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Abbreviations 
AMPK: AMP-Activated Protein Kinase; AICAR: 5-Amino-1-Beta-

D-Ribofuranosyl-Imidazole-4-Carboxamide; BDNF: Brain Derived 
Neurotrophic Factor; COPD: Chronic Obstructive Pulmonary Disease; 
GW1516: {4-[({4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-
yl}methyl)sulfanyl]-2-methylphenoxy}acetic acid; IGFs: Insulin-Like 
Growth Factors; PGC-1α: Peroxisome Proliferator-Activated Receptor 
Gamma Coactivator 1-α; Ppars: Peroxisome Proliferator-Activated 
Receptors.

Skeletal muscle has long been known as the target of several 
growth factors and hormones, including IGFs, steroids, thyroid and 
neurohypophyseal hormones, often regulating both muscle development 
and homeostasis in postnatal life, as summarized in classical as well 
as more recent reviews [1-4]. Such a complex hormonal regulation 
is not surprising, if one considers the many diverse functions muscle 
exerts: mechanical force production, body temperature regulation and 
metabolic storage due to its protein content. Active muscle accounts for 
over 90% of total body energy expenditure. 

Much more recent is the view of muscle as the source of several 
hormones [5-7] making skeletal muscle the largest endocrine gland 
of the organism and probably the most complex, due to the number 
(hundreds) of peptides constituting its secretome.

A New View of the Exercised Muscle as an Endocrine 
Organ

Some muscle products (myokines) have a paracrine function, 
regulating muscle mass (myostatin, IL-4, IL-6). Others, such as IL-8, 
irisin and BDNF, modulate adipose tissue metabolism, or, for example, 
IL-6 and additional myokines are known to act on liver, bone, immune 
and vascular systems. This points out to skeletal muscle, a highly 
vascularized organ, as one capable of affecting several targets through 
endocrine mechanisms. Indeed, the endocrine functions of skeletal 
muscle have been long suspected on the basis of clinical findings 
[8]: all the abnormalities characterizing the metabolic syndrome are 
linked to a lack of physical activity, as are an increased risk of cancer, 
cardiovascular diseases and osteoporosis [9-11]. Thus, exercising 
muscles do indeed regulate the metabolism of many distant tissues 
via myokines. The molecular identity of the myokines, their signaling 
to target tissues, the metabolic responses elicited by such signals, all 
contribute to a complex metabolic network which is being investigated 
at the molecular and physiologic levels [12].

Exercise Mimetics: Possible Applications and Misuses
The idea that targeting the myokine network can mimic the 

signals generated by exercising muscle is the rational basis for a novel 
family of drugs, the exercise mimetics [13,14]. Exercise mimetics 
(EM) are a heterogeneous group of compounds that share the ability 
to induce pathways which are physiologically activated by exercise, 
thus stimulating endurance and rescuing muscle atrophy [15-17]. 
GW1516 (also known as GW501516) or AICAR, among others, are 
activators of AMPK, PPARs and PGC-1, a complex of effector proteins, 

transcription factors and co-activators. This pathway ultimately leads 
to the activation of both mitochondriogenesis and muscle oxidative 
metabolism, as it would in response to an increased AMP/ATP ratio, 
physiologically following exercise and energy consumption. Worth 
noting, EM such as GW1516 have shown to be bioactive in humans 
[18], suggesting a readily translational application for these drugs. Also 
the antioxidant resveratrol has been shown to synergize with exercise, 
positively affecting muscle performance, mitochondriogenesis and 
insulin sensitivity: its mechanism of action, however, which apparently 
goes beyond its antioxidant effect, is still unclear [19].

Since EM make myofibers more energy-efficient and fatigue-
resistant by reducing glycogen dependency and increasing fatty acid 
oxidation, many possible applications in pathology are proposed, 
including the pharmacological treatment of cancer- and diabetes-
associated cachexia and sarcopenia [20,21].

Among possible applications for the general population, EM 
could be used to avoid many consequences of inactivity due to aging, 
reduced gravity, forced immobilization or life style: those involve 
developing insulin resistance, fat accumulation, metabolic syndrome, 
type 2 diabetes, all conditions characterized by high social costs. It 
should be pointed out that, while GW1516 synergized with exercise 
in inducing endurance in mice, it increased muscle gene expression 
without significantly modifying endurance when given to sedentary 
mice. Conversely, AICAR was shown to both induce metabolic gene 
expression and enhance running endurance in sedentary mice [22]. The 
use of “exercise pills” to respond to the increasingly serious problem 
of physical inactivity has been discussed and commented elsewhere 
[23], and the ability of EM to fully mimic exercise has been questioned 
[24,23]. Needless to say, the toxicities of the various EM should 
be seriously considered and pondered in the context of an evident 
therapeutic indication.

As enhancers of physical performance, EM treatments would 
be considered doping agents in sport. Indeed, in the original report 
by Matsakas and Narkar, AICAR amplified normal mouse response 
to exercise and induced greater endurance adaptation than exercise 
alone, thus raising concern of substance abuse by athletes. In particular, 
endurance performances in sports such as marathon, biking and long 
distance swimming could be greatly enhanced by EM. However, tests 
are reportedly available for detecting both GW1516 and AICAR and 
their metabolic by-products [25,26].
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Sweating Hard or Swallowing Pills?
EM could be the ideal treatment for patients who cannot have 

access to or need withdrawing from endurance training programs 
due to various circumstances. In addition, EM could be exploited to 
target specific metabolic pathways, which are altered in some muscle 
pathologies or in conditions linked to aging or forced immobility. The 
potential for clinical use of EM exists: GW1516 and AICAR may exert 
effects on sugar and lipid metabolism, thus treating or delaying the 
establishment of the metabolic syndrome. GW1516 can enhance the 
response to even moderate exercise, whereas AICAR might be used also 
when no exercise is possible.

However, physical exercise has systemic effects and it is highly 
unlikely that a single compound or pathway can mimic the complexity 
of exercise effects on the organism. Accordingly, the use of EM for 
organ failure, such as COPD, which is less heavily characterized by 
muscle wasting than cancer, remains speculative [27]. Even though 
we cannot exclude general EM effects mediated by selective muscle 
stimulation, such evidence is missing to date and EM impact on 
different organs needs to be further elucidated. Research must proceed 
by better characterizing the complex network of the myokines and 
their mechanisms of action, and clarifying, at the molecular level, the 
muscle response to exercise. Furthermore, pharmacological research 
should strive to develop new molecules capable of interfering with 
those complex mechanisms with minimal toxicity, thereby pursuing 
important aims such as decreasing the social costs of the metabolic 
syndrome and contributing to cancer prevention.
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