Generalized homogeneous approximations and the global stabilization
problem of nonlinear systems

Stefano Battilotti

Abstract— We introduce a new notion of generalized homoge-
neous approximation at the origin and at infinity which extends
the classical notions. Homogeneous systems in the generalized
sense are a very large class of nonlinear systems, including
(lower and upper) triangular systems. Exploiting this extension
we give basic results concerning stabilization and robustness
of nonlinear systems which have a generalized homogeneous
approximation at zero and at the origin.

I. INTRODUCTION

The problem of designing stabilizing feedback control
laws for nonlinear systems has been addressed by many
authors with different approaches. Many of these use dom-
ination tools and robustness. In a domination approach the
stability of a system © = f(x) + g(x)u+ ¢(z) is ensured by
designing a stabilizing feedback controller for & = f(z) +
g(z)u provided that the stability property of the closed-loop
system is robust with respect to the perturbation ¢(x). This
domination idea has been largely exploited by employing
homogeneous feedback controllers with homogeneous sys-
tems & = f(x) + g(x)u ([4], [11], [5], [8], [9], [10]). The
idea of extending this approach to system which are not
homogeneous but admit a homogeneous approximation at the
origin, i.e. when the state tends to the origin, is pursued in
[3], [11] and [5]. Recently, in [2] this domination technique
has been extended to systems which are not homogenous but
become homogeneous as the state tends to the origin or to
infinity but with different weights and degrees (homogeneous
approximation in the bi-limit). However, maps like f(x) =
(w2, cord + cnxh)T, 0 < ¢ < p, admits a homogeneous
approximation at the origin and at infinity only when p < 2.
Homogeneity (in the bi-limit) in the classical sense of a
given map f(x) is characterized by some degree ? and
weights t. In this paper, following some preliminary papers
([1]), we introduce a generalized notion of homogeneity
(in the bi-limit), which significantly enlarges the class of
homogeneous maps (in the classical sense). The difference is
that a generalized homogeneous map f(x) is characterized
by some vector degree 0 and weights v. The degree 9; of
f(z) is the homogeneity degree of the component f;(z).
For example, f(z) = (w2,c0rd + cozb)?, 0 < ¢ < p,
is homogeneous (in the bi-limit) in the generalized sense
whatever p > ¢ is. The homogeneity in a generalized sense
(unlike the notion of generalized homogeneity introduced in
[1]) shares all its properties with the homogeneity in the
classical sense ([4], [11], [5], [8], [2]). We will use this new
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notion to design a homogeneous (in the bi-limit) stabilizing
state-feedback together with a Lyapunov function with a
homogeneous (in the bi-limit) derivative for a chain of power
integrators and then consider this dynamics as the dominant
dynamics near the origin and infinity of a chain of power
integrators with nonlinear perturbations. By the domination
approach we establish the global asymptotic stability of
chain of power integrators with nonlinear perturbations. For
reasons of space, we focus our analysis on state feedback
stabilization, leaving output feedback stabilization for a more
complete study.

II. NOTATION

o R™ (resp. R™*™) is the set of n-dimensional real column
vectors (resp. n X n matrices). R (resp. RY) denotes
the set of real non-negative numbers (resp. vectors in
R™ with real non-negative entries) and R (resp. RZ)
denotes the set of real positive numbers (resp. vectors
in R™ with real positive entries).

o For any G € RP*™ we denote by G;; the (i, j)—th entry
of G and for any G € R? by G; the i—th element of G.
We retain a similar notation for functions.

o For any real t > 0 we define w — w' as w* =
sgn{w}|w|®. Notice that

d(w")
dw

« The dilation of a vector x € R™ with weights v € R"”
and parameter € > 0 is defined as

wy > wy = wj > ws, = tjw|[h

fox = (e, -, e ay,)T
We also use the notation zP = (z}',--- 2P»)T for
xz,peR™

III. GENERALIZED HOMOGENEITY

In this section we introduce the notion of generalized
homogeneity (in the bi-limit).

