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Abstract In the modeling of dislocations one is led naturally to energies concentrated on
lines, where the integrand depends on the orientation and on the Burgers vector of the disloca-
tion, which belongs to a discrete lattice. The dislocations may be identified with divergence-
free matrix-valued measures supported on curves or with 1-currents with multiplicity in a
lattice. In this paper we develop the theory of relaxation for these energies and provide one
physically motivated example in which the relaxation for some Burgers vectors is nontriv-
ial and can be determined explicitly. From a technical viewpoint the key ingredients are an
approximation and a structure theorem for 1-currents with multiplicity in a lattice.

Mathematics Subject Classification 49J45 · 49Q15 · 74G65

1 Introduction

Dislocations are topological singularities in crystals, which may be described by lines to
which a lattice-valued vector, called Burgers vector, is associated. They may be identified with
divergence-free matrix-valued measures supported on curves or equivalently with 1-currents
with multiplicity in a lattice and without boundary. The energetic modeling of dislocations
leads naturally to energies with linear growth concentrated on lines, where the integrand
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depends on the orientation and on the Burgers vector of the dislocation. The energy of a
dislocation supported on a line γ , with tangent vector τ : γ → Sn−1 and multiplicity
θ : γ → Z

m takes the form
∫
γ

ψ(θ, τ ) dH1, (1.1)

restricted to the set of dislocation density tensors μ = θ ⊗ τH1 γ which are divergence-
free, see for example [13,14]. In the two-dimensional case such divergence-free measures
can be identified with gradients of characteristic functions in BV and the problem can be
treated as a vector-valued partition problem [1,2]; for a derivation of a line-tension energy
of the type (1.1) from a Peierls–Nabarro model with linear elasticity see [7,11]. The analysis
in the three-dimensional case is substantially more subtle. A formulation of dislocations in
terms of currents was considered also in [20].

The aim of this paper is to study the lower semicontinuity and relaxation of functionals
of the type (1.1). One important question is whether sequences of measures with the given
properties and bounded energy converge, upon taking a subsequence and in a suitable weak
sense, to a measure in the same class. Without the divergence-free constraint this is, in
general, not true. This can be solved by rephrasing the problem in terms of 1-rectifiable
currents. The same tool is also helpful for proving density results and a structure theorem.
However, the standard theory of currents deals with the scalar case [9,12], whereas for
dislocations lattice-valued currents are needed. Some statements, such as compactness, can
be directly generalized from the scalar case working componentwise, this is however not
always the case, as for example in the density result one must make sure that all components
are approximated using the same polyhedral (or piecewise affine) curve. Therefore we revisit
in Sect. 2 some of the classical proofs showing how they can be extended to the case of interest
here.

Very general results for group-valued currents are available, but not all cases which are
relevant for us are covered. The theory of group-valued currents was firstly developed by
Fleming [10]. He considers so-called polyhedral chains with coefficients in a suitable abelian
normed group G and then works in its closure, with respect to the flat norm. Essential results
such as compactness and approximability were proved by White in [21,22]. The approach
we chose is quite different, relying on an explicit integral representation of group-valued
1-currents, matching with (1.1) (see [18] for a similar point of view). In Sect. 2 we rephrase
our problem in terms of 1-currents, and we prove the polygonal approximation, density and
structure theorems. In the rest of the paper, for notational simplicity, we use mostly the
language of measures.

The relaxation of the functional (1.1) turns out to be an integral functional of the same
form but with a different integrand, see Sect. 3. As in the case of the relaxation of partition
problems [1,2] the integrand in the relaxed functional, that we call the H1-elliptic envelope,
is obtained by a cell formula, given in (3.1) below. In Lemma 3.2 below we derive algebraic
upper and lower bounds for the relaxation. We remark that in general the two bounds do
not coincide, as was proven in the two-dimensional case in [2], see also [4]. For a specific
problem of physical interest, namely, dislocations in a cubic crystal, we give in Sect. 4 an
algebraic lower bound and an explicit expression for the H1-elliptic envelope in the case of
small Burgers vector. An application of the tools derived here to the study of dislocations in
a three-dimensional discrete model of crystals, which has partly motivated the present work,
will be discussed separately [5].
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2 Preliminary results on Z
m-valued 1-currents

2.1 Definitions and notation

A 1-current T is a functional on the space of smooth compactly supported 1-forms (vector
fields in R

n). We focus here on rectifiable currents, which are still a satisfying generalization
of curves (or surfaces, in dimension greater than 1), but they are sufficiently regular to admit
a handy representation as

〈T, ϕ〉 =
∫
γ

θ(x)〈ϕ(x); τ(x)〉 dH1(x) ∈ R
m, ∀ϕ ∈ C∞

c (�,R
n), (2.1)

where � ⊆ R
n is open, γ ⊂ � is a 1-rectifiable set and τ : γ → Sn−1 is its tangent vector,

H1-almost everywhere. The multiplicity is an L1 map

θ : γ → Z
m .

Let us point out that, setting m = 1, we would recover the standard theory of rectifiable
currents [9,17,19]; but, for our aims, we need an actual lattice Z

m ⊆ R
m . Nevertheless, a

significant part of the theory of Z
m-valued currents can be done componentwise, reducing

to the classical theory. Notice that the results stated and proved in this section for Z
m-

valued rectifiable 1-currents can be actually given in the more general context of currents
with multiplicity in a lattice L, i.e., a discrete subgroup of R

m spanning the whole of R
m .

Since we never use the specific Euclidean norm of Z
m , the two formulations are completely

equivalent, for notational simplicity we focus on Z
m .

We will denote by R1(�,Z
m) the set of rectifiable 1-currents and we will take (2.1) as

a definition. Roughly speaking, one can imagine a rectifiable current as a countable sum
of oriented simple Lipschitz curves with Z

m-multiplicities (see Thm. 4.2.25 in [9] and its
corollaries) and we will establish this remark precisely in Theorem 2.5. If the map θ is
piecewise constant on the support of T , say θ|γi ≡ θi ∈ Z

m with supp T =⋃
i γi and γi the

image of a function γ̃i ∈ Lip([0, 1];R
n), then for every ϕ ∈ C∞

c (�,R
n)

〈T, ϕ〉 =
∑

i

θi

∫
γi

〈ϕ; τ 〉 dH1 =
∑

i

θi

∫ 1

0
ϕ(γ̃i (s))γ̃

′
i (s) ds. (2.2)

The total variation of the rectifiable current in (2.1) is the measure ‖T ‖ = |θ |H1 γ , its
mass is

M(T ) = ‖T ‖(�) =
∫
γ

|θ | dH1,

and it gives the “weighted length” of the current T with respect to the Euclidean norm | · |
on Z

m . Indeed, in the piecewise constant multiplicities case (2.2) the mass of T is the sum

M(T ) =
∑

i

|θi |H1(γi ). (2.3)

Since we use the Euclidean norm on Z
m , the mass of a vectorial current is not, in general,

the sum of the masses of the components. Using a different norm on Z
m would lead to an

equivalent norm on R1.
Consistently with Stokes’ Theorem, the boundary of a 1-current T is the 0-current

〈∂T, ψ〉 = 〈T, dψ〉 ∀ψ ∈ C∞
c (�).
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A current T is closed if ∂T = 0. If T is closed, then∫
γ

θ(x)Dτψ(x)dH1(x) = 0 ∀ψ ∈ W 1,∞
0 (�) (2.4)

where γ , θ and τ are as in (2.1) and Dτψ(x) is the tangential derivative of ψ at x along
γ . The integral is well defined since the Lipschitz function ψ has a Lipschitz trace on the
rectifiable set γ , and therefore a tangential derivative H1-almost everywhere on γ . Formally,
and in analogy to (2.1), we can write (2.4) as 〈T, dψ〉 = 0 (the two expressions are indeed
identical ifψ ∈ C1

c ). To prove (2.4) letψε ∈ C∞
c (�) be such that ‖Dψε‖∞ ≤ 2‖Dψ‖∞ and

‖ψ − ψε‖∞ ≤ ε. We claim that Dτψε(x) converges weakly-∗ in L∞(γ,H1) to Dτψ(x).
Indeed, Dτψε(x) is uniformly bounded and therefore has a subsequence which converges
weakly-∗ to some g ∈ L∞(γ ). For every C1 curve γ j , the restriction to γ j of ψε converges
uniformly, and hence weakly-* in W 1,∞(γ j ), to the restriction of ψ . Therefore g = Dτψ ,
H1-almost everywhere on γ . Using θ ∈ L1(γ,H1), Dτψε(x) = 〈dψε(x), τ (x)〉 and
〈T, dψε〉 = 0, it follows that∫

γ

θ(x)Dτψ(x)dH1(x) = lim
ε→0

∫
γ

θ(x)〈dψε(x), τ (x)〉dH1(x) = 0.

This proves (2.4).
If the multiplicity θ is piecewise constant as in (2.2), then

〈∂T, ψ〉 =
∑

i

θi (ψ(γ̃i (1))− ψ(γ̃i (0))) ∀ψ ∈ C∞
c (�).

We say that a rectifiable 1-current is polyhedral if its support γ is the union of finitely many
segments and θ is constant on each of them. We denote by P1(�;Z

m) the set of polyhedral
1-currents.

For a bi-Lipschitz map f : R
n → R

n , f
T is the current

〈 f
T, ϕ〉 =
∫

f (γ )
θ( f −1(y))〈ϕ(y), τ ′(y)〉dH1(y), (2.5)

where τ ′ is the tangent to f (γ )with the same orientation as τ , τ ′( f (x)) = Dτ f (x)/|Dτ f (x)|.
As above, Dτ f (x) denotes the tangential derivative of f along γ , which exists H1-almost
everywhere on γ since f is Lipschitz on γ ; if f is differentiable in x then Dτ f (x) =
D f (x)τ (x).

Alternatively, one can interpret rectifiable 1-currents as measures. We say that a measure
μ ∈ M(�;R

m×n) is divergence free if
∫
�

n∑
j=1

Dϕ j dμi j = 0 ∀ϕ ∈ C∞
c (�,R

n), i = 1, . . . ,m

which we shorten to ∂μ = 0. We denote by M(m)
df (�) the set of divergence-free measures

μ ∈ M(�;R
m×n) of the form

μ = θ ⊗ τH1 γ,

where γ is a 1-rectifiable set contained in �, τ : γ → Sn−1 its tangent vector, and θ : γ →
Z

m is H1-integrable. Such a measure is divergence-free if and only if the corresponding
current defined by (2.1) is closed. We identify closed currents in R1(�;Z

m) with measures
in M(m)

df (�). With this identification the total variation of μ coincides with the mass of T ,
M(T ) = |μ|(�).
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2.2 Density

Our first result is an extension of the density theorem, as given in the scalar case for example
in [9, Theorem 4.2.20], to vector-valued currents. We formulate the density result on R

n , a
local version can be easily deduced using the extension lemma discussed below. Although
we find it more natural to phrase and prove the theorem in terms of 1-currents, the entire
argument can be easily formulated in terms of measures supported on curves, with only
notational changes.

Theorem 2.1 (Density) Fix ε > 0 and consider a Z
m-valued closed 1-current T ∈

R1(R
n,Zm). Then there exist a bijective map f ∈ C1(Rn;R

n), with inverse also C1, and a
closed polyhedral 1-current P ∈ P1(R

n,Zm) such that

M( f
T − P) ≤ ε

and

|D f (x)− Id| + | f (x)− x | ≤ ε ∀ x ∈ R
n .

Moreover, f (x) = x whenever dist(x, supp T ) ≥ ε.

It is here important that a current T without boundary can be approximated by polyhedral
currents without boundary. The proof cannot be done componentwise, since this would
increase the total mass by a factor (depending on m), but follows closely the strategy used
for currents with integer multiplicity [9]. For the sake of simplicity, we will prove the density
result in the case of interest for this paper (1-dimensional currents without boundary), but
the same proof can be performed for Z

m-valued currents of generic dimension k.

Proof By standard arguments on rectifiable sets, there is a countable family F of C1 curves
such that ‖T ‖(�\ ∪ F) = 0. We denote by λ a real parameter in the interval (0, 1), which
will be chosen at the end of the proof.

Step 1 We fix a point x0 ∈ γ ∈ F and assume that, for some θ0 ∈ Z
m\{0},

lim
r→0

‖T − S‖(Qτ
r (x0))

r
= 0, (2.6)

where S is the current defined by 〈S, ϕ〉 = ∫
γ
θ0〈ϕ(x), τ (x)〉dH1(x), and Qτ

r (x0) is the cube
of side 2r , center in x0 and one side parallel to the vector τ , which is the tangent to γ in x0.

Without loss of generality we can assume x0 = 0 and Tan0γ = Re1, where e1 is the
first vector of the canonical basis of R

n . We denote by Qr the cube of center 0, side 2r and
sides parallel to the coordinate directions. Let ε′ > 0 be a small parameter chosen later. For
r sufficiently small the set γ ∩ Qr is the graph of a C1 function g : (−r, r) → R

n−1 with
g(0) = 0 and ‖g‖C1 < ε′. The function g̃ : (−r, r) → R

n defined as g̃(x1) = (0, g(x1))

obeys

‖Dg̃‖L∞((−r,r)) < ε′ and ‖g̃‖L∞((−r,r)) < ε′r.

We define the function f ∈ C1(Rn;R
n) as

f (x) = x − ψ(x)g̃(x1),

where ψ ∈ C∞
c (Qr ; [0, 1]) obeys ψ ≡ 1 on Qλr and

‖Dψ‖L∞ ≤ 2

(1 − λ)r
.
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For 2ε′ < 1−λ the function f is bi-Lipschitz and maps γ ∩Qλr into the segment (Re1)∩Qλr .
Moreover for sufficiently small ε′ (on a scale set by λ and ε) one has

| f (x)− x | + |D f (x)− Id| ≤ |ψ(x)g̃(x1)| + |ψ(x)Dg̃(x1)⊗ e1|
+ |g̃(x1)⊗ Dψ(x)|

< ε′
(

r + 1 + 2

(1 − λ)

)
< ε (2.7)

and

‖ f −1‖C1 ≤ 1 + ε. (2.8)

Step 2 We let P be the polyhedral current defined by

〈P, ϕ〉 = θ0

∫
(−λr,λr)e1

〈ϕ, e1〉 dH1.

With S as in (2.6), by definition of P and f we have (see Fig. 1)

M(S Qr − f −1

 P) = |θ0|H1 (γ ∩ (Qr\Qλr )) .

Since γ is a C1 curve,

lim
r→0

H1(γ ∩ (Qr\Qλr ))

2r
= (1 − λ).

Using a triangle inequality and (2.7) we obtain

M
(

f

(
T Qr

)− P
) ≤ M

(
f
((T − S) Qr )

)+ M
(

f
(S Qr − f −1

 P)

)

≤ (1 + ε)M
(
(T − S) Qr

)+ (1 + ε)M
(

S Qr − f −1

 P

)

and, recalling (2.6),

lim sup
r→0

M
(

f

(
T Qr

)− P
)

2r
≤ (1 + ε)(1 − λ)|θ0|.

Since, again by (2.6), ‖T ‖ (Qr ) /(2r)→ |θ0|, for r sufficiently small

M
(

f

(
T Qr

)− P
)
< 2(1 − λ)‖T ‖ (Qr ) . (2.9)

Step 3 By [9, Th.4.3.17] for H1-almost every point in the union of the curves in F there is a
θ0 with the property (2.6), and therefore an rx ∈ (0, ε/√n) satisfying the property (2.9) with
Qr replaced by Qτ(x)

rx (x). Using Morse’s covering Theorem, we cover ‖T ‖-almost all the set
∪F with a countable family of disjoint cubes Qτk

rk (xk) with τk = τ(xk) and sides 2rk , with
rk < rxk . Then we have a polyhedral 1-current Pk with support in Qτk

rk (xk) and a bi-Lipschitz
map fk ∈ C1(Rn;R

n) satisfying (2.7), (2.8) and (2.9).
We choose a finite subfamily such that

K (λ)∑
k=1

‖T ‖(Qτk
rk
(xk)) ≥ λM(T ) (2.10)

and define

f = f1 ◦ · · · ◦ fK (λ).
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Fig. 1 The action of f on T in
the proof of Theorem 2.1. The
inner cube is Qλr , the outer one
Qr

f

γ

Since fk(x) = x outside Qτk
rk (xk) for all k and the cubes are disjoint the condition (2.7) still

holds and f (x) = x outside an ε-neighbourhood of supp T .
We define the polyhedral current

P I =
K (λ)∑
k=1

Pk,

write

f
T − P I =
K (λ)∑
k=1

(
f

(
T Qτk

rk
(xk)

)− Pk
)+ f


⎛
⎝T

∞⋃
k>K (λ)

Qτk
rk
(xk)

⎞
⎠

and, recalling (2.9) and (2.10), conclude that

M( f
T − P I ) < 2(1 − λ)M(T )+ (1 − λ)M(T ) = 3(1 − λ)M(T ). (2.11)

Step 4 We finally modify the polyhedral current P I to make it closed.
The current f
T − P I has multiplicity in Z

m and hence it can be decomposed in m
rectifiable scalar 1-currents. Since ∂ f
T = 0 and ∂P I is a polyhedral current with finite
mass (a finite sum of Diracs, actually) we can apply the Deformation Theorem in [9, Th.
4.2.9] to each component of f
T − P I in order to represent it as

f
T − P I = P O + Q + ∂S.

Here P O , Q ∈ P1(R
n,Zm) are polyhedral 1-currents satisfying

M(P O) ≤ √
m cO(M( f
T − P I )+ ε̃M(∂P I ))

and

M(Q) ≤ ε̃
√

m cQM
(
∂P I

)
,

for some ε̃ arbitrarily small, where cO , cQ > 0 are geometric constants. The current Q is
polyhedral by [9, Th. 4.2.9(8)]. Since ∂( f
T − P I ) is polyhedral.

Then P = P I + P O + Q is a closed polyhedral 1-current with

M( f
T − P) ≤ M( f
T − P I )+ M(P − P I )

≤ 3(1 − λ)M(T )+ M(P O + Q)

≤ 3(1 + √
m cO)(1 − λ)M(T )+ ε̃

√
m (cO + cQ)M

(
∂P I

)
.
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We first choose a λ ∈ (0, 1) such that the first term is less than 1
2ε, then ε̃ such that the second

term is also less than 1
2ε, and conclude. ��

As a consequence of Theorem 2.1 we easily prove that any closed current T ∈ R1(R
n;Z

m)

can be approximated by sequences of polyhedral currents Pk in the weak topology for cur-
rents, where

Pk
∗
⇀ T ⇐⇒ 〈Pk, ϕ〉 k→+∞−→ 〈T, ϕ〉 ∀ ϕ ∈ C∞

c (R
n;R

n).

We recall that the currents Pk are supported on a finite number of segments.

Corollary 2.2 For every T ∈ R1(R
n;Z

m) with ∂T = 0 there is a sequence of polyhedral
currents Pk ∈ P1(R

n;Z
m) with ∂Pk = 0 such that

Pk
∗
⇀ T and M(Pk)→ M(T ).

We conclude this section with an extension lemma, that can be found in various forms in
the literature. We sketch here the argument for the case of interest, in which the closedness
is preserved.

