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Abstract In recent years the interest on devising and

study new materials is growing since they are widely

used in different applications which go from rheology

to bio-materials or aerospace applications. In this

framework, there is also a growing interest in under-

standing the behaviour of materials with memory, here

considered. The name of the model aims to emphasize

that the behaviour of such materials crucially depends

on time not only through the present time but also

through the past history. Under the analytical point of

view, this corresponds to model problems represented

by integro-differential equations which exhibit a

kernel non local in time. This is the case of rigid

thermodynamics with memory as well as of isothermal

viscoelasticity; in the two different models the kernel

represents, in turn, the heat flux relaxation function

and the relaxation modulus. In dealing with classical

materials with memory these kernels are regular

function of both the present time as well as the past

history. Aiming to study new materials integro-

differential problems admitting singular kernels are

compared. Specifically, on one side the temperature

evolution in a rigid heat conductor with memory

characterized by a heat flux relaxation function

singular at the origin, and, on the other, the displace-

ment evolution within a viscoelastic model character-

ized by a relaxation modulus which is unbounded at

the origin, are considered. One dimensional problems

are examined; indeed, even if the results are valid also

in three dimensional general cases, here the attention

is focussed on pointing out analogies between the two

different materials with memory under investigation.

Notably, the method adopted has a wider interest since

it can be applied in the cases of other evolution

problems which are modeled by analogue integro-

differential equations. An initial boundary value

problem with homogenous Neumann boundary con-

ditions is studied.

Keywords Viscoelasticity � Thermodynamics with

memory � Integro-differential equations � Singular

relaxation modulus � Singular kernel � Singular heat

flux relaxation function

1 Introduction

The models here considered are well known ones and

refer to materials with memory as they are termed in

the wide literature which is concerned about their

physical (thermodynamical and/or mechanical)

behaviours, on one side, and the many interesting

analytical problems, on the other one. Specifically, in

the case of a viscoelastic body, its deformation does
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not depend only on the mechanical status of the body

in the present time, but, also, on its deformation

history according to the well known model [1–3].

Viscoelastic components are more and more often

used in devising new and smart materials in general.

The interest in this subject is testified by many books

and Conferences such as such as [4–7] which may be

considered as sample ones; the first two are very recent

books providing an overview on the subject aiming,

the first one, to viscoelasticity models referring to

study earthquakes and the second one to an updated

overview on fractional calculus in linear viscoelastic-

ity. Indeed, according to Fabrizio [8], who, in 2014,

further to cite experimental results, analyzes the

connection between Volterra and fractional deriva-

tives models, the growing interest in models based on

fractional derivatives is also due to the need to devise

new tools to study materials whose behaviour cannot

be described when the classical regularity hypothesis

on the kernel in the integro-differential equations are

assumed. This is the case studied, again in 2014, by

Deseri et al. [9], who show how a fractional derivative

model can be adapted to describe bio-materials.

Indeed, the Special Issue of Discrete and Continuous

Dynamical Systems—Series B dedicated to Mauro

Fabrizio [10], comprises articles dedicated to materi-

als with memory or which may be termed new, such as

[11–24] and mathematical models to describe the

behaviour of problems which arise in biological

contexts [25–28]. These results motivate us to adopt,

in this present article, less restrictive functional

requirements on the kernel.

The two books [6, 7] are Special Volumes which

comprise results presented in Conferences devoted to

new and smart materials together with analytical

problems arising from the investigation of such

models; these books are listed here as examples of

the current interest in materials with memory and in

the related mathematical models.

The general regularity assumptions on the relaxa-

tion modulus guarantee the solution existence and

uniqueness of Volterra type problems, as pointed out

by many authors and firstly proved by Dafermos [29,

30]. Nevertheless, the idea of singular kernels to

model particular cases of viscoelastic behaviours was

introduced by Boltzmann [31] in the nineteenth

century. Later, the same model was further investi-

gated, since the middle of twentieth century, by Zimm

et al. [1, 32–34] referring to polymers. On the other

hand, many authors [9, 35–38] pointed out also the

applicative interest of new polymers and/or bio-

materials whose mechanical response is not modeled

by a Volterra type integro-differential equation with a

regular kernel. A wide research activity is testified by

many references such as [39–46] to mention some of

those ones concerning singular kernel problems both

under the analytical as well as the model point of view.