Definition 3./: (Generalized homogeneity). A function
¢ € C°(R™,R) is said to be homogeneous (in the gener-
alized sense) with triple (t, ¢, @) (weights v and degrees ¢) if
there exist e € RL\{0}, v € RZ and @ € C°(R",R") such
that for all w € R™\{0} ande > 0

d(efow) =€ o O(w) (D)

Remark 3.7: Definition 3.1 generalizes the definition of
homogeneity (in the classical sense: [4], [11], [5]) as follows:
¢ € CO(R™,R") is homogeneous (in the classical sense)
with weights v and degree ¢ if and only if ¢ is homogeneous



(in the generalized sense) with weights t and degrees ¢ such
thate; —t; =¢g forall j=1,...,no

Remark 3.2: Weigths and degrees are not uniquely de-
fined. Any homogeneous (in the generalized sense) ¢ with
triple (t, ¢, @) is also homogeneous (in the generalized sense)
with triple (kt, ke, @) for any k& > 0.0

The function

P(x) = (ﬁ“”fx%) @)

is homogeneous (in the generalized sense) with triple

o= (()-(3)- (%)

Note that ¢ is not homogeneous (in the classical sense).

If a function ¢ (x) is not homogeneous (in the generalized
sense), it might become homogeneous (in the generalized
sense) when z is close to the origin or to infinity. The
following definitions generalize the notion of homogeneous
approximation of a function at infinity and around zero.

Definition 3.2: (Generalized homogeneity in the oo-
limit). A function ¢ € CO(R™,R!) is said to be (in the
generalized sense) homogeneous in the co-limit with triple
(x®,e®, @) (weights t*, degrees ¢* and approximating
functions ®®) if there exist ¢ € RL\{0}, t* € R and
®* e CO(R™,R!) such that for each A* > 0 and compact
set € < R™\{0} there exists e > 0 for which

max Hsfem o (e ow) — (I)OO(w)H <A* 3)
we

foralle = e®.
The function

. T2 1
blx) = <x% + x5+ 23 ) “)

is homogeneous in the co-limit with triple

(ﬂawa®w>=((§>v(§)v(x{fx§))

Note that ¢ is not homogeneous in the oco-limit (in the
classical sense).

Remark 3.3: The approximating function ®* is homo-
geneous (in the generalized sense) with triple (™, e®, ©®%).
Indeed, for each p > 0 and w € R™

OF (1 o w)
eaCallo

[’e)

W(GON

) o (ufp)

lim
EhE

£—>+00
]

Definition 3.3: (Generalized homogeneity in the 0-limit).
A function ¢ € C°(R",R!) is said to be homogeneous (in
the generalized sense) in the 0-limit with triple (¥, ¢?, ®®)
(weights 9, degrees ¢° and approximating functions ®°) if
there exist ¢ € RL\{0}, " € R? and ®° € C°(R",R') such
that for each \° > 0 and compact set ¢ = R™\{0} there exists
€% > 0 for which

e o d)(fsto ow) — CDO(w)H <A (6)

max
wel

foralle < 0.

The function

— L2 1
() = <x% + a3 + a2 ) @)

is homogeneous (in the generalized sense) in the 0-limit with

triple
1 4 X9
00, @O =( 1 )
('C72, ) 4 ) 2 9 Z‘%‘l‘l’f

Note that ¢ is not homogeneous in the O-limit (in the
classical sense).
Definition 3.4: (Generalized homogeneity in the bi-limit).
A function ¢ € C°(R", Rl) is said to be homogeneous (in the
generalized sense) in the bi-limit with triple (t*°, ¢*, ®*) and
(9, ¢, @9) if it is homogeneous (in the generalized sense) in
the co-limit with triple (¢*°,¢*, ®*) and homogeneous (in
the generalized sense) in the 0-limit with triple (¢°, ¢°, ®°).
Remark 3.4: Definitions 3.2, 3.3 and 3.4 generalize the
definition of homogeneity in the oco-limit, O-limit and bi-
limit (in the classical sense: [2]). Weigths, degrees and
approximating functions are not uniquely defined. o
Consider the vector field ¢p(x) = (xg,coxgo +c*28")
with p > 0, 0 < q° < ¢® and ¢®,c > 0. It can be
seen that ¢ is homogeneous (in the generalized sense) in the
bi-limit with triple ((1,2), (1, max{1, 2==1), (a5, Pa]’),
p = 0,00. In comparison with the notion of homogeneity in
the bi-limit of [2] it is not required that %, q® < 2.
Remark 3.5: (Triangular maps are homogeneous in the
bi-limit). Homogeneity (in the generalized sense) in the bi-
limit significantly enlarges the class of homogeneous maps
(in the classical sense) in the bi-limit. In particular, triangular
maps ¢ are always homogeneous (in the generalized sense)
in the bi-limit with some triple (t?,¢?, ®P), p = 0, 0.
Similar facts hold for ¢ norm-bounded by triangular maps.o
From now on we will omit the term “in the generalized
sense”.

IV. HOMOGENEOUS STATE FEEDBACKS FOR A
CHAIN OF POWER INTEGRATORS

The notion of homogeneity (in the generalized sense) in
the bi-limit is instrumental to introduce new stabilization
methods. Throughout this section we consider a chain of
n power integrators, i.e.

iz = Ax® + Bu (8)

where A € R™", B € R"™! p € RZ such that pj,
j = 1,...,n, is the ratio of odd numbers and (A, B) is
in Brunowskii form. For any non-decreasing sequence of
reals {D‘;-O}j:l _____ n (resp. non-increasing sequence of reals
{09—}]‘:17_“7”) we see that to obtain homogeneity (in the
generalized sense) of the vector field associated to (8) with
degrees (t® + 0%) (resp. (t° + 0°)) and weights t* (resp.
t%) we must choose t® (resp. tV) as follows

I L

R 1p =l i=2.. . n p=00m. (9

J



Also, in this context it is natural to require that

Yol >0,Vi=1,...,n,p=0,00. (10)

(? + 0¥ is the degree of the i-th component of the vector
field associated to (8)).

It is known that (8) can be rendered homogeneous (in
the classical sense) in the bi-limit by using a stabilizing
homogeneous in the bi-limit state feedback which can be
designed by backstepping ([2]) and a converse Lyapunov
result for homogeneous systems ([11]). In this section we
show that this property can be extended to the case of
homogeneity (in the generalized sense) in the bi-limit. More
precisely, we show that there exists a homogeneous (in the
generalized sense) in the bi-limit function o(z) such that
the vector field f := Ax + Bw (associated to the closed-
loop system (8) with u = «) is homogeneous (in the
generalized sense) in the bi-limit with triple (7, t? 407, §7),
p = 0,00. We will do this by first defining a homogeneous
in the bi-limit control law for (8) and then a homogeneous
in the bi-limit Lyapunov function V' for the closed-loop
system. We do not follow the step-by-step approach of [2],
which requires at each step a converse Lyapunov result for
homogeneous systems ([11]), and give the controller in one
step. This provides new types of controllers even in the case
of homogeneity in the bi-limit in the classical sense.

A. Definition of the state feedback law

Let X7 := (x1,...,2;) and p; := 1. Define recursively
the following function
ax) == ™ (X")
o (27) = [e —(E0) TR (g (a0 (7))
+(1— o (PO CTHTRID (g ) (0 (%))«
j=1,...,n—1, «’ =0, (11)
with
ocj’p(f{j) =

—y;(C (X))
— (@)

(. .ap;
(<

J 1
Gr@) = (3 |~ (@@ a2
i=1
for p=0,00 and a,b,m; > 1, ¢ = 1,...,n, such that
0
a> max —ko (13)
i PG
b >  Inax ap;ef (14)
m; > alrrllax_pltfo (15)
m; > a(t® +0%), i=1,...,n, (16)

and vyq,...,Yn = 1 are positive reals to be specified later.
Proposition 4.1: Let {D?o}j=1 n (resp. {b }i=1,..n) be
non-decreasing (resp. non—increasmg) sequence of reals and
P, p = 0,00, be as in (9) and satisfy (10). The vector field
f™ = AzP + Ba™ is continuous over R™ and homogeneous

(in the generalized sense) in the bi-limit with triple (v?,t? +

0P F™P), p = 0,00, where
n,p . Pit1 s
S =, i=1...,n—1,

FP = _yj(BJ p)a(r§+0‘°—pa o).

( ap; _ (g] 1,p) (:{j—1))37 =1, .m, gg{p -0,
with
. J ] —b 1
3]71) = (Z x?pi _ (S:L_l’p)u ap;et ) 77 (17)
=1

Proof: We claim that f™ is continuous over R”. It is
sufficient to prove continuity of a”. Let do this by induction.
Assume that o/ ! for some j = 2,...,n is continuous
over R7~!, By the induction hypothesis, on account of
(10) and continuity of (P, p = 0,00, over RJ, since
(i P)e| < v, (¢7P)* G+ for p = 0,00 and for all
X7 € RI\{0}, o’ is continuous over R/ with a7(0) = 0.
With similar arguments we prove continuity of o' over R.
This concludes by induction the proof that o™ (and therefore
f™) is continuous over R".

