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Abstract

When looking for a propositional abductive explanation of a given set of
manifestations, an ordering between possible solutions is often assumed. While
the complexity of computing optimal solutions is already known, in this paper we
consider second-best solutions with respect to different orderings, and different
definitions of what a second-best solution is: an optimal solution not already
found, or a solution that is optimal among the ones not previously found.
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1. Introduction

The three basic reasoning mechanisms used in computational logic are de-
duction, induction, and abduction [1]. Deduction is the process of drawing
conclusions from information and assumptions representing our knowledge of
the world, so that the fact “battery is down” together with the rule “if the bat-
tery is down, the car will not start” allows concluding “the car will not start”.
Induction, on the other hand, derives rules from the facts: from the facts that
the battery is down and that the car is not starting up, we may conclude the
rule relating these two facts. Abduction is the inverse of deduction (to some
extent [2]): from the fact that the car is not starting up, we conclude that the
battery is down. In a more complete formalization of this environment there are
many explanations for a car not starting up. This is an important difference be-
tween abduction and deduction, making the former, in general, computationally
harder.

A given problem of abduction may have one, none, or even many possible
solutions (explanations). Moreover, we need to perform both a consistency check
and an inference just to verify an explanation. These facts intuitively explain
why abduction is to be expected to be computationally harder than deduction.
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This observation has indeed been confirmed by theoretical results. Selman and
Levesque [3, 4] and Bylander et al. [5, 6] proved the first results about fragments
of abductive reasoning, Eiter and Gottlob [7] presented an extensive analysis,
Creignou and Zanuttini [8] and Creignou, Schmidt, and Thomas [9] classified
the complexity under two kinds of restrictions, Nordh and Zanuttini [10] located
the tractability/intractability frontier, Eiter and Makino [11, 12, 13] studied the
complexity of computing all abductive explanations, Hermann and Pichler [14]
considered the complexity of counting the number of solutions, Fellow et al. [15]
analyzed the problem from the point of view of parametrized complexity. All
these studies proved that abduction is, in general, harder than deduction. The
analysis has also shown that several problems are of interest in abduction. Not
only the problem of finding an explanation is relevant, but also the problems
of checking an explanation, or whether a hypothesis is in some, or all, of the
explanations (relevance). Some work on the complexity of abduction from non-
classical theories has also been done [16, 17, 18].

Abduction is also related to the ATMS [19, 20] and to the set of prime
implicates of a propositional formula. Indeed, Levesque [21] has proved that
ATMS and prime implicates can be used to find the abductive explanations
of a literal from a Horn theory. As a result, ATMS and algorithms for finding
prime implicates of a formula can be seen as algorithms that solve the problem of
abduction; moreover, finding the prime implicates can be seen as a preprocessing
phase. Kernel resolution [22] exploits the particular literals of the observation to
drive the clause generation process. Using this algorithm, Del Val derived upper
bounds on the number of generated clauses, and proved that some restricted
classes of abduction problems are polynomial [23, 24].

Contrarily to deduction, abduction is driven by heuristic principles to best
explain the given observations. This means that even if the best possible solution
to a given problem is found, there is no warranty that it represents the actual
state. As an example, a light bulb may not turn on because it is broken, but also
because a complex set of circumstances caused a black out in the whole town;
while the first explanation is more likely and should therefore be preferred, it
may still be wrong. Therefore, it makes sense not to stop at the first explanation,
or even at the set of all possible best explanations, but continue the search for
other, less likely, solutions.

Other works studied the complexity of finding a solution for a problem of
abduction [3, 4, 5, 6, 7, 8, 9, 10]; this one considers the problem of finding
another solution after some have been found. The difference is that:

• in previous works, a problem of abduction is given and the task is to find
a solution;

• in this article, a problem of abduction and a set of its solutions are given,
and the aim is to find another solution.

The difference is that the solution to be found has to be different from the
previous ones. Whenever an ordering of likeliness of explanations is given, these
solutions are assumed to be among the best ones, and the task is to find another
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best explanation. The meaning of “another best” in this definition may take two
meanings: in the first one, we exclude the given solutions and search for a best
one among the remaining ones; in the second, we search for another best solution
of the original (unrestricted) problem. These problem are characterized in the
framework of the complexity classes, which contain decision problems (those
having yes/no solutions). The decision problems considered in this article are:
check if a set of hypothesis is a solution, and check if a specific hypothesis is in
some solution.

2. Definitions

The process of abduction starts from three elements: a propositional formula
T formalizing the domain of interest, a set of variables M representing the
current manifestations, and another set of variables H representing their possible
explanations. In this article, abduction is formally defined as follows.

Definition 1. A problem of abduction is a triple 〈H,M, T 〉, where T is a propo-
sitional formula, M is a set of propositional variables called manifestations and
H is a set of propositional variables called hypotheses, with H ∩M = ∅.

Intuitively, T describes how the assumptions and manifestations are related.
We know that the manifestations M occur, and we want their most likely ex-
planation, where an explanation is a set of assumptions A ⊆ H that implies M
and is consistent with T .