Furthermore, other authors, such as Berti [47] and

Grasselli and Lorenzi [48] study viscoelasticity prob-

lems exhibiting a singular memory kernel. The

thermodynamical admissibility of a singular visco-

elastic model characterized by a singular viscoelastic

relaxation modulus is analyzed by Giorgi and Morro

[49]. The references [50–58] are all concerning

singular kernel problems both in rigid thermodynam-

ics with memory as well as in viscoelasticity. Specif-

ically, [50–52, 57, 58] study asymptotic behaviour of

solutions.

In this framework, the study here presented are part

of a wide research project concerning the mechanical

behavior of materials with memory, in which the

author is involved. Thus, the aim here is to further

develop results obtained in joint research works with

Valente and Vergara Caffarelli [59–63]. Here, the

attention is focussed on the existence and uniqueness

of the solution admitted by singular kernel problems in

materials with memory, previous and in progress

results are comprised in [61–63]. Indeed, this study

refers to Neumann boundary conditions while previ-

ous results were concerned about Dirichlet boundary

conditions.

The material is organized as follows. The opening

Sect. 2 is concerned about the physical model. Crucial

assumptions which characterize, in turn, the model of

rigid heat conduction with memory and of isothermal

viscoelasticity are comprised in the two sub-Sections.

The key references, wherein the aspects of the

models here of interest are given, are [64, 65]

concerning rigid heat conduction and [2, 3] in the

case of isothermal viscoelasticity. Notably, as pointed

out in [66], the analogous functional spaces, wherein

the solutions of the evolution problems are looked for,

are obtained in the cases of the two different models.

Indeed, throughout the whole article, the two different

models are compared in connection to the singular

kernel problems under investigation. In particular,

analogies between the two models of materials with

memory both under the physical as well as under the
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functional spaces point of view are shown in [66], here

the comparison is extended to singular kernel prob-

lems which were not considered previously. In

particular, the analogy remains valid when the regu-

larity requirement of the kernel is relaxed to consider

also the case when, in turn, the heat flux relaxation

function and the relaxation modulus are unbounded at

the origin provided they are integrable (L1).

The next Sections are concerned about evolution

problems: Sects. 3 and 4, respectively, study evolution

problems in heat conduction with memory and in

isothermal viscoelasticity. Each Section is divided in

two parts; the first one dedicated to classical regular

problems, and, then, the second one, devoted to

singular problems. Specifically, here singular prob-

lems with assigned initial and Neumann homogeneous

boundary conditions are considered. In the subsequent

Sect. 5 existence and uniqueness results are given. In

the closing Sect. 6 some perspective problems and

current investigations are mentioned. Detailed proofs

of results previously stated are included in the

Appendix.

2 The model of material with memory

In this Section some of the key features of the model of

a material with memory are recalled referring to the two

cases under consideration, namely rigid heat conduc-

tion with memory and isothermal viscoelasticity.

2.1 Rigid heat conduction with memory

Here the model of a rigid heat conductor with memory,

restricting only to a description of the physical

assumptions and to some properties needed in the

following, is briefly recalled. First of all, let X � R
3

denote the body configuration, the main assumptions

on the rigid heat conductor with memory are [64]:

• X is a connected set with a smooth boundary;

• X changes its thermodynamical status according to

linear heat conduction with memory; that is, it

depends on time via present and past times, i.e., on

the thermal history of the material;

• The environment is assumed not to be affected by

the presence of the body itself;

• no space dependence, i.e., x-dependence is omitted

under the assumption that the material is homoge-

neous and isotropous.

In particular, the approach presented by Fabrizio et al.