Let % := (tf,...,t}). To prove the second part of
the proposition, first we show by induction that «”™ is
homogeneous in the bi-limit with triple (¢?,t2 + o2, FP),
p = 0,00.

Induction Step (j — 1).
homogeneous in the bi-limit with triple (9%/~1P, ¢

] 175] 1’p) p=0,0.

We show that the induction step holds for j. This follows
from the induction step, (10), propositions 1.1, 1.5, 1.6 (if
t§+0§7p1t§ > 0), 1.7 (if t§ +9% —p;v% < 0) and 1.8 and the
fact that (7P is positive definite and radially unbounded over
RJ. In a similar way, we prove that «! is homogeneous in the
bi-limit with triple (v], ] + 97, §L?), p = 0, c0. Therefore,
by induction we conclude that «™ is homogeneous in the
bi-limit with triple (¢?,tf + o2 FIP), p = 0, 0. Using the
definition (9) finally we establish that f™ is homogeneous in

o~ for some j < n is
1 +

the bi-limit with triple (¢?,t? + 07, F™P), p = 0, c0. [ |

Remark 4.1: Notice that if v} < t9p; forallj =1,...,n
and k =1...,75 and p = 0,00 then a simple choice of a is
a = 1. Also notice that when 9 > 9 for all j = 1,...,n

on account of proposition 1.2 , the definition of o’ can be
remarkably simplified as o/ := [(a/0)® 4 (ad)%]«

B. Construction of the Lyapunov function

Let
1 ifo=p
2, _
(@.h)eR Sa.p { 0  otherwise (18)
Define the following numbers
c§ =P —of — tf — apjt?7 (19)
j=1,...,n, for some ° w® > 0 such that ¢°,¢® > 0
and

0 0 0 0 0 0 0
¢+ —apivy — v >+ —apiv — v >0,



1 < k < 7, and recursively the following function

V() := VX", VI(&) = Vi1 (3771 + VI0(z)

+VIi®P(x),5=1,...,n—1, VO(x;) := 0, (20)

where
ij(%j) — (Cj,p)C]? (:{J) .

~ f | [s% — (@919 ds, p =0, 0.
(i =1 (29-1)) s

We have the following result.

Proposition 4.2: Let {09°};_1 _n (resp. {a?}j:17...,n) be
non-decreasing (resp. non-increasing) sequence of reals and
P, p =0, 00, be as in (9) and satisfy (10). Moreover, let m,
a and b satisfy (14), (13) and (15) and ¢, p = 0, o0, be as in
(19) and satisfy (20). The function V™ is positive definite and
radially unbounded over R™ and (%L;)T is continuous over
R™ and homogeneous (in the generalized sense) in the bi-
limit with triple (v?, (to? —0f —¢, ... 0P — 02 —t) Y"P),

p =0, 00.
Proof:
We proceed by induction. As wusual let RP :=
(..., )T, p=0,00.

Induction Step (j — 1). For some integer j € [2,n]
the function V7=! is positive definite and radially un-
bounded over R/~1, (‘;gj:)T is continuous over R/~1,
with (gg;:)T(O) = 0, and homogeneous (in the gen-
eralized sense) in the bi-limit with triple (R/~%P, (wP —

of —f, . P —F =), (T SO, p =
0,00, and (”(00;) )'. i = 1,...,j — 1, is continuous
over R?, with (%)T(O) = 0, and homogeneous in the

bi-limit with triple (RP, ap; el
(D1, p =0, 0.

We show that the induction step holds for j.

(V7 is proper and radially unbounded over R7). Since (77,
p = 0,00, is positive definite and radially unbounded over
R/ and by the induction hypothesis (V7! is positive definite
and radially unbounded over R7~1), V7 is positive definite
and radially unbounded over R7.

