscle B

Table 7 Confusion matrix
Cluster FMLMM

Tissue count

Cluster FMM #1 #2 #3 Total
#1 4 10 14
#2 2 2 4
#3 2 2
Total 6 12 2 20

Finite Mixture of Linear Mixed Models (FMLMM) parameter estimates:
covariance matrices for the individual-specific random effects

Confusion matrix: clustering obtained via FMM (rows) by clustering obtained
via FMLMM (columns)
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(which, as discussed previously, was characterized by a
relatively high allocation uncertainty) was associated to a
partial allocation discrepancy: in fact, two experimental
replicates were assigned to component #1, whereas the
remaining technical replicate was assigned to the adjacent
component #2. However, this may be explained by all
three replicates being on the tails of the corresponding
distributions (Fig. 6a).

The majority of the human tissues in the panel were
allocated by FMM as belonging to component #1
(Table 3). Components #1 and #2 are characterized by a
higher concentration of the isoform IGF-1 Ea with re-
spect to component #3 (Fig. 6a and Table 2). As
remarked above, components #1 and #2 differ mainly as
a function of the orientation of the ellipse, with a differ-
ent correlation between the observed values for IGF-1
Ea and IGF-1 Eb (Table 2). Liver A and Liver B (mRNA
derived from two independent groups of donors) and
Uterus were assigned to component #2 (Fig. 6a and
Table 2). Remarkably, we observed from the boxplots in
Fig. 2c that Liver A, Liver B and Uterus are character-
ized by the highest relative concentration of IGF-1 Ec.
Therefore we can speculate that the component #2 is
characterized by a peculiar relatively higher concentra-
tion of the isoform IGF-1 Ec.

The tissues allocated by FMM to component #3 are
characterized by a relatively higher concentration of the
isoform IGF-1 Eb, when compared to components #1
and #2, i.e. Pancreas and Heart B (Fig. 2b and Table 2).

It is interesting to observe that most of the results of
the allocation are consistent when we consider the same
tissue, but pools of RNA collected from independent
groups of donors: for example Brain A, Brain B and
Brain C are all allocated to component #1; Liver A and
Liver B are both allocated to component #2. However
Heart A and Heart B are assigned to two highly sepa-
rated subgroups, i.e. to components #1 and #3, respect-
ively. This means that pools of RNA from the same tissue,
but collected from different individuals (in which tissues
are possibly subjected to different patho-physiological cir-
cumstances) may sometimes exhibit radically different
IGF-1 splice isoforms balance. It has been reported, for
example, that IGF-1 Ec increased during post-infarcted
myocardium remodelling [27].

To better understand the rationale behind the clusteri-
zation obtained by means of FMM, we consider tissues
Brain A, Brain B and Brain C, which are three pools of
RNAs from three independent groups of human donor in-
dividuals. Looking at the boxplots in Fig. 2 we may
roughly derive that these tissues are characterized by “a
low concentration of IGF-1 Ec”. However, such cluster
does not formally exist, since, due to the unit constraint,
we have considered Ea and Eb only. Therefore, Brain A,
Brain B and Brain C are formally allocated to component
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#1, that is a cluster characterized by a high concentration
of isoform IGF-1 Ea and, in particular, by a relatively lower
concentration of IGF-1 Eb and by a relatively lower con-
centration of IFG-1 Ec.

We can summarize the results of our FMM study on
human tissues as follows:

— all the human tissues in the panel were able to splice
the isoforms IGF-1 Ea, IGF-1 Eb and IGF-1 Ec.

— the fulfilment of the formal equation
[Ea]+[Eb]+[Ec]=1 and the compositional ratios we
have calculated have helped to compare the relative
mRNA concentrations for the different IGF-1 splice
variants within each single tissue and across the
different tissues.

— in all the human tissues the relationship
[Ea] > [Eb] > [Ec] holds, at least as an empirical
evidence. Specifically, every tissue showed a lower
concentration of the isoform IGF-1 Eb when
compared to IGF-1 Ea; at the same time, in every
tissue the concentration of the isoform IGF-1 Ec
was lower than the concentration of the isoform
IGF-1 Eb.