[64], and, subsequently, in [65] is adopted. The

internal energy e is assumed to be linearly related to

the relative temperature u :¼ h� h0;where h0 denotes

a fixed reference temperature, namely

eðtÞ ¼ a0uðtÞ: ð1Þ

The heat flux q 2 IR3; when, in turn, g :¼ ru denotes

the temperature-gradient, and

�gtðsÞ ¼
Z t

t�s
gðsÞds; ð2Þ

the integrated history of the temperature-gradient,

reads

qðtÞ ¼ �
Z 1

0

kðsÞgðt � sÞds or

qðtÞ ¼
Z 1

0

_kðsÞ�gtðsÞds:
ð3Þ

The heat flux relaxation function kðtÞ; in (3), is given

by

kðtÞ ¼ k0 þ
Z t

0

_kðsÞds; ð4Þ

where k0 � kð0Þ denotes the initial heat flux relaxa-

tion coefficient, that is the initial (positive) value

assumed by the heat flux relaxation function. It is

further required that

_k 2 L1 IRþð Þ \ L2 IRþð Þ and k 2 L1 IRþð Þ; ð5Þ

hence kð1Þ :¼ limt!1 kðtÞ ¼ 0: These assumptions

imply the the material enjoys the fading memory

property, namely,

8e [ 09~a ¼ a e; �gtð Þ 2 R
þs:t:8a [ ~a

)
Z 1

0

_kðsþ aÞ�gtðsÞds

����
����\e;

ð6Þ

which can be physically interpreted recalling that there

is no heat flux when, at infinity, the thermal equilib-

rium is reached. The thermodynamical state of the

conductor is characterized when, according to [64, 65,

67], the thermodynamic state function r: IR! IR�
IR3 which associates t�! rðtÞ � ðuðtÞ; �gtÞ is given.

Hence, the following vectorial space
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C : ¼
�

�gt: ð0; 1Þ ! IR3:

Z 1
0

_kðsþ sÞ�gtðsÞds

����
����

\1; 8s� 0

�
; ð7Þ

is introduced to characterize physically admissible

thermodynamical phenomena, namely those ones

associated to a finite heat flux. Note, that the condition

which defines the function space C; can be written also

in a different form since, corresponding to any

arbitrary e [ 0, there exists a positive constant ~a ¼
aðe; �gtÞ s.t.Z 1

0

_kðsþ aÞ�gtðsÞds

����
����

¼
Z 1

0

kðsþ aÞgðt � sÞds

����
����\e; 8a [ ~a:

ð8Þ

Remarkably, the introduction of the integrated history

of the temperature-gradient is crucial to write the

fading memory condition under a form which is

analogous to the fading memory condition in the case

of isothermal viscoelasticity, as shown in the next sub-

Section, the state of the heat conductor is characterized

when, according to [64, 65, 67], the thermodynamic

state function r: IR! IR� IR3 which associates t�!
rðtÞ � ðhðtÞ; �gtÞ is given.

2.2 Isothermal viscoelastic body with memory

The aim of this sub-Section is to briefly summarize the

analytical description of the model of an isothermal

viscoelastic material with memory. Indeed, the his-

torical as well as phenomenological ideas which have

been developed throughout the literature are far

beyond the present study. An overview concerning

isothermal viscoelasticity is comprised in [68] and in

[69] as well as in references therein. Gentili [68]

studies minimum free energy and its connection to

maximum recoverable work, while Deseri et al. [69],

are concerned about free energies, again in isothermal

viscoelasticity with the aim to treat applications to

partial differential equations.

Here, first of all, a brief description of the essential

properties which characterize the model of viscoelas-

tic body [2, 41], are recalled. Denoted as X � R
3; the

body configuration, the key assumptions on the

viscoelastic material are the following ones [2, 41]:

• X is a connected set with a smooth boundary;

• X changes its shape according to linear viscoelas-

ticity; that is, its deformation depends on time via

present and past times, i.e., the deformation history

of the material;

• The environment is assumed not to be affected by

the presence of the body itself;

• no space dependence, i.e., x-dependence is omitted

under the assumption that the material satisfies

both the isotropy and homogeneity conditions.

Hence, [68, 69] the quantities which are needed to

describe this model are the strain tensor EðtÞ; the stress

tensor TðtÞ; the relaxation modulus lGðtÞ and its initial

value, termed initial relaxation modulus lGð0Þ;where t

denotes the present time variable. The constitutive

equation which characterizes a linear viscoelastic

material is the classical Boltzmann–Volterra equation

which relates the stress tensor TðtÞ 2 Sym to the strain

history tensor E: ð�1; t� ! Sym :

TðtÞ ¼
Z 1

0

lGðsÞ _Eðt � sÞds or

TðtÞ ¼ lG0EðtÞ þ
Z 1

0

_lGðsÞEðt � sