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INTRODUCTION 

State of the art PRA methods, i.e. Dynamic PRA 

(DPRA) methodologies [1], largely employ system 

simulator codes to accurately model system dynamics. 

Typically, these system simulator codes (e.g., RELAP5 

[2]) are coupled with other codes (e.g., ADAPT [3], 

RAVEN [4] that monitor and control the simulation. The 

latter codes, in particular, introduce both deterministic 

(e.g., system control logic, operating procedures) and 

stochastic (e.g., component failures, variable uncertainties) 

elements into the simulation. A typical DPRA analysis is 

performed by: 

1. Sampling values of a set of parameters from the 

uncertainty space of interest 

2. Simulating the system behavior for that specific set of 

parameter values 

3. Analyzing the set of simulation runs 

4. Visualizing the correlations between parameter values 

and simulation outcome 

Step 1 is typically performed by randomly sampling 

from a given distribution (i.e., Monte-Carlo) or selecting 

such parameter values as inputs from the user (i.e., 

Dynamic Event Tree [3]). In Step 2, a simulation run is 

performed using the values sampled in Step 1). These 

values typically affect the timing and sequencing of events 

that occur during the simulation. 

The objective of Step 3 is to identify the correlations 

between timing and sequencing of events with simulation 

outcomes (such as maximum core temperature). In a 

classical PRA (event-tree/fault-tree based) environment, 

such analysis is performed by observing and ranking the 

minimal cut sets that contribute to a Top Event (e.g., core 

damage). In a DPRA environment, however, data 

generated is more heterogeneous since it consists of both: 

 Temporal profiles of state variables 

 Timing of specific events. 

The visual exploration of such data is a new research 

topic and it is especially relevant when uncertainty 

quantification is performed on many parameters for 

complex systems such as nuclear power plants. Such 

exploration aims to evaluate impact of uncertainties on 

simulation outcome (e.g., maximum core temperature).  

This paper tackles: 

 Step 1: How the data is generated  

 Step 3: How the data is analyzed  

 Step 4: How the data is visualized 

and present state-of-the-art algorithms that have been 

developed in the past few years with the intent of 

improving the capabilities of DPRA methodologies. 

Such algorithms are the result of a series of 

collaborations between Idaho National Laboratory, 

University of Utah, the Ohio State University and 

Lawrence Livermore National Laboratory. 

 

 
Figure 1. Max core temperature as function of 2 parameters 

and limit/fail temperature (top) and plot of their intersection:  

limit surface (bottom) 

GENERATE DATA 

Nuclear simulations are often computationally 

expensive, time-consuming, and high-dimensional with 

respect to the number of input parameters. Thus exploring 

the space of all possible simulation outcomes is infeasible 
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using finite computing resources. This is a typical context 

for performing adaptive sampling where a few 

observations are obtained from the simulation, a surrogate 

model is built in order predict behavior of the system (e.g., 

maximum core temperature), and new samples are selected 

based on the model constructed (see Fig. 2).  

The surrogate model is then updated based on the 

simulation results of the sampled points. In this way, we 

attempt to gain the most information possible with a small 

number of carefully selected sampled points, limiting the 

number of expensive trials needed to understand features 

of the simulation space. From a safety point of view, we 

are interested in identifying the limit surface, i.e., the 

boundaries in the simulation space between system failure 

and system success. The generic structure of an adaptive 

sampling algorithm is shown in Fig. 4. 

Two classes of algorithms have been evaluated and are 

being implemented within RAVEN: 

 Discrete: model generated predicts simulation 

outcome in a binary fashion, e.g., system failure 

or system success 

 Continuous: model generated predicts a best 

estimate of simulation outcome, e.g., maximum 

temperature reached in the core 

In the first class, Support Vector Machines (SVMs) have 

proven to be flexible to model limit surface of an arbitrary 

shape [5]. The only limitation is that the surrogate model 

only predicts the simulation outcome in a binary form 

(failure or success) and does not give any quantitative 

information of the variables of interest (e.g., max core 

temperature). We then investigate algorithms that can 

generate continuous reduced order models based on 

Gaussian process models. 

We started by evaluating the Kriging method and then 

developed more advanced algorithms based on topological 

constructions of the surrogate model (Morse-Smale 

complexes) [6] as shown in Fig. 3. 

 

 
Figure 2. Generic scheme for adaptive sampling algorithms 

These algorithms offer better convergence performances, 

i.e., less samples are need to evaluate limit surfaces. Figure 

4 shows an example of limit surface determination for a 

simplified PWR system during a station blackout (SBO) 

scenario. Two stochastic variables are considered:  initial 

time after scram (x axis) and duration (y axis) of SBO 

condition. Note how the uncertainty (green and blue lines) 

associated to the limit surface (black line) after 10 samples 

(top of Fig. 4) is very wide while after only 60 samples 

(bottom of Fig. 4) the limit surface has been completely 
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Figure 3. Three topology based methods for adaptive sampling [6] 



characterized. Note that the limit surface could have been 

obtained using Monte-Carlo or Latin Hypercube sampling 

with a much higher number of samples (about 300 

samples). Such improvements can be even higher when a 

large number of stochastic parameters are considered. 