Lemma 2.3 (Extension) Let � ⊂ R
n be a bounded Lipschitz open set. For every closed

rectifiable 1-current defined in �, T ∈ R1(�;Z
m), there is a closed rectifiable 1-current

ET ∈ R1(R
n;Z

m) with ET � = T and M(ET ) ≤ cM(T ). The constant depends only on
�. Further, limδ→0 M(ET (�δ\�)) = 0, where �δ = {x : dist(x,�) < δ}.

Proof Step 1. We first extend T to a neighbourhood of �.
Choose a function N ∈ C1(∂�;Sn−1) such that N (x) · ν(x) ≥ α > 0 for almost all

x ∈ ∂�, where ν is the outer normal to ∂� and Sn−1 is the unit sphere in R
n . For ρ > 0

sufficiently small the function g : ∂�×(−ρ, ρ)→ R
n , g(x, t) = x+t N (x), is bi-Lipschitz.

Let Dρ = g(∂�× (−ρ, ρ)) and f : Dρ → Dρ be defined by f (g(x, t)) = g(x,−t). Then
f is bi-Lipschitz and coincides with its inverse.

We define T̃ = T − f
(T (Dρ ∩�)). Let ϕ ∈ C1
c (� ∪ Dρ). Then, recalling (2.4) and

interpreting the duality in that sense,

〈T̃ , Dϕ〉 = 〈T, Dϕ〉 − 〈 f
(T (Dρ ∩�)), Dϕ〉 = 〈T, Dϕ − D((ϕχDρ\�) ◦ f )〉 = 0

since ϕ − (ϕχDρ\�) ◦ f ∈ W 1,∞
0 (�), and T is closed.

Step 2. Let γ̃ and θ̃ be the support and the multiplicity of T̃ , defined as in (2.1). We can
slice the outer tubular neighborhood Dρ\� = g(∂� × [0, ρ)) through the family of sets
∂(�s) with s ∈ [0, ρ). More precisely, we slice (see [9, Section 4.3] or [17]) the current
T̃ (Dρ\�) with the distance function from ∂�. By slicing, we get that

M(T̃ ) ≥
∫ ρ

0

( ∑
x∈γ̃∩∂(�s )

|θ̃ (x)|
)

ds.

Moreover, we can choose s ∈ (0, ρ) such that

∑
x∈γ̃∩∂(�s )

|θ̃ (x)| ≤ cM(T ),
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with a constant depending only on�, and the sum runs over finitely many points x1, . . . , xM .
Let us point out that the set of points {x1, . . . , xM }, with multiplicity θ̃ (x1), . . . , θ̃ (xM ) and
positive orientation if γ̃ exits �s at xi , are the boundary of T̃ �s . For each i = 2, . . . ,M ,
let γi be a Lipschitz curve in R

n\�s which joins x1 with xi and has length bounded by C(�).
Let τi be the tangent vector, with the same orientation as γ̃ in xi . We set

〈ET, ϕ〉 = 〈T̃ �s, ϕ〉 +
M∑

i=2

θ̃ (xi )

∫
γi

〈Dϕ, τi 〉dH1 ∀ϕ ∈ C∞
c (R

n,Rn).

Since T was closed one can see that ET is also closed. To conclude the proof it is enough to
note that, by construction, M(ET ∂�) = 0 and hence limδ→0 M(ET (�δ\�)) = 0. ��
2.3 Compactness and structure

In this section we characterize the support of rectifiable 1-currents without boundary as a
countable union of loops. This characterization is known in the theory of one dimensional
integral currents (i.e. with scalar multiplicity). In the latter case the result is stated in [9],
subsection 4.2.25, where a quick sketch of the proof is also given. Here, for the convenience
of the reader, we will give a complete proof.

We start with the compactness statement, which is also used in proving the Structure
Theorem 2.5.

Theorem 2.4 (Compactness) Let (Tk)k∈N be a sequence of rectifiable 1-currents without
boundary in R1(R

n;Z
m). If

sup
k∈N

M(Tk) <∞

then there are a current T ∈ R1(R
n;Z

m) without boundary and a subsequence (Tk j ) j∈N

such that

Tk j

∗
⇀ T .

Proof This follows from the result on scalar currents [9, Theorems 4.2.16] working compo-
nentwise. ��
Theorem 2.5 (Structure) Let T ∈ R1(R

n;Z
m)with ∂T = 0 and M(T ) <∞. Then there are

countably many oriented Lipschitz closed curves γi with tangent vector fields τi : γi → Sn−1

and multiplicities θi ∈ Z
m such that

〈T, ϕ〉 =
∑
i∈N

θi

∫
γi

〈ϕ, τi 〉 dH1.

Further, ∑
i

|θi |H1(γi ) ≤
√

m M(T ).

Proof Since each current in R1(�;Z
m) can be seen as the sum of m rectifiable 1-currents

with scalar integer multiplicity, it suffices to prove the statement in the scalar case m = 1.
From the density of polyhedral currents (see Corollary 2.2) there is a sequence of polyhedral
currents without boundary Pk ∈ R1(R

n;Z) such that

Pk
∗
⇀ T and M(Pk)→ M(T ).
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Each Pk can be decomposed into the sum of finitely many polyhedral loops,

Pk =
Jk∑

j=1

L j,k,

such that

Jk∑
j=1

M(L j,k) = M(Pk) ≤ M, (2.12)

for some M > 0.
We can assume these loops L j,k to be ordered by mass, starting with the biggest one.

Moreover we can assume (up to extracting a subsequence) that the currents L j,k have multi-
plicity 1 and that for every j they weakly converge to some closed rectifiable 1-current L j .
Let us denote by T̃ the current

T̃ =
∞∑
j=1

L j .

We need to show that T̃ = T . If M(T ) = 0 there is nothing to prove. Otherwise we fix δ > 0
and observe that by (2.12) we have M(Li,k) < δ for all i > M/δ. We write

〈Pk, ϕ〉 =
∑
i≤ M

δ

〈Li,k, ϕ〉 +
∑
i> M

δ

〈Li,k, ϕ〉. (2.13)

In the first sum of the right hand side we can take the limit as k → ∞ and get
∑

i≤ M
δ
〈Li , ϕ〉.

Parametrizing each polyhedral curve by arc length, and possibly passing to a further subse-
quence, we see that each polyhedral curve converges to a closed Lipschitz curve.

The second sum in (2.13) can be estimated as follows. For every i > M/δ and for every
k we fix a point xk

i ∈ supp Li,k = γi,k and using the fact that γi,k is a closed curve we have
∣∣∣ ∑

i> M
δ

〈Li,k, ϕ〉
∣∣∣ =

∣∣∣ ∑
i> M

δ

∫
γi,k

〈ϕ − ϕ(xk
i ), τ

k
i 〉 dH1

∣∣∣

≤
∑
i> M

δ

sup
γi,k

|ϕ − ϕ(xk
i )|M(Li,k)

≤ δ‖ϕ‖Lip

∑
i> M

δ

M(Li,k) ≤ δM‖ϕ‖Lip. (2.14)

Then we get∣∣∣〈T −
∑
i≤ M

δ

〈Li , ϕ〉
∣∣∣ ≤ o(1)+

∣∣∣〈Pk −
∑
i≤ M

δ

〈Li,k, ϕ〉
∣∣∣ ≤ o(1)+ δM‖ϕ‖Lip

which implies T = T̃ and hence

T =
∞∑
j=1

τ j H1 γ j ,

with γ j = supp L j and τ j the corresponding tangent vector. ��
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3 Relaxation

3.1 Main result

In this section we consider the relaxation of functionals of the form

E(μ) =

⎧⎪⎨
⎪⎩

∫
γ

ψ(θ, τ ) dH1 if μ = θ ⊗ τH1 γ ∈ M(m)
df (�),

+∞ otherwise.

We shall show that the relaxation is

Ē(μ) =

⎧⎪⎨
⎪⎩

∫
γ

ψ̄(θ, τ ) dH1 if μ = θ ⊗ τH1 γ ∈ M(m)
df (�),

+∞ otherwise,

where ψ̄ is defined by solving for any b ∈ Z
m and t ∈ Sn−1 a cell problem, namely,

ψ̄(b, t) = inf

{∫
γ

ψ(θ, τ ) dH1 : μ = θ ⊗ τH1 γ ∈ M(m)
df (B1/2),

supp (μ− b ⊗ tH1 (Rt ∩ B1/2)) ⊂ B1/2

}
(3.1)

where B1/2 denotes a ball of radius 1/2 and center 0. The condition on the support in (3.1)
fixes the boundary values ofμ, in the sense that it requires the existence of a ball B ′ ⊂⊂ B1/2

with μ = b ⊗ tH1
Rt on B1/2\B ′. We call the function ψ̄ the H1-elliptic envelope of ψ

and say that ψ is H1-elliptic if ψ̄ = ψ . It is easy to see that ψ̄(b, t) ≤ ψ(b, t), and our result
implies that ψ̄ is the largest H1-elliptic function below ψ .

For any open set ω ⊂ �, we write

E(μ, ω) =
∫
γ∩ω

ψ(θ, τ )dH1

where μ = θ ⊗ τH1 γ ∈ M(m)
df (�), and the same for Ē .

Theorem 3.1 (Relaxation) Let ψ : Z
m × Sn−1 → [0,∞) be Borel measurable with

ψ(b, t) ≥ c0|b| and ψ(0, ·) = 0; define ψ̄ as in (3.1). Let � ⊂ R
n be a bounded Lipschitz

set. Then Ē is the lower semicontinuous envelope of E with respect to the weak convergence
in M(m)

df (�), in the sense that

Ē(μ) = inf

{
lim inf

j→∞ E(μ j ) : μ j ∈ M(m)
df (�), μ j

∗
⇀μ

}
.

In particular, Ē is lower semicontinuous.