Definition 2. The set of solutions or explanations of a problem of abduction
〈H,M, T 〉 is the set of all sets of assumptions A ⊆ H such that A ∪ {T} is
consistent and A ∪ {T} |= M :

SOL(〈H,M, T 〉) = {A ⊆ H | A ∪ {T} is consistent and A ∪ {T} |= M}

It is easy to show instances having exponentially many solutions. Ideally,
each instance should have a single solution, the assumptions that have – in the
real world – caused the manifestations. At least, there should be a way for
eliminating solutions that are known to be less likely than other ones.

This is achieved by employing a preorder � over the subsets of H. Given
two subsets A,A′ ⊆ H, they are related by A � A′ if A is considered more likely
than A′. The three preorders considered in this article are:

• the cardinality-based preorder: A ≤ A′ if and only if |A| ≤ |A′|, where |.|
denotes the cardinality of a set; in other words, A is preferred if it contains
fewer assumptions than A′;

• the subset-based preorder: A ⊆ A′; a set of assumptions contained in
another one is more likely than it;

• the void preorder: A E A′ for no pair A,A′ ⊆ H; it captures the case of
no assumption about the relative likeliness of the candidate solutions.
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Instead of considering all solutions to a problem of abduction, one may
restrict attention to the most likely ones. Since likeliness is formalized by �,
this amounts to consider only the minimal solutions.

Definition 3. The set of minimal solutions of a problem of abduction 〈H,M, T 〉
with respect to the preorder � is:

SOL�(〈H,M, T 〉) = min(SOL(〈H,M, T 〉),�)

In this definition, min(R,�) is the set of elements of R that are minimal
with respect to �, that is, the elements r ∈ R such that no r′ exists with r′ � r
and r 6� r′.

The void preorder makes all solutions minimal: SOLE(〈H,M, T 〉) =
SOL(〈H,M, T 〉). This allows for the notational simplification of considering
only minimal solutions, where the preorder may be E, ≤ or ⊆.

2.1. Second-Best Solution
In the conditions of perfect knowledge, the set of minimal solutions of a prob-

lem of abduction would always contain a single element: the hypotheses that
actually caused the manifestations to happen. Unfortunately, such complete
information may not be available, leading to more than one minimal solution.
Once one is found, it makes sense to continue the search for other ones. This
process is formalized as follows.

Definition 4. Given a nonempty set of minimal solutions {A1, . . . , Am} ⊆
SOL�(〈H,M, T 〉) of a problem of abduction, the set of second-best solutions is:

NEXT SOL�(〈H,M, T 〉, {A1, . . . , Am})
= min(SOL(〈H,M, T 〉)\{A1, . . . , Am}),�)

The case of empty set of given minimal solutions {A1, . . . , Am} is excluded
from consideration because it makes the second-best solutions the same as the
minimal solutions. This definition can be extended by allowing Ai’s to be non-
minimal if they contain another Aj . The technical results in this article are
unaffected by the change; the original definition is chosen because it is simpler.

2.2. Other Best Solutions
A second-best solution may not be a minimal solution of the original prob-

lem. For example, if {A1, . . . , Am} includes all minimal solutions, all second-
best solutions are not minimal. This is because the definition first excludes
{A1, . . . , Am} from the set of solutions, and then takes the minimal ones among
the remaining ones. If only minimal solutions are of interest, a different defini-
tion is more appropriate: given a set of minimal solution, an other-best solution
is a minimal solution not in the set of the given ones.

Definition 5. Given a nonempty set of minimal solutions {A1, . . . , Am} ⊆
SOL�(〈H,M, T 〉) of a problem of abduction, the set of other-best solutions is:

MIN SOL�(P, {A1, . . . , Am}) = SOL�(P )\{A1, . . . , Am}
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2.3. Computational Problems of Abduction

There are several computational problems that are relevant for abduction,
here we list the ones considered in this article.

• Existence: Decide whether a problem of abduction P = 〈H,M, T 〉 admits
a (minimal) solution, that is, SOL(〈H,M, T 〉) is non-empty;

• Checking: Decide whether a set of hypotheses A is a minimal explanation,
that is, whether A ∈ SOL�(〈H,M, T 〉);

• Relevance: Decide whether a hypothesis h belongs to at least a mini-
mal solution of a problem of abduction P = 〈H,M, T 〉, that is, ∃A ∈
SOL�(〈H,M, T 〉) such that h ∈ A;

A solution can be iteratively found using the Relevance problem: for every
h ∈ H, if it is relevant then add it to T , and remove it from H regardless of its
relevance. The set of the relevant hypotheses iteratively found in this manner is
a solution for the abduction problem. This is therefore a Turing reduction from
solution finding to relevance checking, and gives an upper bound to the former
problem.

2.4. Computational complexity

The complexity analysis of the problems of second-best explanation is done in
the framework of the polynomial hierarchy and many-one polynomial reductions.
A number of books on the topic exist [25, 26, 27]. Decision problems (problems
having a yes/no answer) are partitioned into classes of increasing complexity.
In summary, the class P contains all problems solved by some algorithms that
run in time polynomial in the size of their inputs. The class NP is defined in a
similar way with the algorithm running on a nondeterministic Turing machine.
The class coNP contains all problems whose complement (the problem with
reverse yes/no answer) is in NP. The class DP contains all problems that can
be split into a subproblem in NP and one in coNP, so that the answer is yes if
and only if the answers of the two subproblems are yes. The other classes of the
polynomial hierarchy considered in this article are defined in terms of oracles,
which are subroutines whose running time is not counted. In particular, the class
Σp

2 contains all problems that are in NP assuming the availability of an oracle
solving a subproblem in NP. The class containing all complementary problems
is Πp

2. The class of problems solvable in polynomial time with a logarithmic
number of calls to an oracle for Σp

2 is ∆p
3[log n].

While membership to a complexity class is established by showing an appro-
priate algorithm (running on deterministic or nondeterministic machines, using
oracles or not), proving non-membership is a more difficult task. Currently,
even the existence of problems in NP that are not in P has never been proved,
only that P 6=NPimplies that a problem is not in P if every other problem in NP
can be reduced to it via a polynomial-time reduction. Such problems are called
NP-hard. If they also belong to NP, they are NP complete. The same definitions
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apply to DP and Πp
2. More details about complexity classes and reductions can

be found in the cited books on computational complexity [25, 26, 27].
The analysis of complexity is performed by turning search problems into

decision problems: from finding a solution to verifying one and to checking the
existence of a solution containing a given hypothesis. The second problem is
particularly significant regarding the complexity of finding, as a solution can
be determined by repeatedly solving it. This and the corresponding problem
of dispensability (no minimal solution contains h) have been analyzed by Eiter
and Gottlob [7]. In this article, the problem of relevance is considered with
the additional assumption that some solutions are already known, possibly with
additional information attached.

Most hardness results in this article are proved by translating a problem
of abduction into another: for example, the problem of checking a solution
to that of checking a second-best solution. This involves proving that certain
solutions of the first are turned into solutions of the second. Since being a
solution is defined in terms of satisfiability and unsatisfiability, the proofs employ
modifications that do not affect these conditions:

1. if a set implies a formula, the formula can be added to the set;
2. a formula entailed by the rest of a set can be removed from the set;
3. if a set contains a literal l and a clause containing l, the latter can be

removed; clauses containing the negation of l can be removed this literal;
when considering the sign of a literal, a clause written l → s is actually
¬l ∨ s; therefore, l is negated in it;

4. if a variable b only occurs in formulae that are clauses, and is negated in
all of them, these can be removed; the same if b only occurs unnegated;

5. in particular, if a variable only occurs in a single clause, that clause can
be removed;

6. if a set can be partitioned in subsets not sharing variables, it is satisfiable
if and only if each of the subsets is;

7. renaming variables does not affect satisfiability: if X and X ′ are two
sets of variables in bijective correspondence and T a formula, the formula
T [X ′/X] obtained from T by replacing each variable in X with its corre-
sponding variable in X ′ is satisfiable if and only if T is.

3. Second-Best Solution

In this section we consider the problem of the second-best solutions, as for-
malized by Definition 4: given a set of minimal solutions, find one that is min-
imal among the other ones. As common in computational complexity studies,
this search problem is turned into a verification problem in order to evaluate its
complexity: given an instance of abduction, a set of solutions and a candidate
solution, check whether the latter is a second-best solution. A solution can be
found by repeatedly solving problems of relevance, which are also analyzed.

The technical means to prove the hardness of these problems is the follow-
ing lemma, showing how to introduce a new minimal solution to a problem of
abduction.
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Lemma 1. For every problem of abduction P not containing variables s and r,
another problem P ′ can be built in polynomial time such that:

SOL(P ′) = {s} ∪ {A ∪ {r} | A ∈ SOL(P )}

Proof. Let P = 〈H,M, T 〉 be the original problem of abduction not containing
the variables s and r. The problem P ′ = 〈H ′,M ′, T ′〉 is defined as follows, where
t is a fresh variable and H ′′ is a set of fresh variables in bijective correspondence
to H:

H ′ = H ∪ {r, s}
M ′ = {t}
T ′ = (T [H ′′/H] ∨ ¬r) ∧

∧
{h→ h′′ | h ∈ H} ∧ ((r ∧

∧
M)→ t) ∧

(¬s ∨ t) ∧ (¬s ∨ ¬r) ∧
∧
{¬s ∨ ¬h | h ∈ H}

Intuitively, the claim holds because the manifestation t of this instance is
only implied by either s or r ∧

∧
M , which cannot both be true because of

¬s ∨ ¬r. In turn, s,¬s ∨ ¬h is inconsistent with every non-empty subset of H.
This shows that the solutions of this instance are {s} and {r} ∪A where A is a
solution of the original instance.

The claim can be formally proved in three steps; only the main ideas are
shown, as the details are long but tedious, and can be found in a technical
report [28].