(«( g;; )T is continuous over RY). Use the induction hypoth-
esis, (9), (10), (13), (14), (15), (20) and the fact that C"P,
1 <i<jand p = 0,00, is positive and continuous over
RN\{0} and ¢ < (PP, p = 0,00, forall | <i < j— 1 and
X7 eI, ‘

( Homogeneity of ( g;j )T). Use the induction hypothesis,
(16), (20) and propositions 1.1, 1.2, 1.4, 1.5 and 1.8.

This proves the induction step for j. It is easy to see that
V1 is positive definite and radially unbounded over R, %
is continuous over R and homogeneous (in the generalized
sense) in the bi-limit with triple (¢}, w? — o} — o, GT?P),
p = 0,00. This concludes the proof by induction. |

As a second step, we prove that the derivative of V' along
the trajectories of the closed-loop system (8) with u = o
is negative definite.

Proposition 4.3: Let {09°};_1 _n (resp. {0?}j217,,,,n) be
non-decreasing (resp. non-increasing) sequence of reals and

- tzl)a R api+1t§)+1 -

P, p = 0,00, be as in (9) and satisfy (10). Moreover, let
m, a and b satisfy (14), (13) and (15) and ¢?, p = 0, 0,
be as in (19) and satisfy (20). The function (S‘é:) fmois
homogeneous (in the generalized sense) in the bi-limit with
triple (tp,mp,(ag—;f”)p), p = 0,00, where (%/Tnf”)p =
S BPEP. Moreover, there exist y¥, ...,y > 0 such
that

ovn® .. ovn

(S M@ <0, (S

for all  # 0 and for all y; Zy;‘f,j: 1,....,n.

Proof: We proceed by induction. Let f7(X7) :=
(22, 2% od (39))T with f'(1) := oty (21). Moreover,
RIP = (e, )T, p=0,00.

Induction Hypothesis. (g‘g )f7 is for some j € [1,n—1]
homogeneous in the bi-limit with triple (R}, w?, (58‘;] p),
p = 0,00, where (%fj)p = f=1 [ PFP. Moreover,
there exist vy, ...,y > 0 such that

<0, (

[P (@) <0, p=0,00, 2D

oV
0X7
for all X7 € R\{0} and forally; > v¥,i=1,...,].

We will prove the induction step for j + 1. Notice that

oV

(G /E) <0, (57 F)"(¥) <0, p=0,0 (22)

p2
Lo

Vit
o0xi+1

avj +1
0xJ

Vit

011

fj+1 _ : + (xj+1
Pji+1
l‘j+1

=g —yjpa07t! (23)

apj+1
. J+1
(o) as well as @j41 — (§;) "+ and z3HT — (§5)* have
the same sign, it follows that 0/*! is nonnegative and it is
zero only at points X7 € RI\{0} : z;11 — o = 0, as well
as o/ thP p = 0, o0, is nonnegative and zero only at points
X7 € RI{0} : w1 — §5F, = 0. This together with the
induction hypothesis implies that

P S
From proposition 4.2 and since ;41— (o) Pi+1 and

(X7 e RITI\{0} : 07! = 0}

c{xXIt e RITI\{0} : 7T <0}

(X e RITI\{0} : o/ T1P = 0}

c (Xt e RITI\{0} : 27T < 0}, p =0, 00,

for all v; = v¥, ¢ =1,..., . By application of proposition
1.9 to &1 and o/t! it is concluded that there exist
Yi, .. 71/;'.‘“ > ( such that

Vit
(axﬂl
aijrl
(61{j+1
for all X7+1 € RI*1\{0} and for all y; > v¥,i=1,...
1, i.e. the induction hypothesis for j + 1.
We conclude the proof of the proposition by induction. It is
easy to see that % f' is homogeneous (in the generalized

fj+1) <0

f]+1)?<0’ jzl""7j+17p20’w

g+



. “oge . . . 1
sense) in the bi-limit with triple (t?,w?, (% Hr), p =

1
0, o0, where (%fl)p = U7PFIP. Moreover,

ov'!
(

6131
for all z; # 0 and for any y; > 0. This completes the proof
of the proposition by induction. [ ]

oVt
fl) <07 (Txlfl)p <0a p=0aoc7

V. RESULTS ON STATE FEEDBACK
STABILIZATION AND ROBUSTNESS

The following result is the key result for establishing the
global asymptotic stability of a given system from the global
asymptotic stability of its approximations at zero and at
infinity.

Proposition 5.7: Assume

(i) the existence of positive definite and radially
unbounded V : R — R such that ($%)7 is contin-
uous over R™ and homogeneous (in the generalized
sense) in the bi-limit with triple (¥, (0? — o) —
o], P — 0P — P PP, p =0, 0,

(i) f: R »> R and g : R® — R are continuous
and homogeneous (in the generalized sense) in the
bi-limit with triple (¢?,0/P + ?,§P), p = 0,0,
and, respectively, (t?,09P+tP, &P), p = 0, 00, with

fr0 0 .0 0 .
0 200 0T <0 =1,
(iii) for all nonzero x

ov ov

(%f)(x) <0, (Ef)p(x) <0, p=0,00 (24)

where (% £)? and ((;—‘; f)® are the approximating
functions associated with %—‘; f at zero and, respec-
tively, at infinity.
There exists ¢* > 0 such that the origin of & = f(z)+cg(x)
is globally asymptotically stable for all ¢ € [0, c*].

From this proposition, together with proposition 4.2 and
1.2, it readily follows a stabilization result on a chain of
power integrators with a nonlinear additive perturbation.

Theorem 5.7: Let {09°};—1 . n (resp. {a‘?}j:17.._,7L) be
non-decreasing (resp. non-increasing) sequence of reals and
P, p = 0,00, be as in (9) and satisfy (10) and consider the
system & = AxzP + Bu, where A € R"*", B ¢ R"*! and
(A, B) is in Brunowskii form. Assume

(1) g : R — R is continuous and homogeneous
(in the generalized sense) in the bi-limit with triple
(P, 0P + P, &P), p = 0,00, with 9 > 0¥, 2% <
U?,jz 1,...,n.
There exist c*,y¥,...,v% > 0 such that the origin of = =
Az? + Bu + cg(x) with u = «(x) and o defined in (11),
is globally asymptotically stable for all ¢ € [0, c*] and v; >
Yii=1...,n
VI. CONCLUSIONS

In this paper we have introduced a generalized notion of
homogeneity and homogeneous approximations. Generalized
homogeneity has most of the properties of classical homo-
geneity but captures a much larger class of nonlinear maps.
Generalized homogeneity allows to design homogeneous

state feedback stabilizers for vector fields such as chain
of integrators and then stabilization is retained despite of
nonlinearities with a homogeneity degree greater at the
origin and smaller at infinity of the one of the chain of
integrators. Further study will be devoted to output feedback
stabilization.
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APPENDIX

Throughout we will omit the term “in the generalized
sense”.

1) Linear combinations of homogeneous functions: The
following results can be proved as a direct consequence of
our definitions.

Proposition /./: (Sum of functions). Assume that &, :
R®” — R! are homogeneous in the bi-limit with
triple (x®P, 0®P ®P), p = 0,00, and, respectively,
(%P o¥P WP) p = 0,00 such that foralli = 1,...,l and
j=1...,n
¢,p
3

$,p
2

p¥P

1
Uv,p
t

k=3

(25)
The function ¢ +1 is homogeneous in the bi-limit with triple
(tdxp’ p®P O@P +WP), p=0,c0.
Proposition /.2: (Domination). Assume that &,V

R"” — R! are homogeneous in the bi-limit with
triple (t®P v®P ®P), p = 0,00, and, respectively,
(t¥P o¥P WP) 1 = 0,00 such that forall i = 1,...,] and
j=1,...,n

V,p P,p
t1 _ _ tn
=...= ,
t;b,p tﬁ,p
1,00

o * > PP (resp.o?? < o) (26)

i



The function ¢ + 1 is homogeneous in the co-(resp. 0-)limit
with triple (x*, 0%%, ®%) (resp. (x*, 00, ®Y)).

2) Absolute value: This proposition follows directly from
the fact that ||a| — ||| < |a — b for all a,b € R.

Proposition /.3: (Absolute value of functions). Assume

that ¢ : R™ — R! is homogeneous in the bi-limit
with triple (¢®?,0®P? ®P), p = 0,00. The function
(|p1l, ..., |dn])T is homogeneous in the bi-limit with triple

(x>, 00P (JO7],... |O7)T),p = 0,0.

3) Derivative and integral of homogeneous functions:
It is not possible to say anything on % when dealing
with homogeneity in the bi-limit. On the other hand, for
the integral of a homogeneous ¢ : R™ — R we have
the following result, which is a direct consequence of the
definition of homogeneity in the bi-limit.