A key ingredient in the proof of the relaxation is to use the deformation theorem to reduce
to the case that the limit is polyhedral. The continuity of Ē under deformations follows from
the Lipschitz continuity of the integrand ψ̄ , see Lemma 3.3. In turn, the Lipschitz continuity
of ψ̄ is proven via a series of constructions in Lemma 3.2. The upper bound is then obtained
covering the polyhedral with balls and using the definition of ψ̄ . For the lower bound instead
we need to show that Ē is lower semicontinuous on polyhedrals, which can be done locally
assuming that the limit is a straight line. The most involved part of the proof deals with
the relation between minimization with boundary data and without boundary data, and is
discussed in Lemma 3.5 below.
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3.2 Proof of the upper bound

We start by proving the Lipschitz continuity of ψ̄ . As a side product we also show that ψ̄ (and
hence any H1-elliptic function), much like the case of BV -elliptic integrands, is subadditive
and convex.

Lemma 3.2 (Cell problem) Let ψ , ψ̄ be as in Theorem 3.1. Then:

(i) For every polyhedral measure μ = ∑N
i=1 bi ⊗ ti H1 γi ∈ M(m)

df (B1/2) such that
γi ⊂ B1/2 are disjoint segments (up to the endpoints) and supp (μ− b ⊗ tH1 (tR ∩
B1/2)) ⊂ B1/2 one has

ψ̄(b, t) ≤
N∑

i=1

H1(γi )ψ̄(bi , ti ) = Ē(μ, B1/2).

(ii) The function

t �→ ψ̄

(
b,

t

|t |
)
|t | (3.2)

is convex in t ∈ R
n. In particular, ψ̄ is continuous.

(iii) The function ψ̄ is subadditive in its first argument, i.e.,

ψ̄(b + b′, t) ≤ ψ̄(b, t)+ ψ̄(b′, t).

(iv) The function ψ̄ obeys

1

c
|b| ≤ ψ̄(b, t) ≤ c|b|

for all b ∈ Z
m, t ∈ Sn−1.

(v) The function ψ̄ is Lipschitz continuous in the sense that

|ψ̄(b, t)− ψ̄(b′, t ′)| ≤ c|b − b′| + c|b| |t − t ′|.
with c depending only on ψ .

Proof (i) Let B ′ be a ball such that supp (μ− b ⊗ tH1 (tR ∩ B1/2)) ⊂ B ′ ⊂⊂ B1/2. We
cover γ = ∪N

i=1γi ∩ B ′ with a countable number of balls {Bk}k∈N such that: the balls are
disjoint and contained in B ′; γ ∩ Bk is a diameter of Bk , μ Bk = bik ⊗ tik H1 (γ ∩ Bk)

for some ik ∈ {1, . . . , N }, H1(γ \∪k∈N Bk) = 0. Let ε > 0. By the definition of ψ̄ , for every
k we can find a measure μk ∈ M(m)

df (B
k) with supp (μk − (μ Bk)) ⊂ Bk such that

E(μk, Bk) ≤ diam(Bk)ψ̄(bik , tik )+
ε

2k
.

We define ν =∑
k μk+μ (B1/2\B ′). Then ν ∈ M(m)

df (B1/2) and supp (ν−b⊗tH1 (tR∩
B1/2)) ⊂ B1/2, therefore

ψ̄(b, t) ≤ E(ν, B1/2) =
∑
k∈N

E(μk, Bk)+ E(μ, B1/2\B ′)

≤
N∑

i=1

H1(γi )ψ̄(bi , ti )+ ψ(b, t)H1(rR ∩ B1/2 − B ′)+ ε.

We conclude by the arbitrariness of B ′ and ε.

123



Modeling of dislocations and relaxation

Fig. 2 Constructions used in the
proof of Lemma 3.2(ii) (left) and
Lemma 3.2(iii) (right)

− 1
2 t

1
2 t

0
δx

δ(x + y)

γ

− 1
2 t

1
2 t

εs
γ

γ

(ii) We extend ψ̄ to Z
m × R

n to be one-homogeneous in the last argument [i.e., to be the
function given in (3.2)]. Let x̃, ỹ ∈ R

n , λ ∈ (0, 1). We want to show that

ψ̄(b, λx̃ + (1 − λ)ỹ) ≤ λψ̄(b, x̃)+ (1 − λ)ψ̄(b, ỹ).

By the definition of the extension of ψ̄ , defining x = λx̃ and y = (1−λ)ỹ it suffices to show
that

ψ̄(b, x + y) ≤ ψ̄(b, x)+ ψ̄(b, y).

If x + y = 0 then ψ̄(b, x + y) = 0 and the statement holds. If not, we choose δ > 0 such
that δx, δx + δy ∈ B1/2 and define t = (x + y)/|x + y|. Let γ be the polyhedral curve that
joins (in this order) the points

−1

2
t, 0, δx, δx + δy,

1

2
t,

see Fig. 2. Notice that the first and last segment belong to the line tR and that γ ⊂ B1/2. We
apply (i) to the measure μ = b ⊗ τH1 γ , where τ is the tangent to γ , and obtain

ψ̄(b, t) ≤ (1 − δ|x + y|)ψ̄(b, t)+ δ|x |ψ̄
(

b,
x

|x |
)

+ δ|y|ψ̄
(

b,
y

|y|
)
.

Rearranging terms this gives ψ̄(b, x + y) ≤ ψ̄(b, x)+ ψ̄(b, y), as desired.
(iii) Fix ε > 0 and a vector s ∈ Sn−1 not parallel to t . Let γ be the curve that joins the

points

−1

2
t,

(
−1

2
+ ε

)
t, εs,

(
1

2
− ε

)
t,

1

2
t,

see Fig. 2. We define the polyhedral measure

με = b ⊗ tH1 (tR ∩ B1/2)+ b′ ⊗ τH1 γ,

where τ is the tangent vector to γ . Notice that the supports of the two components overlap
on the two segments of length ε close to ∂B1/2. By (i) we obtain

ψ̄(b + b′, t) ≤ (1 − 2ε)ψ̄(b, t)+ 2εψ̄(b + b′, t)+ 1

2
ψ̄(b′, t ′ε)+

1

2
ψ̄(b′, t ′′ε ).

Since ψ̄ is continuous in the second argument, taking ε → 0 proves the assertion.
(iv) The lower bound is immediate from the definition of ψ̄ and the growth ofψ . To prove

the upper bound, we deduce from (iii)

ψ̄(b, t) ≤
n∑

j=1

|b · e j |
(
ψ̄(e j , t)+ ψ̄(−e j , t)

)
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and observe that, since ψ̄ is continuous,

max
j=1,...,n

max
t∈Sn−1

(
ψ̄(e j , t)+ ψ̄(−e j , t)

)
<∞.

(v) From (iii) and (iv) we obtain

ψ̄(b, t) ≤ ψ̄(b′, t)+ c|b − b′|,
while by (ii) and (iv) we deduce that

ψ̄(b, t) ≤ ψ̄(b, t ′)+ |t − t ′|ψ̄
(

b,
t − t ′

|t − t ′|
)

≤ ψ̄(b, t ′)+ c|b| |t − t ′|.

��

We now show that the continuity of ψ̄ proven in (v) gives continuity of E under defor-
mations.

Lemma 3.3 Assume thatψ : Z
m ×Sn−1 → [0,∞) is Borel measurable, obeysψ(0, t) = 0,

ψ(b, t) ≥ c|b| and

|ψ(b, t)− ψ(b′, t ′)| ≤ c|b − b′| + c|b| |t − t ′|.
Let μ, μ′ ∈ M(m)

df (�). Then for any open set ω ⊂ � we have

|E(μ, ω)− E(μ′, ω)| ≤ c|μ− μ′|(ω).
Further, if f : R

n → R
n is bi-Lipschitz then for any open set ω ⊂ R

n

|E(μ, ω)− E( f
μ, f (ω))| ≤ cE(μ, ω)‖D f − Id‖L∞ .

We recall that in this paper f
 denotes the action of f on the current associated to μ, see
(2.5). In particular, if μ = θ ⊗ τH1 γ , then

f
μ = θ ◦ f −1 ⊗ τ̃H1 f (γ ), τ̃ = Dτ f

|Dτ f | ◦ f −1

where Dτ f denotes as in (2.5) the tangential derivative.

Proof Let μ = θ ⊗ τH1 γ, μ′ = θ ′ ⊗ τ ′H1 γ ′. To prove the first estimate we observe
that τ = ±τ ′ H1-a.e. on γ ∩ γ ′. Changing the sign of θ ′ and τ ′ on the set where τ = −τ ′
we compute

∫
(γ∪γ ′)∩ω

|ψ(θ, τ )− ψ(θ ′, τ ′)|dH1 ≤ c
∫
(γ∪γ ′)∩ω

|θ − θ ′|dH1 ≤ c|μ− μ′|(ω),

where we defined θ = 0, τ = τ ′ on γ ′\γ and θ ′ = 0, τ ′ = τ on γ \γ ′.
To prove the second statement in the theorem we write, by the area formula,

E( f
μ, f (ω)) =
∫

f (γ )∩ f (ω)
ψ(θ ◦ f −1, τ̃ )dH1 =

∫
γ∩ω

ψ(θ, τ̃ ◦ f )|D f τ |dH1

and observe that |τ̃ ◦ f − τ | ≤ |D f − Id|. ��
At this point we give the proof of the upper bound.
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Proof of the upper bound in Theorem 3.1 We only need to deal with the case Ē(μ,�) <∞.
Let μ ∈ M(m)

df (�). We need to construct a sequence of measures μk ∈ M(m)
df (�) such that

μk
∗
⇀μ and

lim sup
k→∞

E(μk,�) ≤ Ē(μ,�).