— by defining and applying a FMM we have been able
to formally cluster the analyzed tissues into three
subgroups: i) tissues with relatively high
concentration of IGF-1 Ea and relatively lower
concentration of IGF-1 Ec (Cluster # 1); ii) tissues
with relatively high concentration of IGF-1 Ea and
IGF-1 Ec (Cluster # 2); iii) tissues with relatively
high concentration of IGF-1 Eb (Cluster # 3).

As discussed so far, we implemented FMLMM as a
further clustering strategy to take into account the po-
tential dependence between technical replicates. When
considering the clustering results from this latter ap-
proach, we observed that the separation between [com-
ponent #1, component #2] and [component #3] is still
well retained, and this result is consistent with FMM
(Fig. 6). The peculiar difference of FMLMM when com-
pared with FMM is the relative composition of compo-
nent #1 and component #2: while in the FMM the prior
probabilities (i) for component #1 and component #2
were, respectively, 0.68 and 0.22 (Table 2), for the
FMLMM the corresponding prior probabilities were
0.32 and 0.57 (Table 4), with six tissues moving from
one component to the other (Tables 3 and 6).

Additionally most of the results of the allocation for
FMLMM are consistent when we consider pools of RNA
collected from independent human donors: for example
Brain A, Brain B and Brain C were all allocated by
FMLMM to component #2; Liver A and Liver B were
both allocated to component #1; Skeletal muscle A and
B were both allocated to component #2 (Table 6).
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To better understand the rationale associated with the
FMLMM clustering, we can observe that:

— the tissues allocated by FMLMM to component #3
(Pancreas and Heart B) are characterized by a
peculiar relatively high concentration of the isoform
IGF-1 Eb when compared to tissues allocated in the
components #1 and #2 (Fig. 2 and Table 6).

— Liver A and Liver B were allocated by FMLMM to
component #1, and show an average concentration
of isoform IGF-1 Ea and Eb, and a particular high
concentration of IFG-1 Ec (Fig. 2 and Table 6).
However, the other sample units belonging to
components #1 cannot be clearly distinguished from
tissues allocated to component #2; in this respect,
the FMLMM approach is, at least to some extent,
less efficient than FMM, where the three
components were appreciably better characterized.

Roughly speaking, FMLMM component #1 and compo-
nent #2 may be considered as describing two different tails
of the same distribution, the only relevant difference being
represented by Liver A and Liver B, and this poses the
question of whether we definitively need for FMLMM a 3
component solution, or we can rather use a 2 component
solution.

Further statistical validations and biological experi-
ments are needed to assess unequivocally whether com-
ponents #1 and #2 belong from two distinct clusters (as
suggested by FMM) or belong to one single cluster.

Conclusions

In this study we propose two approaches to address the
general biological problem of clustering a group of tis-
sues on the basis of the relative abundance of multiple
spliced mRNA, generated by the transcription of the
same gene. We present a paradigmatic case, the quanti-
tative analysis by real-time PCR of IGF-1 mRNA splice
variants in human tissues.

The starting point of this study is the appropriate
preliminary equalization of the quantitative data, fol-
lowed by summary statistics and non-parametric esti-
mators based on the observed distributions (kernel
density estimates).

The clustering approach proposed in this work is
based on a finite mixture model (FMM) with Gaussian
components, which is an efficient model based cluster-
ing approach, available in several open-source statistical
computer packages.

In order to take into account potential dependence be-
tween technical replicates from the same tissue, we
propose a further clustering strategy, the finite mixture
of linear mixed models (FMLMM), which required a
specific implementation.
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In our analysis, both FMM and FMLMM provided a
convenient yet formal setting for model-based clustering
of a cohort of human tissues expressing three spliced
mRNAs. These approaches can be applied by the biolo-
gist to any cohort of tissues expressing several alterna-
tively spliced mRNAs, and can overcome the limitations
of classification methods based on the simple compari-
sons between splice variants expression levels.