Proposition /.4: (Integral). Assume that &

R™ — R is homogeneous in the bi-limit with triple
(vP 0P, ®P), p = 0,00. The function z +— VP(z) :=

T .
o P, 1,8, g, a)ds, 1= 1,00 n, s

homogeneous in the bi-limit with triple (¢?,0” + tf, WP)
. T

with W2 := ol O (z1,..., 211, S, T141, - - -, Ty )dS.

The following results can be proved as the analogue results
in [2].

4) Composition of homogeneous functions:

Proposition /.5: Assume that ¢ : R” — R is homoge-
neous in the bi-limit with triple (t®? v®P ©P), p = 0, co,
with v®? > (0 forall j = 1,...,n,and Z : R — R
is homogeneous in the bi-limit with triple (tC’P7UC°p,3p),
p = 0,00. The function z — (Z o ¢)(z) = Z(d(z)) is
homogeneous in the bi-limit with triple (t®7, ‘;j—::ud’vp, Wp)
with W := 37 o @F.

5) Product and ratio of homogeneous functions:

Proposition /.6: (Product). Assume that ¢ : R” —
R! is homogeneous in the bi-limit with triple (¢, (0P —
3, ..., 0P —32) @P), p = 0,00, and P : R® — R is
homogeneous in the bi-limit with triple (¢?, 37, WP), p =
0,00. The product ¢p7 is homogeneous in the bi-limit
with triple (¢7, 07, ($TP)P), p = 0,00, where (¢TP)P :=
D=1 (PRYF).

The following result follows from the fact that continuous
functions are also uniformly continuous on compact subsets.

Proposition /.7: (Ratio). Assume that

(D B : R® — R™ is homogeneous in the bi-limit
with triple (t?,0?,BP), p = 0, o0,

M x:R* >R, ¢ :R* > R, z— dx) :=
O(a(x) + p(z)), and P : R* - R, 2 — P(x) :=
Y(o(z) + B(x)) are such that

_ed%p

5 P ox) = OP(AP(x) + e o (™ o)),
e (e ox) =WP(AP(z) + e o B(,e" o))
for some ¢®? > ¢¥? and for all ¢ > 0 and = €

R™\{0},
() & and 37 = SETDERIEN ) — 0,00, are
continuous over R™.

The ratio % is homogeneous in the bi-limit with triple

P
(tp7 e¢7p - e¢7p7 W)’ p= 07 0.

A. Designing homogeneous in the bi-limit functions from
homogeneous functions

In our paper we extensively use the following procedure
for obtaining a homogeneous in the bi-limit function from
the combination of two functions, the first one homogeneous
in the co-limit and the other one homogeneous in the 0-limit.

Proposition /.8: Assume that

@ ¢? : R™ - R, p = 0, 00, is homogeneous in the
p-limit with triple (¢, 0?, ®P) and vb* > 0 for all
k=1,...,n,

(I) $*YP™ is homogeneous in the O-limit with
triple (x°,09,0) ,

(II) ¢y is bounded for all

(@) limy,p o $0(2) = W0, limpg 00 ™ (2) =
W,

The function z — ¢*(x)p®(z) + ¢°(z)P°(z) is homoge-
neous in the bi-limit with triple (t?, o?, WP DP), p = 0, oo.

B. Achieving sign definite homogeneous in the bi-limit func-
tions

The following result shows how to render negative the
difference & — yo, for some homogeneous functions &, o
with the same degrees and with nonnegative o, by a suitable
choice of v > 0 and can be proved as the analogue result in
[2].

Proposition /.9: Assume that

@) &,0: R™ — R are homogeneous in the bi-limit
with triple (v?,v,=P), p = 0, 00, and, respectively,
(t?, v, ZP), p = 0, 00, with nonnegative o, £*, £V,
D) {z € R™\{0} : o(z) = 0} < {z € R™\{0} :

&(x) < 0},
(IID) {z € R™\{0} : ZP(z) = 0} < {x € R™"\{0} :
=P (z) < 0}.
There exists y* > 0 such that
(E—vyo)(z) <0, Yoz #0, Vy =v* (27
and
(ZP —yZP)(z) < 0, Vo # 0, Vy = v*. (28)