{s} is a solution of P ′: this is proved by adding {s} to T ′ and simplifying
the resulting formula. In particular, t and ¬r are entailed. By applying
the rules described in the previous section, what results is the equivalent
formula s ∧ t ∧¬r ∧

∧
{¬h | h ∈ H}. Since this formula is satisfiable and

entails t, the claim follows.

every solution of P is also a solution of P ′ with the addition of r:
given A ∈ SOL(P ), the set A ∪ {r, T ′} implies ¬s. This set can therefore
by simplified, resulting in the formula

∧
A ∧ r ∧ T [H ′′/H] ∧

∧
{h →

h′′ | h ∈ H} ∧ ¬s ∧ ((
∧
M) → t). Since A is a solution of the original

problem this formula is satisfiable and entails M ; therefore, it also entails
t.

every solution of P ′ is either s or a solution of P with r added to it:
since T ′ contains ¬s ∨ ¬r no solution contains both variables. Since T ′

includes ¬s ∨ ¬r and ¬s ∨ ¬h for every h ∈ H, it follows that {s} ∪ {T ′}
entails the negation of every variable in H ′ but s; therefore, no solution
contains s except {s}.
Regarding the other solutions, a subset A′ ⊂ H ′ that is satisfiable with T ′

but contains neither s nor r is not a solution. Indeed, simplifying A′∪{T ′}
using this assumption results in a formula not containing t.
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This proves that every solutions contain either s or r. Since no solution
contain both variables thanks to ¬s∨¬r, a solution not containing s is in
the form A∪ {r} with A ⊆ H. Remains to be proved that A is a solution
of P , in this case.

Since T ′ contains ¬s∨¬r, it follows that A∪{r, T ′} implies ¬s. Therefore,
all clauses containing ¬s can be removed, leading to the following formula.

∧
A ∧ r ∧ ¬s ∧ T [H ′′/H] ∧∧
{h′′ | h ∈ A} ∧

∧
{h→ h′′ | h ∈ H\A} ∧ ((

∧
M)→ t)

Since renaming does not affect satisfiability or entailment, variables H
and H ′′ can be swapped, making {h′′ | h ∈ A} become A and T [H ′′/H]
become T . This results in a set that is satisfiable (because A ∪ {T} is so)
and entails t (because A ∪ {T} entails M). �

This lemma shows how to add the new solution {s} to a given problem of
abduction. This addition makes the problem of finding a solution in the old
instance equivalent to finding a solution different from {s} in the new one. The
solution {s} is minimal with respect to the three considered orderings, since
no solution of the form {r} ∪ A is contained in it or has less literals than it.
Since the problem modification can be performed in polynomial time, it shows
that if the problem of checking a minimal solution is hard for some complexity
class, then the corresponding problem of second-best solution checking is hard
for the same class. As a result, in the following complexity characterizations of
the second-best solution problems the hardness parts are all proved by a simple
reference to this lemma.

This lemma provides a reduction from the problem of checking
whether H ∈ SOLE(〈H,M, T 〉) to that of checking whether H ∈
NEXT SOLE(〈H,M, T 〉, {A1, . . . , Am}), therefore proving the hardness of the
second problem from the hardness of the first. Verifying a solution with the
empty preorder is mentioned to be DP-hard by Eiter and Gottlob [7], but as far
as it was possible to verify no formal proof was published to date. The claim
is proved for the particular candidate solution ∅; since this is minimal if it is a
solution, hardness holds for all considered orderings.

Lemma 2. Checking whether ∅ ∈ SOL(〈H,M, T 〉) is DP-hard.

Proof. This property is stated by Eiter and Gottlob [7] for an arbitrary candidate
solution as an easy corollary of their results, but as far as we know, no proof
has been published, possibly because of its extreme simplicity: formulae F
and G over variables X translate into the problem of abduction 〈∅, {m}, T 〉,
where T = F ∧ (¬G[X ′/X] → m), X ′ is a set of fresh variables in one-to-one
correspondence with X and m a fresh variable. This is a reduction from the
sat-unsat problem of checking whether F is satisfiable and G is unsatisfiable to
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the problem of checking whether ∅ is a solution of 〈∅, {m}, T 〉. Indeed, ∅∪{T} is
equivalent to F ∧ (¬G[X ′/X]→ m). This formula is satisfiable if and only if F
is satisfiable, since the rest is satisfied by the model where m is true. This means
that ∅ is a solution if and only if F is satisfiable and ∅ ∪ {T} |= m. The latter
condition is equivalent to the unsatisfiability of F ∧ (¬G[X ′/X] → m) ∧ ¬m,
which is equivalent to F ∧ G[X ′/X] ∧ ¬m. Since F is satisfiable and does not
share variables with the rest of the formula, and the same for ¬m, the formula
is unsatisfiable if and only if G[X ′/X] is unsatisfiable. Since satisfiability is
unaffected by variable name change, this proves that ∅ is a solution of 〈∅, {m}, T 〉
if and only if F is satisfiable and G is unsatisfiable. This reduction proves that
the problem is DP-hard. �

The complexity of checking whether a set of hypotheses is a solution is an
easy consequence of this lemma.

Theorem 1. Checking whether A ∈ SOL(〈H,M, T 〉) is DP-complete.