By Lemma 2.3 we can extend μ to a measure Eμ ∈ M(m)
df (R

n), with

lim
δ→0

|Eμ|(�δ\�) = 0

(we recall that�δ = {x : dist(x,�) < δ}). By Theorem 2.1 there are a sequence of polyhedral
measures μk ∈ M(m)

df (R
n) and a sequence of C1 and bi-Lipschitz maps fk such that

|μk − ( fk)
Eμ|(Rn)→ 0, ‖ fk − x‖L∞ → 0, ‖D fk − Id‖L∞ → 0.

This implies μk
∗
⇀ Eμ. By Lemma 3.3 and Lemma 3.2(v) one obtains

Ē(μk,�) ≤ Ē(( fk)
Eμ,�)+ c‖μk − ( fk)
Eμ‖
≤ Ē(Eμ,�δk )(1 + c‖D fk − Id‖L∞)+ c‖μk − ( fk)
Eμ‖,

where δk = ‖ fk − x‖L∞ → 0. Taking the limit we conclude

lim sup
k→∞

Ē(μk,�) ≤ Ē(μ,�).

Therefore it suffices to prove the upper bound for polyhedral measures (since we are dealing
with bounded subsets of M(m)

df (R
n), weak convergence is metrizable).

Let μ = ∑N
i=1 bi ⊗ tiH1 γi ∈ M(m)

df (R
n) be a polyhedral measure, in the sense that

the γi are disjoint segments, bi ∈ Z
m , ti ∈ Sn−1, for i = 1, . . . , N . Let γ = ∪N

i=1γi . We
choose ε > 0 and cover γ ∩ �, up to an H1-null set, with a countable number of disjoint
balls {Bk = Brk (xk)}k∈N with rk < ε, which are contained in � and have the property that
γ ∩ Bk is a diameter of Bk and μ Bk = bik ⊗ tik H1 (γ ∩ Bk) for some ik ∈ {1, . . . , N }
(this is similar to the proof of Lemma 3.2(i), but here we take small balls to ensure weak
convergence). By the definition of ψ̄ , for every k we can find a measure μk ∈ M(m)

df (B
k)

with supp (μk − bik ⊗ tik H1 (xk + Rtik ∩ Bk)) ⊂ Bk such that

E(μk, Bk) ≤ diam(Bk)ψ̄(bik , tik )+
ε

2k
.

Finally, define νε =∑
k μk . We have

E(νε,�) ≤ Ē(μ,�)+ ε

and the desired recovery sequence is then obtained by letting ε → 0. ��
We remark that an additional application of the density result from Theorem 2.1, if appropriate
care is taken around the boundary and on segments with large multiplicity, permits to obtain
polygonal approximating sequences, see [5, Lemma 6.4].

3.3 Proof of the lower bound

In order to prove the lower bound, we need to show that the boundary conditions in the
definition of ψ̄ can be substituted with an asymptotic condition. We start by working on a
rectangle and showing that the energy is concentrated on the line.
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Lemma 3.4 Let ψ and E be as in Theorem 3.1. Given b ∈ Z
m and t ∈ Sn−1, we choose

a rotation Qt ∈ SO(n) with Qt e1 = t and for h, � > 0 we define the parallelepiped

Rt
�,h = Qt

[(− �
2 ,

�
2

)× (− h
2 ,

h
2

)n−1
]

and the energy on the parallelepiped

ϕ(b, t, �, h) = inf

{
lim inf
k→∞

1

�
E(μk, Rt

�,h) : μk ∈ M(m)
df (R

t
�,h),

μk
∗
⇀ b ⊗ tH1 (Rt ∩ Rt

�,h)

}
. (3.3)

Then ϕ does not depend on � and h. We write ϕ(b, t, �, h) = ϕ(b, t).

Proof The statement is obtained through the following remarks. We work here at fixed b and
t and write for simplicity φ(�, h) = ϕ(b, t, �, h).

(i) With a rescaling argument we get that

φ(�, h) = φ(λ�, λh) ∀ λ > 0. (3.4)

(ii) It is also immediate to notice that

φ(�, h) ≤ φ(�, H) whenever h ≤ H, (3.5)

by definition.
(iii) Moreover

φ

(
�

p
, h

)
≤ φ(�, h) ∀ p ∈ N\{0} (3.6)

by a selection argument. For example, if p = 2, then (3.6) is obtained choosing for
each k the half of Rt

�,h with energy less than 1
2 E(μk, Rt

�,h).

Thus our claim is proved, because by the previous three steps we have, for all h, � > 0 and
all p ∈ N\{0},

φ

(
�

p
, h

)
≤ φ(�, h) = φ

(
�

p
,

h

p

)
≤ φ

(
�

p
, h

)

hence equality holds throughout. ��

The next lemma shows that ϕ, which was defined using weak convergence instead of
boundary values, is the same as ψ̄ . This is the key step in which we show that the natural
upper and lower bounds coincide.

Lemma 3.5 Let ψ , ψ̄ and Ē be as in Theorem 3.1, ϕ as in Lemma 3.4. Then we have:

(i) For every sequence μk ∈ M(m)
df (B1/2) with μk

∗
⇀μ = b ⊗ tH1 (Rt ∩ B1/2) weakly

in M(m)
df (B1/2) one has

ϕ(b, t) ≤ lim inf
k→∞ Ē(μk, B1/2).

(ii) ψ̄(b, t) = ϕ(b, t).
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Proof (i) We can assume the liminf to be a limit and to be finite. We first pass from Ē to E
on the right-hand side. By the upper bound proven in the previous section, for every k there

is a sequence ν(k)h
∗
⇀μk in M(m)

df (B1/2) such that

lim sup
h→∞

E(ν(k)h , B1/2) ≤ Ē(μk, B1/2).

Since the weak convergence is metrizable on bounded sets we can take a diagonal subsequence
and obtain a sequence μ̃k which converges weakly to μ in M(m)

df (B1/2), with

lim
k→∞ E(μ̃k, B1/2) ≤ lim

k→∞ Ē(μk, B1/2).

Therefore it suffices to show that ϕ(b, t) ≤ lim infk→∞ E(μ̃k, B1/2).
We fix � ∈ (0, 1) and then choose h � 1 such that Rt

�,h ⊂ B1/2. Then E(μ̃k, Rt
�,h) ≤

E(μ̃k, B1/2) and, using Lemma 3.4,

�ϕ(b, t) ≤ lim inf
k→∞ E(μ̃k, Rt

�,h) ≤ lim inf
k→∞ E(μ̃k, B1/2).

Since � ∈ (0, 1) was arbitrary, the proof is concluded.
(ii) We choose b ∈ Z

m , t ∈ Sn−1, and setμ = b⊗ tH1 (Rt ∩ Rt
1,1). We start by defining

a version of ψ̄ where the ball is replaced by a cube,

ψ̃(b, t) = inf
{

E(μ̃, Rt
1,1) : μ̃ ∈ M(m)

df (R
t
1,1), supp (μ̃− μ) ⊂ Rt

1,1

}
.

It suffices to show that ϕ ≤ ψ̄ , ψ̄ ≤ ψ̃ and ψ̃ ≤ ϕ.
To prove ϕ ≤ ψ̄ let μ∗ = θ∗ ⊗ τ ∗H1 γ ∗ be one of the measures entering (3.1). We fill

Rt
1,1 by 2k+1 scaled-down copies ofμ∗, for all k ∈ N. Precisely, let f k

j (x) = 1
(2k+1) (x + j t)

and set μk = ∑k
j=−k( f k

j )
μ
∗. Since D f k

j = 1
2k+1 Id, for any test function ϕ ∈ C0

c (R
n) we

have ∫
ϕd[( f k

j )
μ
∗] = 1

2k + 1

∫
(ϕ ◦ f k

j )dμ
∗ = 1

2k + 1

∫
ϕ

(
j t + x

2k + 1

)
dμ∗(x).

Then μk ∈ M(m)
df (R1,1), μk ∗

⇀μ, and E(μk, Rt
1,1) = E(μ∗, B1/2). Since μ∗ was arbitrary,

we obtain ϕ ≤ ψ̄ .
By covering most of the diameter of B1/2 with small squares one can easily see that

ψ̄ ≤ ψ̃ .

We now show ψ̃ ≤ ϕ. Choose a sequence μk
∗
⇀ μ in M(m)

df (R
t
1,1) such that

lim
k→∞ E(μk, Rt

1,1) = ϕ(b, t). (3.7)

By Lemma 3.4, for any h ∈ (0, 1) we have

ϕ(b, t) ≤ lim inf
k→∞ E

(
μk, Rt

1,h

)
.

In particular,

lim sup
k→∞

E(μk, Rt
1,1\Rt

1,h) = 0. (3.8)

By the structure theorem (Theorem 2.5) the measureμk has the form
∑

i θk,i ⊗τk,i H1 γk,i ,
with θk,i ∈ Z

m and γk,i Lipschitz curves, each either closed or with endpoints in ∂Rt
1,1. We
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μk μ◦
k μ◦◦

k

Fig. 3 Passing from μk to μ◦◦
k . The squares represent Rt

1,1, the rectangles Rt
1,h and Rt

1,2h

denote by Jk the set of i for which the curve γk,i intersects Rt
1,h , and we define γ ◦

k = ∪i∈Jkγk,i

and μ◦
k =∑

i∈Jk
θk,i ⊗ τk,i H1 γk,i . By construction ∂μ◦

k = 0. By (3.8) we have

H1 (γk ∩ Rt
1,1\Rt

1,h

) −→ 0 as k → ∞,

therefore γ ◦
k ⊂ Rt

1,2h for k sufficiently large. In summary, we have constructed a new
sequence of vector-valued measures μ◦

k which satisfies

μ◦
k

∗
⇀ μ

with suppμ◦
k ⊂ Rt

1,2h and ∂μ◦
k = 0 in Rt

1,1 (see Fig. 3).
As a consequence of the definition of the truncated energy in Lemma 3.4 we get

(1 − 2h)ϕ ≤ lim inf
k→∞ E

(
μ◦

k, Rt
1−2h,2h

)
,

thus the endstripes St
h = Rt

1,2h\Rt
1−2h,2h contain little energy, in the sense that

lim sup
k→∞

E(μ◦
k, St

h) ≤ 2hϕ. (3.9)

As we drew in Fig. 3, we head to the conclusion squeezing the measure μ◦
k through the

projection f t : Rt
1,2h → Rt

1,2h , defined by f t (x) = x for x ∈ Rt
1−2h,2h and f t (x) =

Qt f (Q−1
t x) in St

h , where Qt is a rotation such that Qt e1 = t and f is defined as

f (x1, x ′) =
(

x1,

(
1

2h
− 1

h
|x1|

)
x ′
)

for x = (x1, x ′) ∈ Se1
h .