 

 

 
Figure 4. Limit surface obtained for a simplified PWR system 

for a SBO scenario after 10 (top) and 60 (bottom) samples [5] 

 

ANALYZE DATA 

The ability to analyze and identify correlations among 

timing of events through system dynamics/software/human 

action interactions is essential for nuclear power plant 

safety analysis and post-processing of the data generated 

by DPRA methodologies is still a research topic. 

A first approach toward discovering these correlations 

from data generated by DPRA methodologies has been 

developed using Fuzzy classification. However, clustering 

algorithms have allowed users to fully analyze these 

correlations by considering the complete system dynamics 

and not only the final outcome [76].  

Clustering based algorithms can be used to identify 

groups (i.e., clusters) of scenarios having similar temporal 

behavior of the state variables. An example [7] is shown in 

Fig. 5 for a data set generated using ADAPT and RELAP-5 

for an aircraft crash scenario. A plot of all 610 scenarios is 

shown in Fig. 5 (top); clustering algorithm allowed to 

identify 4 clusters and the “representative scenarios” for 

each of these 4 clusters are shown in Fig. 5 (middle). At 

this point, the analysis can be performed by observing the 

timing of events that lead to the scenarios contained in that 

cluster (Fig. 5 bottom). 

Moreover, clustering algorithms have proven to assist 

the user, for example, in the identification of those 

scenarios having similar temporal behavior but 

characterized by different outcomes only because the 

maximum simulation time was passed (see Figure 7). 

 

 

 
Figure 5. Original data (top), clustered data (middle) and 

timing of events associated to a cluster (bottom)[7] 

In addition, in [7] we showed how clustering algorithms 

can easily identify outliers scenarios, i.e., scenarios 

characterized by erroneous/discontinuous temporal 

behavior due to the fact that the validity boundaries of the 

code were surpassed (see Fig. 7). 

In these clustering analyses, only continuous data are 

used to represent each scenario while discrete data are 

considered after the clustering process to identify the set of 

events that caused a similar temporal behavior.  

Our recent efforts have been toward the development 

of methodologies able to analyze scenarios by considering 

in a coherent fashion both state variables (continuous data) 

data and timing/sequence of events (discrete data). We 

accomplished this task by symbolically representing both 

continuous and discrete datasets [8]. 

Symbolic representation means that the data are 

transformed into a series of symbols. Two algorithms are 

being used: 



 A modified version of SAX [9] that discretize state 

variables symbolically converts (see Fig. 8) 

 Time Series Knowledge Representation (TSKR) [10] 

which symbolically converts discrete types of data 

(see Fig. 9). 

 
Figure 6. Identification of scenarios that would lead to failure 

if max simulation time would be extended [7] 

 
Figure 7 Identification of outliers scenarios generated by 

errorneopus behavior of the simulation code [7] 

These conversions are performed in such way that 

duration, coincidence and order are preserved. Noteworthy 

is that high memory requirement reductions were achieved. 

In addition, we also noticed great computational time 

reduction when clustering and classification algorithms 

were applied to the symbolically converted data. 

Such reductions (both in term of memory requirements 

and computational performances) are of relevance for 

diagnosis and prognosis methodologies when real-time 

measurements need to be continuously compared with sets 

of archived data (either generated by simulators or 

previously monitored and stored). 

 

VISUALIZE DATA 

The need for software tools able to both analyze and 

visualize large amount of data generated by Dynamic PRA 

methodologies has been emerging only in recent years. In 

the past 2 years, INL and University of Utah have 

developed a software tool able to analyze multi-

dimensional data: HDViz [11,12]. 

 
Figure 8. Discretization of a scenario charaterized by two 

state variables; a specific symbol is associated to each cell [8] 

 

 
Figure 9. Symbolic conversion of time dependent events [8] 

HDViz model the relations between output variables 

and stochastic/uncertain parameters as high-dimensional 

functions. In this respect, HDViz segments the domain of 

these high-dimension functions into regions of uniform 

gradient flow by decomposing the data based on its 

approximate Morse-Smale complex (see Fig. 10).  

Points (i.e., simulation runs) belonging to a particular 

segmentation have similar geometric and topological 

properties, and from these it is possible to create compact 

statistical summaries of each segmentation. 

Such summaries are then presented to the user in an 

intuitive manner that highlights features of the dataset 

which are otherwise hidden [11, 12] (see Fig. 11). In 

addition, the visual interfaces provided by the system are 

highly interactive and tightly integrated, providing users 

with the ability to explore various aspects of the datasets 

for both analysis and visualization purposes. 

 

CONCLUSIONS 

This paper has shown several methodologies and 

algorithms that have been developed among national 

laboratories and academic research centers. These 

algorithms are now being evaluated and implemented in 

projects such as the Risk Informed Safety Margin 
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Characterization (RISMC) and a DPRA code under 

development at INL: RAVEN. 

 
Figure 10. The topological summary visual interface of the 

simple 2D function [11] 

 

 
Figure 11. Inverse coordinate plots for a PRA dataset [11] 

 

In this respect, we believe that these algorithms may 

represent a big step forward toward the utilization of 

simulation-based methodologies (i.e., DPRA) in order to 1) 

minimize high computational cost of such analysis (by 

decreasing the number of scenarios to be generated), and, 

2) maximize the amount of information and risk/safety 

insights that can be explored. 
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