Proof. Membership follows from the problem being defined as the satisfiability
of A∪{T} and the unsatisfiability of A∪{T,¬

∧
M}. Lemma 2 proves that the

problem is hard even in the particular case A = ∅. �
Together with Lemma 1, this result proves that the second-best solution

problem is DP-hard for E. It is also a member of this class, as the following
theorem proves.

Theorem 2. Checking whether A ∈ NEXT SOLE(〈H,M, T 〉, {A1, . . . , Am})
is DP-complete.

Proof. By definition, E is the empty preorder: AEA′ never holds. All solutions
are minimal according to this preorder. Reworded: the set of minimal solutions
coincides with the set of all solutions.

The problem is in DP because it can be solved by first checking whether
A ∪ {T} |= M and then whether A ∪ {T} is consistent and A 6∈ {A1, . . . , Am}.
The subproblem A∪{T} |= M is in coNP. The rest of the problem can be solved
by nondeterministically generating every possible propositional model over the
considered variables and checking whether it satisfies A ∪ {T} and whether
A is different from each element of {A1, . . . , Am}; both steps can be done in
polynomial time; as a result, the problem is in DP.

Hardness is a consequence of Lemma 1 and Lemma 2: the former proves
that {r} ∈ NEXT SOLE(P ′, {s}) if and only if ∅ ∈ SOL(P ), the latter proves
that ∅ ∈ SOL(P ) is DP-hard. �

Relevance is harder than verification. Intuitively, the complexity increase is
due to the necessity of searching for a solution, among the possibly many ones,
that contains the hypothesis h to be checked for relevance.

Theorem 3. Checking the existence of a solution in
NEXT SOLE(〈H,M, T 〉, {A1, . . . , Am}) containing a given h ∈ H is
Σp

2-complete.
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Proof. The problem can be solved by a nondeterministic algorithm employing an
oracle for the propositional satisfiability problem. The algorithm nondetermin-
istically generates each possible A ⊆ H and calls the oracle for the satisfiability
of A ∪ {T} and of A ∪ {T,¬

∧
M}. If the first is satisfiable, the second is

unsatisfiable, h ∈ A and A 6∈ {A1, . . . , Am}, the algorithm returns yes: h is
relevant.

By Lemma 1, from a problem of abduction P can build a second problem
P ′ that has the same solutions of P with {r} added to each, plus the single new
solution {s}. The hypothesis h is in some solutions of P if and only if h is in
some solutions of P ′ different from {s}. Since the first problem is Σp

2-hard [7,
Theorem 4.1.1], the latter is Σp

2-hard as well. �
Requiring set-containment minimality does not increase the cost of verifying

a solution, which remains DP-complete as for the case of the empty preorder.

Theorem 4. Checking whether A ∈ SOL⊆(〈H,M, T 〉) is DP-complete.

Proof. The problem is in DP because it can be solved by a number of parallel
satisfiability and unsatisfiability checks. Indeed, that A is a solution is equivalent
to the satisfiability of A ∪ {T} and the unsatisfiability of A ∪ {T,¬

∧
M}. The

first condition implies the satisfiability of A′∪{T} for every A′ ⊆ A. As a result,
A is not a minimal solution only if there exists A′ ⊂ A such that A′∪{T} |= M .
This implies A\{h} ∪ {T} |= M for every h ∈ A\A′ by monotonicity of |=. The
converse also holds: A is not minimal if such h exists, since A\{h} ⊂ A for
every h ∈ A. As a result, A is a minimal solution if and only if:

• A ∪ {T} is consistent;

• A\{h} ∪ {T,¬
∧
M} is consistent for every h ∈ A;

• A ∪ {T,¬
∧
M} is inconsistent.

These tests are in polynomial number and can be done in parallel by renam-
ing the variables. As a result, the whole problem amounts to checking whether
a formula is satisfiable and another is not.

Hardness is a direct consequence of Lemma 2, which proves that establishing
whether ∅ ∈ SOL(〈H,M, T 〉) is DP-hard. Since ∅ is contained in every other
subset of H, if any, it is a minimal solution if and only if it is a solution. As a
result, ∅ ∈ SOL⊆(〈H,M, T 〉) is DP-hard. �

Checking a second-best solution can be proved to be complete for the same
class.

Theorem 5. Checking whether A ∈ NEXT SOL⊆(〈H,M, T 〉, {A1, . . . , Am}〉)
is DP-complete.