Let us define

μ◦◦
k = f t


 (μ
◦
k).

Thus

E(μ◦◦
k , St

h) ≤ cE(μ◦
k, St

h),

and therefore by (3.7) and (3.9)

lim sup
k→∞

E(μ◦◦
k , Rt

1,2h) ≤ ϕ + chϕ. (3.10)

Finally we deal with the boundary. By the definition of μ◦◦
k ,

∂μ◦◦
k = θ ′

(
δ1/2e1 − δ−1/2e1

)
. (3.11)

The measure

μ◦◦◦
k = μ◦◦

k + θ ′ ⊗ tH1 (Re1\Rt
1,h)
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satisfies ∂μ◦◦◦
k = 0, but, at the same time,

μ◦◦◦
k

∗
⇀ b ⊗ tH1 (

Re1 ∩ Rt
1,h

)+ θ ′ ⊗ tH1 (
Re1\Rt

1,h

)
,

thus θ ′ = b. Thus, (3.11) together with (3.10) implies ψ̃ ≤ ϕ. ��
We are now ready for proving the lower bound.

Proof of the lower bound in Theorem 3.1 Fix μ ∈ M(m)
df (�) and consider a sequence

μk
∗
⇀μ. Since Ē ≤ E , it suffices to prove that

Ē(μ,�) ≤ lim inf
k→∞ Ē(μk,�)

(this means, it suffices to show that Ē is lower semicontinuous). Passing to a subsequence we
can assume that the sequence Ē(μk,�) converges. We can assume that the limit is finite, and
therefore that supk |μk |(�) < ∞. We extend each of the measures μk to Eμk ∈ M(m)

df (R
n)

using Lemma 2.3. The sequence Eμk is uniformly bounded, extracting a subsequence we can
assume that Eμk has a weak limit, which is automatically an extension of μ. With a slight
abuse of notation we denote the limit by Eμ. We identify Eμ and Eμk with the corresponding
closed currents T, Tk ∈ R1(R

n;Z
m).

We fix ε > 0 and apply the Deformation Theorem to Eμ (Theorem 2.1). Let f and P be
the resulting C1 bi-Lipschitz map and polyhedral measure such that

‖ f
Eμ− P‖ < ε and | f (x)− x | + |D f (x)− Id| < ε.

We define

μ̃k = f
(Eμk − Eμ)+ P = f
Eμk − ( f
Eμ− P).

Clearly ∂μ̃k = 0; from Eμk
∗
⇀ Eμ we deduce μ̃k

∗
⇀ P . From Lemma 3.3 we get, for ωε =

{x ∈ � : dist(x, ∂�) > ε},
Ē(μ̃k, ωε) ≤ (1 + c‖D f − Id‖L∞)Ē(μk,�)+ c‖ f
Eμ− P‖. (3.12)

Since P is polyhedral, we can find finitely many disjoint balls Bi = B(xi , ri ) ⊂ ωε such that
P Bi = bi ⊗ ti H1 (xi + ti R∩ Bi ) and |P|(ω2ε\∪ Bi ) ≤ ε. For each ball, by Lemma 3.5,
we have

Ē(P, Bi ) = 2ri ψ̄(bi , ti ) ≤ lim inf
k→∞ Ē(μ̃k, Bi ).

Summing over the balls we conclude that

Ē(P, ω2ε) ≤
∑

i

Ē(P, Bi )+ c|P|(ω2ε\ ∪ Bi ) ≤ lim inf
k→∞ Ē(μ̃k, ωε)+ cε.

By (3.12) we then get

Ē(P, ω2ε) ≤ (1 + cε) lim inf
k→∞ Ē(μk,�)+ cε.

Since another application of Lemma 3.3 gives

Ē(μ, ω3ε) ≤ Ē(P, ω2ε)(1 + cε)+ cε,

the conclusion follows by the arbitrariness of ε. ��
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4 Explicit relaxation for dislocations in cubic crystals

We consider here the energy density ψ : Z
n × Sn−1 → R

ψ(b, t) = |b|2 + η(b · t)2 (4.1)

which arises in the modeling of dislocations in crystals. Focusing on the case η ∈ [0, 1]
which arose in previous works [3,7,11], we determine here the relaxation ψ̄(b, t) for the
(most relevant) small values of b and in particular show that complex structures may arise,
in which different values of b and of t interact.

4.1 Line-energy of dislocations

A dislocation is a line singularity in a crystal which may be described by a divergence-free
measure of the form θ ⊗ τH1 γ , as studied in the previous sections, where θ physically
represents the components of the Burgers vector in a lattice basis [13,14]. In the case that
dislocations are restricted to a plane, γ ⊂ R

2 × {0} and θ ∈ Z
2, a model of this form was

derived from linear three-dimensional elasticity in [7,11] using the tools of �-convergence,
building mathematically upon the concept of BV -elliptic envelope and physically upon a
generalization of the Peierls–Nabarro model introduced by Koslowski, Cuitiño and Ortiz
[15,16]. One key observation was that the (unrelaxed) energy per unit length of a dislocation
is given by a specific function ψc(b, t), which can be computed from the elastic constants
of the solid. Assuming a cubic kinematics for the dislocations and isotropic elastic constants
and writing t = (cosα, sin α) ∈ S1, the energy density takes the form (see [3, Eq. (51)] or
[7, Eq.(1.8)]),

ψc(b, t) = μa2
0

4π(1 − ν)
b

(
2 − 2ν cos2 α −2ν sin α cosα

−2ν sin α cosα 2 − 2ν sin2 α

)
b,

where the parameter ν ∈ [−1, 1/2] represents the material’s Poisson ratio,μ the shear modu-
lus of the crystal, a0 the length of the Burgers vector (i.e., the lattice spacing). Straightforward
manipulations permit to rewrite this expression as

ψc(b, t) = μa2
0

4π(1 − ν)

(
2(1 − ν)|b|2 + 2ν(b⊥ · t)2

)
= μa2

0

2π
ψ(b⊥, t), (4.2)

where ψ was defined in (4.1), η = ν
1−ν ≤ 1, and b⊥ = (−b2, b1). Without loss of gen-

erality we can assume η ∈ [0, 1]: indeed, if ν < 0, we can rewrite (4.2) as ψc(b, t) =
μa2

0
2π(1−ν)ψ

′(b, t) where ψ ′(b, t) = |b|2 + η′(b · t)2 contains the constant η′ = −ν ∈ [0, 1].
The expression (4.1) is invariant under rotations, and indeed the above discussion can be

immediately generalized to the three-dimensional case, resulting (at least in the somewhat
academic case ν < 0) in the same formula, see, e.g., [14, Sect. 4.4] or [15, Eq.(51)].

4.2 Lower bound on the relaxation

We now start the analysis of the energy density (4.1). The key idea is to decompose the set
γ on which the measure is concentrated into sets on which θ is constant. Each component is
then replaced by a segment with the same end-to-end span, an operation which by convexity
does not increase the energy (here we use Lemma 4.2 below). This involves an implicit
rearrangement, which one can expect to be sharp since γ is one dimensional. In a second
step we show that only small multiplicities are relevant in the definition of the relaxation,
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due to the quadratic growth of ψ (here we use Lemma 4.3 below). A similar procedure is
also helpful to characterize the relaxation in a total-variation model for the reconstruction of
optical flow in image processing [6].

Proposition 4.1 Let η ∈ [0, 1], ψ be as in (4.1). For n ≤ 9 its H1-elliptic envelope obeys

ψ̄(b, t) ≥ min

⎧⎨
⎩

∑
α∈{−1,0,1}n

ψe(α, Tα) : T ∈ R
n3n
,

∑
α∈{−1,0,1}n

α ⊗ Tα = b ⊗ t

⎫⎬
⎭,

(4.3)

where ψe denotes the positively one-homogeneous extension of ψ ,

ψe(b, t) = |t |ψ
(

b,
t

|t |
)
. (4.4)

For n ≥ 10 Eq. (4.3) holds with T ∈ R
n(4n+1)n and both sums running over all α in

[−2n, 2n]n ∩ Z
n.

Proof Step 1 We fix b and t . Let μ = θ ⊗ τH1 γ be any of the measures entering (3.1).
We decompose its support γ depending on the value of θ . For any α ∈ Z

n we set

γα = {x ∈ γ : θ(x) = α}.
These countably many 1-rectifiable sets are pairwise disjoint and cover γ . Since ∂(μ− b ⊗
tH1 (Rt ∩ B 1

2
)) = 0 we have

b ⊗ t =
∫
γ

θ ⊗ τdH1 =
∑
α∈Zn

α ⊗ Tα,

where we defined

Tα =
∫
γα

τ dH1.

An analogous decomposition of the energy gives

E(θ ⊗ τH1 γ ) =
∑
α

∫
γα

ψ(α, τ) dH1 ≥
∑
α

ψe(α, Tα),

where in the second step we used Lemma 4.2 below. In particular, if the energy is finite then∑
α |Tα| <∞.

Step 2 Assume first n ≤ 9. Let T : Z
n → R

n be as above, α∗ ∈ Z
n be such that |α∗

i | > 1 for
some i and Tα∗ �= 0. Let a ∈ Z

n be as in Lemma 4.3(i) below, so that

ψe(α
∗ − a, Tα∗)+ ψe(a, Tα∗) ≤ ψe(α

∗, Tα∗).

By the subadditivity in Lemma 4.2,

ψe(a, Ta + Tα∗) ≤ ψe(a, Tα∗)+ ψe(a, Ta)

and the same for α∗ − a. We set T ′
α∗ = 0, T ′

a = Ta + Tα∗ , T ′
α∗−a = Tα∗−a + Tα∗ , T ′

α = Tα
for the other values. Then

∑
α α ⊗ T ′

α =∑
α α ⊗ Tα and

∑
α

ψe(α, T ′
α) ≤

∑
α

ψe(α, Tα).
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Let M > 2. Finitely many iterations of this step produce a T M with T M
α = 0 for all α

with maxi |αi | ∈ [2,M]. Taking the limit M → ∞ gives a T ∞ with T ∞
α = 0 whenever

maxi |αi | ≥ 2. This concludes the proof for n ≤ 9.
If n ≥ 9 we use the same procedure with Lemma 4.3(ii) instead of (i). ��
One key ingredient in the above proof was the subadditivity of ψe.

Lemma 4.2 The function ψe defined in (4.4) is subadditive in the second argument, in the
sense that for any b ∈ Z

n and any set of vectors T1, . . . , TN ∈ R
n we have

ψe

(
b,
∑

i

Ti

)
≤
∑

i

ψe(b, Ti ).

Analogously, if γ is 1-rectifiable and τ its tangent,

ψe

(
b,
∫
γ

τdH1
)

≤
∫
γ

ψe(b, τ )dH1.

Proof For brevity we prove only the first formula, the differences are purely notational. We
can assume b �= 0. We set τi = Ti/|Ti |, L =∑

i |Ti |, and write ψe(b, Ti ) = |Ti |ϕ(τi )where
ϕ(τ) = |b|2 + η(b · τ)2, τ ∈ R

n . Since ϕ is convex we obtain

|b|2 + η(b · τ̂ )2 = ϕ(τ̂ ) ≤
∑

i

|Ti |
L
ϕ(τi ) = 1

L

∑
i

ψe(b, Ti ),

where

τ̂ =
∑

i

|Ti |
L
τi = 1

L

∑
i

Ti .

Set now h(�) = �|b|2+�−1η(b ·τ̂ )2. The function h has a global minimum at �0 = √
η
|b·τ̂ |
|b| ≤

|τ̂ | and is increasing afterwards. Since τ̂ is an average of unit vectors, |τ̂ | ≤ 1. We obtain

ψe(b, τ̂ ) = h(|τ̂ |) ≤ h(1) = ϕ(τ̂ ),

and therefore the desired inequality

ψe

(
b,
∑

i

Ti

)
= ψe(b, L τ̂ ) = Lψe(b, τ̂ ) ≤ Lϕ(τ̂ ) ≤

∑
i

ψe(b, Ti ).

��
Lemma 4.3 (i) Let n ∈ {2, . . . , 9}, b ∈ Z

n. If β = maxi |bi | > 1 then there is a vector
a ∈ Z

n such that maxi |ai | = 1, maxi |bi − ai | = β − 1, and

ψ(b − a, t)+ ψ(a, t) ≤ ψ(b, t) for all t ∈ Sn−1. (4.5)

(ii) Let b ∈ Z
n. If |b| ≥ 4

√
n then there is a vector a ∈ Z

n such that maxi |ai | < maxi |bi |,
maxi |bi − ai | < maxi |bi |, and (4.5) holds.

(iii) If a, b ∈ Z
n, a · b = 0 and |b| ≤ |a|√2, then

ψ(b, t) ≤ ψ(a + b, t) for all t ∈ Sn−1.

We observe that the construction in (i) does not work for n ≥ 10. Indeed, if we take
n = 10, η = 1, b = 2e1 +∑10

i=2 ei , t = 1
2 e1 − (12)−1/2 ∑10

i=2 ei then a short computation
shows that ψ(b, t) < ψ(b − e1, t)+ ψ(e1, t).
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Proof (i) We need to choose a such that the quantity

ξ = ψ(b, t)− ψ(a, t)− ψ(b − a, t) = 2(b − a) · a + 2η((b − a) · t)(a · t)

is nonnegative. We set

a =
∑

i :|bi |=β
sgn(bi )ei ,

so that maxi |ai | = 1, maxi |bi − ai | = β − 1, b = βa + b′ and a · b′ = 0. Then

ξ = 2(β − 1)|a|2 + 2η(β − 1)(a · t)2 + 2η(b′ · t)(a · t)

≥ 2(β − 1)|a|2η
[

1 + x2 − |b′|
|a|(β − 1)

x
√

1 − x2

]
,

where we set x = |a ·t |/|a| and used that, since a and b′ are orthogonal, |b′ ·t | ≤ |b′|√1 − x2.
Since b′ has at most n − 1 non-zero components, each of them has length at most β − 1, and
|a| ≥ 1 we have |b′|

|a|(β−1) ≤ √
n − 1 ≤ √

8 = 2
√

2. The conclusion follows from the fact

that 2
√

2x
√

1 − x2 ≤ (
√

2x)2 + (1 − x2) = 1 + x2.
(ii) We set a =∑

i sgn(bi )�|bi |/2 ei , f = b − 2a, and compute, with ξ as above,

ξ = 2
(|a|2 + f · a + η(a · t)2 + η(a · t)( f · t)

) ≥ 2(|a|2 − 2|a| | f |).
The conclusion follows from | f | ≤ √

n and |a| ≥ |b|/2 ≥ 2
√

n.
(iii) We write

ψ(a + b, t)− ψ(b, t) = |a|2 + |b|2 + η(t · a + t · b)2 − (|b|2 + η(t · b)2)

= |a|2 + η[(t · a + t · b)2 − (t · b)2]
≥ η[|a|2 + (t · a)2 + 2(t · a)(t · b)].

As in the previous case we set x = |a · t |/|a| and use orthogonality to write

ψ(a + b, t)− ψ(b, t) ≥ η|a|2
[

1 + x2 − 2|b|
|a| x

√
1 − x2

]
.

The conclusion follows, using |b| ≤ |a|√2, with the same inequality as in (i). ��
4.3 Explicit relaxation for special b

Lemma 4.4 For n ≤ 9 and all i ∈ {1, . . . , n}, β ∈ Z we have

ψ̄(βei , t) = |β|ψ(ei , t).

Proof The inequality ψ̄(βei , t) ≤ |β|ψ(ei , t) follows from subadditivity. To prove the con-
verse inequality, we first observe that

ψ(ei , t) ≤ ψ(α, t) whenever αi ∈ {−1, 1}.
Indeed, it suffices to apply Lemma 4.3(iii) with b = αi ei , and a = α−b, which is admissible
because |b| = 1 and |a| ≥ 1 (unless a = 0, but in this case there is nothing to prove).

Let T be a minimizer in the lower bound (4.3). We estimate, using the above observation
and then Lemma 4.2,∑

α:αi �=0

ψe(α, Tα) ≥
∑
α:αi �=0

ψe(ei , Tα) ≥ ψe(ei ,
∑
α:αi �=0

αi Tα) = ψe(ei , z),

123



S. Conti et al.

where we defined z = ∑
α:αi �=0 αi Tα . The i-th row of the condition

∑
α α ⊗ Tα = b ⊗ t

gives then z = βt . We conclude that

ψ̄(βei , t) ≥ ψe(ei , βt) = |β|ψ(ei , t)

and therefore the statement. ��
Lemma 4.5 For n ≤ 9 and all β ∈ Z, t ∈ Sn−1, i �= j ∈ {1, . . . , n} we have

ψ̄(β(ei + e j ), t) = |β|min

{
ψe(ei , z1)+ ψe(e j , z2)

+ψe

(
ei − e j ,

z2 − z1

2

)
+ ψe

(
ei + e j , t − z1 + z2

2

)
: z1, z2 ∈ R

n
}

and correspondingly for β(ei − e j ).

Proof Step 1 Lower bound. For ease of notation we focus on the case i = 1, j = 2. Let T
be a minimizer in the lower bound (4.3) corresponding to β(e1 + e2). We define

T1 =
∑

α1 �=0,α2=0

α1Tα, T2 =
∑

α1=0,α2 �=0

α2Tα,

T+ =
∑

α1=α2 �=0

α1Tα, T− =
∑

α1=−α2 �=0

α1Tα.

The sets over which these sums run are disjoint, and α1 = α2 = 0 on all other values of α.
Therefore the first two rows of

∑
α α ⊗ Tα = β(e1 + e2)⊗ t give

T1 + T+ + T− = βt and T2 + T+ − T− = βt. (4.6)

In particular, T1 − T2 + 2T− = 0. We decompose the sum of the ψ(α, Tα) in (4.3) into the
same four parts as above.

Let us start with the part with α1 = α2 �= 0. For each α with this property we consider
b = α1(e1 + e2) and a = α − b. Then a · b = 0 and, recalling that |α1| = 1, we have√

2 = |b| ≤ |a|√2 (unless a = 0, but in this case there is nothing to prove). By Lemma 4.3(iii)
we obtain ψe(e1 + e2, t) ≤ ψe(α, t) for all t . Therefore∑

α1=α2 �=0

ψe(α, Tα) ≥
∑

α1=α2 �=0

ψe(e1 + e2, α1Tα) ≥ ψe(e1 + e2, T+),

where in the last step we used the subadditivity of Lemma 4.2. The case α1 �= 0 = α2 is
similar and has already been treated in the proof of Lemma 4.4,

∑
α1 �=0,α2=0

ψe(α, Tα) ≥
∑

α1 �=0,α2=0

ψe(e1, α1Tα) ≥ ψe(e1, T1).

The other two cases are almost identical. Therefore we have shown that

ψ̄(β(e1 + e2), t) ≥ ψe(e1, T1)+ ψe(e2, T2)+ ψe(e1 + e2, T+)+ ψe(e1 − e2, T−).

We set z1 = T1/β, z2 = T2/β. By (4.6) one has T− = β(z2 − z1)/2 and T+ = β(t − (z1 +
z2)/2). Since ψe is positively 1-homogeneous in the second argument,

ψ̄(β(e1 + e2), t) ≥ |β|ψe(e1, z1)+ |β|ψe(e2, z2)

+ |β|ψe

(
e1 + e2, t − z1 + z2

2

)
+ |β|ψe

(
e1 − e2,

z2 − z1

2

)
.
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1
2z1

0

1
2z2

t

γ1 γ2

Fig. 4 Sketch of the construction used in the upper bound of Lemma 4.5. The left panel shows the support
of the measure, the central one the part on which α1 �= 0, the right one the part on which α2 �= 0. The red
dashed line is t

Step 2 Upper bound. It suffices to consider β = 1, the other cases follow by subadditivity.
The construction is illustrated in Fig. 4. Precisely, we let γ1 be the polygonal curve that joins
(in this order) the points

(0, 0),
1

2
z1,

1

2
z2,

1

2
(z1 + z2), t,

and τ1 its tangent vector. Analogously, let γ2 be the curve that joins

(0, 0),
1

2
z2,

1

2
z1,

1

2
(z1 + z2), t,

and τ2 its tangent. Then we set

μ = e1 ⊗ τ1H1 γ1 + e2 ⊗ τ2H1 γ2.

One can then extendμ t-periodic and rescale to get a sequenceμk → (e1 +e2)⊗ tH1 (Rt)
and prove the upper bound. ��

The following, more explicit result in two dimensions was mentioned without proof in [7].
It shows that in this case the relaxation is obtained first by making the integrand subadditive
in the first argument than taking the (one-homogeneous) convex envelope in the second
argument of the result, corresponding to the upper bound given in [3]. In particular, the
minimum is not always trivial. For example, for t = e2 it is easy to see that whenever
η > 0 the minimizer obeys z · e1 > 0. The resulting microstructure is illustrated in Fig. 5.
The relation of this explicit relaxation formula to dislocation models in three dimensions is
treated in [5]. A similar result for dislocations restricted to two planes is discussed in [8].

Lemma 4.6 For n = 2 and all β ∈ Z, t ∈ S1 we have

ψ̄(β(e1 + e2), t) = |β|min
{
ψe(e1, z)+ ψe(e2, z)+ ψe(e1 + e2, t − z) : z ∈ R

2}.
Proof We just need to show that minimum in the formula of Lemma 4.5 is attained at z1 = z2.
This is equivalent to the statement that

ψe(e1,m − d)+ ψe(e2,m + d)+ ψe(e1 − e2, d)− ψe(e1,m)− ψe(e2,m) ≥ 0

for all m, d ∈ R
2 (we set z1 = m − d , z2 = m + d). Explicitly, this expression is

|m − d| + |m + d| + 2|d| + η
(m1 − d1)

2

|m − d| + η
(m2 + d2)

2

|m + d| + η
(d1 − d2)

2

|d|
−2|m| − η

m2
1 + m2

2

|m| .
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0 ππ/2

ψ(e1) + ψ(e2)

ψ(e1 + e2)

0 ππ/2

ψ(e1) + ψ̄(e1 + e2)

ψ(e1 + e2)

ψ(e1) ψ(e2)

Fig. 5 Left panel ψ̄(e1 + e2, t) as given in Lemma 4.6 as a function of α, for η = 1, t = (cosα, sin α). The
two one-dimensional options ψ(e1, t)+ψ(e2, t) = 2 + η and ψ(e1 + e2, t) = 2 + η(1 + 2t1t2) are optimal
for different orientations. Close to the intersection a mixture of the two options is optimal, as sketched in the
inset. Right panel corresponding plot for ψ̄(2e1 + e2, t) (different vertical scale). For most values of t the
optimal energy is obtained usingψ(e1, t)+ ψ̄(e1 +e2, t). The latter is the convex, subadditive envelope ofψ ,
see discussion at the end of Sect. 4.3. However, there is a region in which a more complex structure develops
(sketched in the inset), leading to a lower energy. The latter construction bears similarity to the examples given
in [2,4]

Clearly |m + d| + |m − d| ≥ 2|m|, (d1 − d2)
2 ≥ 0 and 2|d| ≥ 2η|d|. Therefore it suffices

to show that

ξ = 2|d| + (m1 − d1)
2

|m − d| + (m2 + d2)
2

|m + d| − |m| ≥ 0

for all m, d ∈ R
2. We set m − d = r(cos θ, sin θ), m + d = s(cosϕ, sin ϕ), with r, s ∈

(0,∞), θ, φ ∈ R. From 2m = (m + d) + (m − d) we obtain |m| ≤ (r + s)/2, and with
2d = (m + d)− (m − d) we have ξ ≥ ζ , where

ζ =
√

r2 + s2 − 2rs cos(ϕ − θ)+ r cos2 θ + s sin2 ϕ − 1

2
(r + s)

=
√

r2 + s2 − 2rs cos(ϕ − θ)+ 1

2
r cos(2θ)− 1

2
s cos(2ϕ)

since 1
2 cos 2θ = cos2 θ− 1

2 = 1
2 − sin2 θ . We change variables again, and write 2θ = γ − δ,

2ϕ = γ + δ. Then

2ζ = r cos(γ − δ)− s cos(γ + δ)+ 2
√

r2 + s2 − 2rs cos δ.

With cos(γ − δ) = cos γ cos δ + sin γ sin δ we obtain

2ζ = (r − s) cos γ cos δ + (r + s) sin γ sin δ + 2
√

r2 + s2 − 2rs cos δ.

The first two terms are the scalar product of (cos γ, sin γ ) with another vector, which is
bounded by the length of the vector. Therefore

2ζ ≥ 2
√

r2 + s2 − 2rs cos δ −
√
(r − s)2 cos2 δ + (r + s)2 sin2 δ

= 2
√

r2 + s2 − 2rs cos δ −
√
(r + s)2 − 4rs cos2 δ.

Squaring, the last expression is nonnonegative iff

4r2 + 4s2 − 8rs cos δ ≥ (r + s)2 − 4rs cos2 δ,
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which in turn is equivalent to

3r2 + 3s2 − 2rs + 4rs(cos2 δ − 2 cos δ) ≥ 0,

which is true since x2 − 2x ≥ −1 and r2 + s2 ≥ 2rs. ��
In closing, we remark that the relaxation for other values of b is more complex and includes
other microstructures. To see this, we define ψ∗ by

ψ∗(b, t) = min

{
N∑

i=1

ψ̄(zi , t) : N ∈ N, zi ∈ {−1, 0, 1}2,

N∑
i=1

zi = b

}
. (4.7)

The values of ψ̄ entering this expression are characterized in Lemmas 4.4 and 4.6. The
function ψ∗ is by definition subadditive in b, existence of the minimum follows from growth
and continuity. We now show that a sequence {z1, . . . , zN } which contains a pair (z, z′)
with z1 = −z′1 = 1 cannot be optimal. If z + z′ = 0, it suffices to remove both of them. If
z+z′ = ±e2, replacing the pair by±e2 reduces the energy, since ψ̄(e2) ≤ ψ̄(e1)+ψ̄(e1±e2).
If z + z′ = ±2e2 then replacing the pair with (±e2,±e2) reduces the energy, since 2ψ̄(e2) ≤
ψ̄(e1 + e2) + ψ̄(e1 − e2). Therefore the sign of all zi

1 is the same. Analogously for the zi
2,

and one concludes that

ψ∗(b, t) = min{|b1|, |b2|}ψ̄(e1 + sgn(b1b2)e2, t)

+ (|b2| − |b1|)+ψ(e2, t)+ (|b1| − |b2|)+ψ(e1, t).

This expression is clearly convex in t . Finally, we show that ψ∗ ≤ ψ . This is immediate if
|b| ≤ √

2, and follows from quadratic growth of ψ for larger b. In particular, if |b1| and |b2|
are not 1 then from ψ(e1, t) ≤ 2 we obtain ψ∗(b, t) ≤ 2|b1| + 2|b2| ≤ b2

1 + b2
2 ≤ ψ(b, t).

If |b1| = 1 and |b2| ≥ 3, a similar computation holds since 2|b1|+ 2|b2| ≤ 1+ 3|b2| ≤ |b|2.
It remains to deal with the case b = (1, 2) (up to signs and permutations). In this case, from
η|2t1t2| ≤ |t |2 = 1 we obtain

ψ∗((1, 2), t) ≤ 3 + η(t2
1 + 2t2

2 ) ≤ 5 + η(t2
1 + 4t2

2 + 4t1t2) = ψ((1, 2), t).

Therefore ψ∗ ≤ ψ . We conclude that ψ∗ is the convex subadditive envelope of ψ .
In Fig. 5 we investigate the case b = (2, 1) in more detail. The lower bound (4.3) is

(numerically) attained by a microstructure in which α = (1, 1), α = (1, 0) and α = (0, 1)
play a role, and is smaller than ψ∗. Therefore in this case ψ̄ < ψ∗.
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