Methods

Human cDNAs and RNAs

All the human samples, namely cDNA and RNAs, used in
this study have been purchased from Clontech and
Ambion; according the suppliers specifications, all human
c¢DNAs and RNA samples used were obtained from nor-
mal donors, essentially free from diseases. Pancreas cDNA
(derived from total RNA pooled from 15 male/female
Caucasians individuals), heart (A) ¢cDNA (whole heart)
(derived from total RNA from 3 male Caucasians), lung
cDNA (derived from total RNA from 1 male Caucasians),
liver (A) ¢cDNA (derived from total RNA from 1 male
Caucasians), placenta ¢cDNA (derived from total RNA
from 11 female Caucasians), kidney cDNA (derived from
total RNA from 4 male/female Caucasians), skeletal
muscle (A) cDNA (derived from total RNA from 4 male/
female Caucasians), brain (A) ¢cDNA (whole brain) (de-
rived from total RNA from 4 male Caucasians) were all
purchased from Clontech (Human MTC Panel I cDNAs).
Heart (B) cDNA (whole heart) was generated by Reverse
Transcription (RT) (see below) from human heart
total RNA (RNA from Clontech, pooled from 3 male
Caucasians); liver (B) cDNA was generated by RT from
human liver total RNA (RNA from Clontech, pooled from
3 Asian males); skeletal muscle (B) cDNA was generated
by RT from human skeletal muscle total RNA (RNA from
Clontech, pooled from 1 Caucasian male); uterus cDNA
was generated by RT from human uterus total RNA (RNA
from Clontech, pooled from 8 female Caucasians); brain
(B) cDNA (whole brain) was generated by RT from brain
total RNA (RNA from Clontech, pooled from 4 male
Asians); Brain (C) cDNA (whole brain) was generated by
RT from human brain RNA (FirstChoiche human brain
total RNA from Ambion, from 1 male Caucasian). Fetal
lung ¢DNA, Fetal skeletal muscle ¢cDNA, Fetal heart
c¢DNA, Fetal thymus cDNA, Fetal spleen cDNA, Fetal kid-
ney cDNA, were all generated by RT from human fetal
total RNA purchased from Clontech.

Reverse Transcription (RT)

First-strand cDNAs from each total RNA was generated
using a Reverse Transcription kit with random primers
(High Capacity cDNA Reverse Transcription kit; Applied
Biosystems) starting from 1 pg of total RNA as described
in [28].
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Real-time PCR

Newly synthesized cDNAs were diluted 5-fold in DNase-
free water and 5 % of the cDNA (or an equivalent quan-
tity of the purchased ¢cDNAs) was then used in each
real-time PCR assay. Each single determination was
performed in technical triplicate, using a 7500 Fast Real-
Time PCR (Applied Biosystems), and the TagMan Uni-
versal Master Mix II (Applied Biosystems).

The comparative Ct method was used to make a
quantitative measure of each IGF-1 splice variant and of
the housekeeping gene mRNA. In order to assure a valid
AACt calculation, only empirically validated TagMan
assay with an experimental efficiency approaching 100 %
were used. For each assay, the efficiency of the reference
gene (GAPDH) amplification and the efficiency of each
IGF-1 splice variant amplification, were experimentally
determined and compared within a progressive template
dilution. The validation experiments for each TagMan
assay were performed according the general recommen-
dation described in the Applied Biosystems User Bulletin
(ABI Prism 7700 Sequence Detection System #2) and
each assay was considered validated when the efficiency
of the housekeeping gene amplification and the target
gene amplification were approximately equal.

TagMan assays

All the TagMan assays were purchased from Applied
Biosystems (ABI). Refer to Fig. 1 to deduce the exon
organization of the different splice isoforms and the cor-
responding NCBI RefSeq transcripts detected by each
TagMan assay used. Human, IGF-1 “PAN” TaqMan
assay (ABI Hs01547656_m1) able to detect the human
IGF-1 transcripts corresponding to NCBI RefSeq NM_
001111284, NM_001111283, NM_000618, NM_001111285.
Human, IGF-1 Ea TagMan assay (ABI Hs01547657_m1)
able to detect the human IGF-1 transcripts corresponding
to NCBI RefSeq. NM_001111284, NM_000618. Human,
IGF-1 Eb TagMan assay (ABI Hs01555481_ml) able to
detect the human IGF-1 transcripts corresponding to
NCBI RefSeq NM_001111283, NM_001111285. Human
IGF-1 Ec TagMan assay (ABI Hs03986524_m1) able to
detect the human IGF-1 transcript corresponding to
NCBI RefSeq NM_ NM_001111283. Human GAPDH
TagMan assay (ABI Hs02758991_gl): reference (house-
keeping) gene able to detect the transcripts for human
glyceraldehyde-3-phosphate dehydrogenase (NCBI refer-
ence sequence of the transcripts detected by the assay:
NM_002046, NM_001256799).

Statistical analysis

All statistical analyses, including graphical representa-
tion, summary statistics, exploratory statistics, kernel
density estimation, finite mixture clustering and finite
mixture of linear mixed models have been performed
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using the open source software R, release 3.0.1 (code-
name: “Good sport”).

Kernel density estimation

The kernel density estimation (KDE) of a density func-
tion refers to non-parametric approaches to estimate the
probability density function of random variable X based
on the empirical distirbution of an observed sample, say
X = (xq, ..., %,,), whose elements are assumed to be inde-
pendent and identically distributed accoding to an un-
known density f{-|6). The aim is at providing an estimate
of f by using the information stored in the observed
sample x. The kernel density estimator for f is defined
by:

Falx) = %Z Kn(x—x;) = % Z K (x;lxi)

where Kj,(-) is the kernel, that is a non-negative function
that integrates to one, defined over a zero-mean random
variable, and % is a parameter, often referred to as the
bandwidth, that controls the smoothing of the data.
Intuitevely, one may choose a small h to provide the best
fit to the observed data; however, there is always a trade-
off between the bias of the estimator and its variance. By
using a small bandwidth, we may have a very local (i.e.
extremely variable) estimate, while adopting a too high
value may result in over-smoothing the observed distri-
bution. For this reason, in the present analysis, we used
4. different bandwidths, based on the Scott [18] and
Silverman [17] rules of thumb, on unbiased cross-
validation, see Bowman [19] and on the Sheather &
Jones plug-in [20], respectively. See Sheather [22] for a
comparison of the methods, refere to Sheather [21] for a
thourough discussion on density estimation. A range of
kernel can be used; due to its conveninet mathematical
properties, the Gaussian kernel is often used; in the
present context, we have used the Gaussian and the
Epanechnikov kernels, but for sake of space and given
the estimates do not substantially difffer, we report only
those based on Gaussian kernel.

Finite mixture of multivariate Gaussian densities

To provide a formal clustering of human tissues in this
study, we have decide to adopt a two-step strategy: first,
we have used a finite mixture model with Gaussian
components to cluster tissues in homogeneous classes,
considering the technical replicates for each tissue as in-
dependent. Then, we have used a finite mixture of linear
mixed-effects models, see Celeux et al. [6] and Ng et al.
[29] to take into account of possible clusters in the sam-
ple while allowing for dependence between technical
replicates corresponding to the same tissue. We will pro-
vide a brief description of both methods below.
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Model-based clustering via finite mixtures

We assume that each tissue belong to one of G discrete
classes, say Py, g=1,..., G, that is the population of tis-
sues is partitioned in G disjoint classes, P=U g G 1P,
Tissues belonging to a given class have a class- spec1f1c
density or probability mass function; the density func-
tion f{-) is of the same parametric form across classes,
but is parameterized by a class-specific parameter vector,
say 0, g=1,..., G. Clearly, we may extend this approach
allowing for the class-specific densities to have a class-
specific parametric form, but this is quite well beyond
the scope of the present work. Finite mixture models are
given the choice of a suitable density function f{-), and
for a given splice isoform [=1,2, the finite mixture
model specifies the marginal density for a set of r=1,.., R
replicates referring to the i-th tissue as follows:

X;) = Z”gf(xi | Gg) = Z”ng(xir | eg)

leading to the following observed data likelihood:

H Z”gf X; | 6 H Z”ng Xir | 6

which can be considered as a specific version of the
model-based clustering approach introduced by Basford
and McLachlan (1985) for three-way data [26]. Here, the
terms 7, g=1, ..., G represent the prior probability that
a tissue belongs to the g-th class, g=1,..., G, while the
vector X; includes the set of measures technical repli-
cates x;, r=1,...,R, and, for each replicate, the values
for the splice isoforms, /= 1,2. The assumption that:

Hf Xir | 6)

mimics the local independence assumption; it says that,
conditional on belonging to the class P, the replicates
corresponding to the same tissue are independent. How-
ever, due to the lack of general software routines to esti-
mate the former model, we have further assumed that
the technical replicates from the same tissues are inde-
pendent. This oviously simplifies the analysis and allows
the use of standard software, as it will beclear in the fol-
lowing. In this case, the likelihood reduce to

HHZﬂgf % |6)

i=1r=

f(xi]6;)

This assumption has also the result that the sample
size is increased from # to nR. We can postulate the ex-
istence of a set of binary indicator variables, defined as:

- J1lif(i,r)ep,
Zirg =\ 0 else
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indicating the component a tissue replicate belongs to.
Should these be observed, the estimation problem would
simply reduce to a multi-class problem, where the class-
specific parameter 6, is to be estimated only on tissues
belonging to the g-th component, g=1, ..., G. However,
the indicator variables are unobserved, and the number
G of components is also unknown and must be esti-
mated together with other model parameters. Thus, in
the following, we will refer to the couple (x;,z;) as the
complete data, and base our inferences on the following
procedure. Assuming that the G-dimensional (latent)
variable z;, has a multinomial distribution:

Zirg
zl r H

we derive the following density for the complete data:

:jm

Zirg
S (Xir, 2ir) xzr | 0 ﬂg]

g:1

Assuming that the tissue and the replicates are inde-
pendent on each other, we have the following expression
for the likelihood function:

~TTtstsee - T T 100}

i=lr= i=lr=

Therefore, the log-likelihood function for the complete
data can be written as:

G
C(@,ﬂ)oczzzirg [log(”g) +logfirg]7 (1)
i g=1

where f;,, = f(x;.| ;). Since the latent vector z; is unob-
servable, we use the EM algorithm to perform maximum
likelihood estimation;this is an iterative algorithm, where
two steps can be identified. In the first step, the E-step,
of the algorithm, we define the log-likelihood for observed
data by taking the expectation of the log-likelihood for
complete data over the unobservable class indicator vector
z;, given the observed data x;, and the current maximum
likelihood estimates of model parameters, say 6. In other
words, at the t-th step, we replace z;, by its conditional
expectation:

(t)
2ua (89) = i = ;f”g ('(0(:2 . @)
Jirg

which represents the posterior probability that the ir-th tis-
sue replicate belongs to the g-th component, given the ob-
served data. The conditional expectation of the complete
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log-likelihood given the observed data x is expressed by
the function:

QY (6, m) =

LN 505 ot
x{logfirg(-wt > —I—log( <t))}
(3)

If we use, a multivariate Gaussian density with
component-specific parameter set given by 6, = (i, Z,) as
class-specific density, we obtain the following expression:

LEDD 3

i r 1
{1082 . 3 w2 e tog '] |

(4)

where the superscript T denote matrix transpose, and
under the constraint Y m,=1. In the M-step of the
algorithm, we maximize QY(.) with respect to 6, and
obtain the following ML estimates for the parameters of
the Gaussian density in the g-th component:

T
szrgx” Zwl(:; [X,‘r - I:‘g):| [xir - ﬁét):|

ﬁ(t) - A(t) = ;
’ szrg D Wi
g= 1,...,G

while te prior estimates are:

(t)
Zwirg
A(t> _ Lr
”g - n (6)

which are well known results from ML in finite mix—
tures. Solving these equations for given weights w{ and
updating the weights for given parameter estimates 6
defines an EM algorithm. The E and M steps are alter-
nated repeatedly until convergence, which is obtained
with a sequence of log-likelihood values which is
bounded from above. Thus, we reach a solution for a
given G, which can be used to estimate model parame-
ters when we move to the solution for G + 1 classes. The
corresponding solutions may be compared using penal-
ized likelihood criteria, such as AIC o BIC, since the
standard conditions do not holt to use the standard LRT
statistic (the corresponding distribution under the null
hypothesis is not the standard one). Once the EM algo-
rithm has reached its end, the tissue replicate can be al-
located to the comonent having the highest posterior
probability wwg, in this way we obtain the clustering we
are looking for, and compare estimated parameter values
corresponding to the different classes, to characterize
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the obtained results. To avoid the well know sensitivity
of the results obtained by the EM algorithm from the
choice of the starting values for model parameters and/
or posterior probabilities, we employed, prior to the EM
algorithm, a short-length CEM algorithm [30] which is
quite flexible and robust to the presence of extreme
values. This procedure often outperforms the one based
on the comparison (in terms of penalized likelihood cri-
teria) of results obtained using several random starts for
the basic EM algorithm.

Finite mixtures of linear mixed-effects models
As previously stated, in order to improve the quality of
the clustering results, we should take into account the
technical variability deriving from the replicated measure-
ments taken on the same tissue. In this case, linear mixed-
effects models (LMMs) are defined to model repeated
measures for a given statistical unit (in our case human
tissue), and allow to separate measurement error variation
from between-units variation (variability of the same splice
variant between different tissues) and within-units vari-
ation (between technical replicates from the same tissue).
To propose a model-based clustering tool for technical
replicates, the standard finite mixture model (FMM) pre-
viously discussed, has to be modified to the LMMs con-
text. The idea was developed by Celeux et al. [6], where a
mixture of LMMs is proposed in order to account for the
variability in measurements while performing clustering.
In details, let x; be the observed 2R-dimensional vec-
tor, representing the values for the i-th tissue, corre-
sponding to the R technical replicated measurements on
the 2 splice variants. To take into account replicated
measurements in the finite mixture framework, Celeux
et al. [6] simply added the assumption that the replicated
measurements of a statistical unit (in our case tissue) be-
long to the same mixture component. In this way, we
are able to model the covariance structure between the
r-th and r'-th technical replicate on the i-th tissue from
the [-th splice isoform, cov(x;,, x;,+). Thus, it is assumed
that the observed 2R-dimensional vectors x,...,X,, are
drawn from a mixture of G components with unknown
proportions 7y, ..., T (X4, =1), and that, conditional
on belonging to the g-th component of the mixture, each
vector Xx; referring to the i-th tissue can be specified by
the following linear mixed-effect model:

X; = V((Xg + uig) + €jg (7)

where V is a known (2R x 2) design matrix defined by

_(1r Og
v=(or 1) ®
with 1 and O representing unit and null vectors of size
R, a4 is a 2-dimensional vector of fixed effects modelling
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the conditional mean of x; in the g-th component, u;,
represents a zero-mean 2-dimensional vector of random
effects shared by the replicates corresponding to the
same tissue capturing the technical variability, while e;,
represents the measurement error vector. The random
effects u;, and the measurement error vectors e, are as-
sumed to be mutually independent. Furthermore, the dis-
tributions of e;, are and u;, are assumed to be multivariate
Gaussian, MVN(0, Q,) and MVN(0, ®@,), respectively.

It is worth to notice that Celeux et al. [6] specified the
covariance matrix ®, as diagonal; however, in our study,
we have considered a non-diagonal covariance matrix
since we allow for correlation between measurements
corresponding to different splice variants on the same
tissue. Moreover, Celeux et al. [6] specified the covariance
matrix Q, to be equal to oﬁlzR, with Iz being a 2R x 2R
identity matrix; in order to allow the g-th component-
variance to be different between the 2 splice variants, we
assumed that €, = diag(Vo‘;), where ofg = (a‘é, aﬁg)'.

Given these assumptions, the component-specific mean
vector and covariance matrix of x; are

u, = Vag
and
X, = V(I)gV’ + Qq,

respectively. In other words, the model does not only as-
sumes dependence between two technical replicates (on
the same tissue and for the same splice variant), but also
between measurements corresponding to different splice
variants. Ng et al. [29] further extended this model, add-
ing another random effect which induces dependency
among statistical units from the same class.

The estimation of the model parameters of a finite
mixture of linear mixed-effects model can be obtained
by maximum likelihood (ML) via the EM algorithm. The
missing data are of two types: the indicator variables z;
indicating the component a tissue belongs to and the
randon effects u;, (i = 1, ..., n) for each class.

Let 7 =(my, ..., mg) be the mixing proportions, 6, = (a,
@, qé) be the parameter vector associated to each compo-
nent P,g=1,..., G, and 0 = (ay, ..., 6y, @y, ..., D, G%, o O'ZG).
The log-likelihood associated to the complete data (x, z) is
given by

=" "z log(mef (xiug [ 6))  (9)

i g=1

66(67”|xi;zi7uig)
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Conditionally on the g-th component, x; is a realiza-
tion from a MVN(a,V, VO,V "), therefore, fx; u,|6,) is a

. o . o,V
Gaussian distribution with mean p, = ( f) ) and co-

Vo, V' + Q, Vo,
D, V' D, )

At the t-th iteration, the E step, we compute the ex-
pectation of the complete-data log-likelihood conditional
on the observed data and the current value of the par-
ameter 8, 7 which is given by

variance matrix ), = <

©(8,m) = E{EC(G, TT|X;, 2, g ) |X, 6", n(t)}

G
= Zzwg) log(ﬂg))
+Zzwtg { £ (Belxi,w) x, 6% }

(10)

with
1 1
S (6gxi ;) = -5 (2R +2) log(Zﬂ)—EZRlog(‘QgD
- log(}(Dg{)
1 ’on_
3 (xi=V (g + uyg) ) " (xi-V (eg + uyg))
— Euig/leuig
(11)
where
(t) (t)
e f x:]0 )
(0 _ g ( g
o= FNTET (12)

G
3t (s10)

denotes the posterior probability that x; arises from the
g-th component. In the M-step of the algorithm, we
maximize Q(t)(~) with respect to 8, and m, Using the
conditional expectation of the sufficient statistics. Since
;i w and (x;x — Vuy), we obtain the following estimates
forg=1,...,G:

>
ig
76 — ¢

g n

diag (a3 ) (V') 'V (VO[IV + diag (V 2“)) Zw [(x-vel?)]

(t+1) — ()
L

2
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2(t+1) _

g S ) o)) )]
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(15)

where V), is the s-th column vector of V(h =1, 2), u(t) is a flexible estimator of u,, based on its posterior mean condi-

tional on the observed data, given by

-1
E(ug|x) = Wg) d{f)v’ (Vd{g)V’ + diag (Vaz(t))) (Xi—Vag))

(16)

and yg) corresponds to the trace of the current conditional covariance matrix cov(e;,|x), and, finally,

-1 -1
S w @OV (VOO V' + diag(Vey") ) (xi-Vaf) (xi-Vai) ' (VOUV' + diag (e} ) ) Vel

(t+1) —
d)g =

+ [I—cbpv’ (VoOV' + diag(Va;" )

The EM algorithm to obtain the ML parameter esti-
mates given the number of classes G has been imple-
mented by using an adaptation of the Emmixwire
program for the R environment; the original script is freely
available at http://www.maths.uq.edu.au/~gjm/mix_soft/
EMMIX-WIRE/index.html. The number of components
has to be chosen according to the BIC.
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