Proof. Membership is proved as in the previous theorem, with two variants.
First, A is not a second-best solution if it is in {A1, . . . , Am}. Second, the check
for consistency of A\{h} ∪ {T,¬

∧
M} is skipped if A\{h} is in {A1, . . . , Am}.
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Hardness is proved by Lemma 1 and the previous theorem, showing the
problem with no given solution DP-hard. The lemma proves that A′ is in
SOL(〈H ′,M ′, T ′〉) if and only if either A′ = {s} or A′ = A ∪ {r} with A ∈
SOL(〈H,M, T 〉). This also implies that {s} is a minimal solution. Since s
is not in 〈H,M, T 〉, a solution A ∪ {r} does not contain s, which means that
it is minimal if and only if A is minimal. This is therefore a reduction from
checking a minimal solution of 〈H,M, T 〉 to that of checking a second-best
solution in NEXT SOL⊆(〈H ′,M ′, T ′〉, {{s}}). Since the former is DP-hard by
the previous theorem, the latter is hard for the same class. �

This result establishes the complexity of verifying a solution of an abduction
problem in presence of other minimal solutions. Searching for a solution can be
turned into the decision problem of relevance (checking the existence of solutions
with a given h ∈ H) as already explained. Relevance for the subset preorder
is Σp

2-complete [7, Theorem 4.2.1]. Lemma 1 shows how to carry the hardness
part of this result to the case where other minimal solutions are known.

Theorem 6. Checking the existence of a solution in
NEXT SOL⊆(〈H,M, T 〉, {A1, . . . , Am}) containing a given h ∈ H is
Σp

2-complete.

Proof. Membership can be proved by nondeterministically generating all pos-
sible subsets A of H and then checking (possibly using the oracle) whether
h ∈ A, whether A 6∈ {A1, . . . , Am}, whether A ∪ {T} is consistent, whether
A ∪ {T} |= M and whether A\{h′} ∪ {T} 6|= M for all A\{h′} 6∈ {A1, . . . , Am}
with h′ ∈ A.

Hardness is a consequence of the hardness result without the given solu-
tions {A1, . . . , Am}, since Lemma 1 implies that A ∈ SOL⊆(〈H,M, T 〉) if
and only if A ∪ {r} ∈ NEXT SOL⊆(〈H ′,M ′, T ′〉, {{s}}). As a result, h is
in some element of SOL⊆(〈H,M, T 〉) if and only if it is in some element of
NEXT SOL⊆(〈H ′,M ′, T ′〉, {{s}}). This is a reduction from relevance without
given solutions to relevance for second-best solutions, proving the Σp

2-hardness
of the latter. �

As for E and ⊆, the hardness of the problems of verification and relevance
for the cardinality-based preorder ≤ is proved by reducing to them the corre-
sponding problems without the given solutions. The following theorem shows
the complexity of the verification problem.

Theorem 7. Checking whether A ∈ SOL≤(〈H,M, T 〉) is Πp
2-complete.

Proof. Non-membership can be verified with a nondeterministic algorithm em-
ploying an oracle for solving the satisfiability problem. Given an abduction
problem and a subset A ⊆ H, the algorithm nondeterministically generates
each possible A′ ⊆ H. After this A′ is produced, the following checks are done,
with the help of the oracle: either A ∪ {T} is unsatisfiable, or A ∪ {T,¬

∧
M}

is satisfiable, or the following three conditions hold: |A′| < |A|, A′ ∪ {T} is
consistent and A′ ∪ {T,¬

∧
M} is inconsistent. If all these hold, then either A

is not a solution or smaller solution A′ exists.
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Hardness is proved by reduction from the problem of non-relevance, which
Eiter and Gottlob [7, Theorem 4.2.1] proved to be Σp

2-complete even if the
formula T is consistent [7, Definition 2.1.1]. Given a problem of abduction
〈H,M, T 〉 and h ∈ H, a ≤-minimal solution of 〈H,M, T 〉 containing h exists if
and only if S is not a ≤-minimal solution of the problem 〈H ′,M ′, T ′〉 defined
as follows.

H ′ = H ∪ S

M ′ = M ∪ {w}
T ′ = T [h′′/h][M ′′/M ] ∧

∧
{m′′ → m | m ∈M} ∧

(h→ h′′) ∧ (h→ w) ∧ (
∧

S →
∧

M ′)

If |H| = n, then S is a set of n + 1 fresh variables. Also h′′ and w are fresh
variables and M ′′ is a set of fresh variables in one-to-one correspondence with
M .

The proof is articulated in two parts: first, regardless of the original instance,
S is a solution of the new one; second, the other solutions of the new instance
are the solutions of 〈H,M, T 〉 that contain h. Since S has size |H| + 1, it is
size-minimal only if no solution of the original problem contains h.

The first part is easy to prove: since T ′ contains
∧

S →
∧
M ′, all man-

ifestations are entailed by S. The set S ∪ {T ′} can be simplified by remov-
ing all clauses entailed by

∧
S ∧

∧
M ′ and their consequences, resulting into

T [h′′/h][M ′′/M ] ∧ (h → h′′), which is consistent because T is consistent by
assumption.

The second part of the proof requires further elaboration. If A′ is a solution
of 〈H ′,M ′, T ′〉 not containing all of S then the rest of S can be removed from
it. Indeed, if A′ does not contain si then this variable only occurs negated
in A′ ∪ {T ′}; therefore, it can be removed without affecting consistency and
entailment of M ′, which by definition does not contain si. The result is a set
not containing any of S.

Intuitively, M ′ is entailed by having in A′ either the whole of S, via the
subformula

∧
S →

∧
M ′, or a solution of 〈H,M, T 〉 containing h, thanks to

m′′ → m and h → w. If A′ is a solution of 〈H ′,M ′, T 〉 not intersecting S then
A ∩ H is a solution of 〈H,M, T 〉. The details of this final claim are omitted
because of their simplicity [28], and consist in manipulations of A′ ∪ {T ′} via
the transformations in Section 2, such as the removal of literals occurring only
with one sign in a formula and swapping variables such as m and m′′. �

The following theorem shows the complexity of the second best solution
verification problem with the cardinality-based preorder.

Theorem 8. Checking whether A ∈ NEXT SOL≤(〈H,M, T 〉, {A1, . . . , Am}〉)
is Πp

2-complete.
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Proof. Membership is proved as follows: A is a second-best solution if it is in
SOL(〈H,M,R〉) and for every A′ ⊆ H such that |A′| < |A| it holds that either
A′ ∪ {T} is inconsistent, A′ ∪ {T} 6|= M or A′ ∈ {A1, . . . , Am}. All these checks
can be done with an NP oracle once a subset A′ ⊆ H is nondeterministically
generated.

Hardness is proved by Lemma 1: {s} is not only a solution but also minimal
because all other ones (if any) have the form H ∪ {r}, so their cardinality is
larger than or equal to one. Every solution of the original problem is trans-
lated into a solution of the new one. This reduction preserves the relative
size of explanations, as they are all added one element. Therefore, A ∪ {r} ∈
NEXT SOL≤(〈H ′,M ′, T ′〉, {{s}}) holds if and only if A ∈ SOL≤(〈H,M, T 〉)
holds. �

The problem of existence of a second-best solution containing a given hy-
pothesis can be shown to be ∆p

3[log n]-complete.

Theorem 9. Checking the existence of a solution in
NEXT SOL≤(〈H,M, T 〉, {A1, . . . , Am}) containing a given h ∈ H is
∆p

3[log n]-complete.

Proof. The problem of checking for the existence of a solution A with size
bounded by a number k and containing h is in Σp

2, as it amounts to nonde-
terministically generating a solution and then checking it for being a second
best-solution and for its size being less than or equal to k. The problem of
relevance can be therefore solved by a binary search for the minimal size of so-
lutions [7, Theorem 4.3.2]: start with k = |H|/2, and if the result is positive set
k = |H|3/4, otherwise k = |H|/4. Once the minimal size is found, the problem
can be solved by nondeterministically generating all solutions of this size not
being in {A1, . . . , Am} and then checking whether h is in some of them.

Hardness follows from Lemma 1: h is ≤-relevant to 〈H,M, T 〉 if
and only if a solution of NEXT SOL≤(〈H ′,M ′, T ′〉, {{s}}) containing
h exists; this is proved like in the previous theorem. Since ≤-
relevance is ∆p

3[log n]-hard [7, Theorem 4.3.2], also checking for solutions of
NEXT SOL≤(〈H,M, T 〉, {A1, . . . , Am}) containing a given h ∈ H is ∆p

3[log n]-
hard. �

4. Other Minimal Solution

The implicit assumption in second-best solutions is that non-minimal solu-
tions are taken into account once all minimal ones have been considered. Indeed,
the definition of NEXT SOL(〈H,M, T 〉, {A1, . . . , Am}) includes all solutions
that are minimal once A1, . . . , Am are removed from consideration. A different
approach is to only allow minimal solutions. This is different in that:

• second-best solutions are solutions that are minimal among the ones dif-
ferent from the given ones;
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• other minimal solutions are solutions that are minimal and are not among
the given ones.

The first definition allows non-minimal solutions if the minimal ones are
all among the given ones, the second does not. Only non-minimal solutions
are affected. Therefore, the difference disappears when the void preorder E is
considered, as no solution is non-minimal according to it.

When using ⊆ or ≤, the two definitions may lead to different results, like
for the problem:

H = {s, r}
M = {t}
T = {s→ t}

The problem 〈H,M, T 〉 has two explanations: {s} and {s, r}. Only the first
one is minimal in the two preorders; this is also intuitively correct, as r does not
really contribute to entail t. However, the second-best solutions include {s, r}.
Such a possibility is excluded when considering the other minimal solutions:
none exists but {s}.

When ⊆ is used as the preorder, the complexity of checking another minimal
solution is the same as that for a second-best solution. This can be proved
as for Theorem 5 with minimal changes: for membership, the sets A\{h} are
checked even if they are in {A1, . . . , Am}; hardness is proved with the very same
reduction, which maps minimal solutions of the original problem into solutions
of the new problems that are both second-best solutions and other solutions.

Other best solutions are easier than second-best, if using ≤: DP-complete.
The following lemma shows how to relate the solutions of a problem to the
minimal solutions of another problem. This property will be used to prove that
we can reduce the problem of checking a solution to the problem of checking
another minimal solution.

Lemma 3. Let P = 〈H,M, T 〉 be a problem of abduction, where H =
{h1, . . . , hn}. Let P ′ = 〈H ′,M ′, T ′〉 be the problem defined as follows, where
C, D, and E are sets of n fresh variables each.

H ′ = C ∪D

M ′ = M ∪ E

T ′ = T ∪ {ci → hi, ci → ei, di → ei | 1 ≤ i ≤ n}

It holds:

SOL≤(〈H ′,M ′, T ′〉) = {{ci | hi ∈ A} ∪ {di | hi 6∈ A} | A ∈ SOL(〈H,M, T 〉)}

Proof. Intuitively, ei ∈ M ′ enforces either ci or di to be in every solution,
and minimization excludes solutions containing both. Since ci entails hi, M is
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entailed only if the ci’s correspond to the original solution. Since a solution not
containing ci contains di, each solution of P is mapped into a minimal solution
of P ′.

Given a solution A of P , the corresponding minimal solution of P ′ is obtained
by adding ci if hi ∈ A and di otherwise. In the other way around, given
a minimal solution A′ of P ′, the solution of the original problem is obtained
by selecting the hi’s such that ci ∈ A′. Indeed, for every i the two clauses
ci → ei and di → ei ensure that every solution contains at least one between ci
and di; minimal solutions cannot contain both. The clauses ci → hi establish
the correspondence between A and A′: since T contains hi but none of the
new variables, consistency and entailment of M is the same as in the original
problem.

The claim is formally be proved in three steps: in the first, every solution
of P is proved to be translatable into a solution of P ′; in the second, every
solution of P ′ can be translated back to a solution of P ; in the third, every
minimal solution of P ′ is shown to contain di if and only if it does not contain
ci. The full proof of these three steps is long but tedious, and is therefore
omitted [28]. In all cases, the conclusions is obtained by modifying formulae
like A ∪ {T}, A′ ∪ {T ′}, A ∪ {T,¬m}, etc. using the consistency-preserving
transformations of Section 2. �

This lemma maps each solution of P into a ≤-minimal solution of P ′, and
vice versa. It therefore provides a reduction from the problem of second-best
solutions with the void preorder E to the problem of other minimal solution
with the cardinality preorder ≤.

Theorem 10. Checking whether A ∈ MIN SOL≤(〈H,M, T 〉, {A1, . . . , Am})
is DP-complete.

Proof. Given {A1, . . . , Am} with m ≥ 1, one can check whether A is another
minimal solution by expressing |A| = |A1| as a propositional formula F using
fresh variables; this can be done because checking |A| = |A1| can be done
in propositional time, which means that it can be expressed as a circuit of
polynomial size [29]. Then, the problem amounts to the satisfiability of A ∪
{T, F} and the unsatisfiability of A ∪ {T,¬

∧
M}.

Hardness follows the DP-hardness of the problem of verifying A ∈
NEXT SOLE(〈H,M, T 〉, {A1, . . . , Am}). Indeed, Lemma 3 proves that the
solutions A,A1, . . . , Am of 〈H,M, T 〉 can be turned into ≤-minimal solutions
A′, A′1, . . . , A

′
m of 〈H ′,M ′, T ′〉. As a result, A is a solution of 〈H,M, T 〉 not

in {A1, . . . , Am} if and only if A′ is a minimal solution of 〈H ′,M ′, T ′〉 not in
{A′1, . . . , A′m}. Since the first problem is DP-hard, the second is DP-hard as
well. �

5. Conclusions

In this article, we have investigated the problem of finding a solution to a
given abduction problem when some solutions have already been found. The

15



results show that the analyzed problems are computationally intractable, but
this does not rule out the possibility of tackling them. It only suggests the most
appropriate tools to use. Polynomial problems are best attacked using determin-
istic polynomial algorithms, while problems in NP can be solved using reduction
to the propositional satisfiability problem (SAT) and then passed to a state of
the art SAT solver (for example, one of the contestants in the SAT competition
http://www.satcompetition.org/). Problems in higher classes of the polyno-
mial hierarchy (such as all the problems shown in the paper) can be solved by
a reduction to the Quantified Boolean Formulae problem (QBF) and the use of
QBF solvers (http://qbf.satisfiability.org/gallery/). Problems higher
up in the polynomial hierarchy are more complex to solve, but, by identifying
their precise complexity, we can better take advantage of the solvers.

There are some open questions and some possible future directions of work.
It makes sense to establish the complexity of finding a k-th best solution, at
least in the case of the ordering based on cardinality. This can be seen as a
variant of the problems studied in this article where the given solutions are not
known.

Another question left open by this article is to find a reduction from the
problem of second-best solutions to simple abductions that preserve the ex-
planations. What is needed is the opposite of Lemma 1, which shows how to
add a given explanation to an abduction problem: a reduction that eliminates
some given solutions from an abduction problem while leaving the other ones
unchanged.

A further problem worth investigating is whether additional information
found during the search for the first solutions may be useful for finding the oth-
ers. The problems of second-best solutions is the restriction of this one where
the additional information is limited to the solutions found, discarding every-
thing else. The extended problem cannot be framed in the standard complexity
classes because in general the additional information can only be assumed to be
polynomial in size. The compilability classes [30, 31] characterize this kind of
problems.
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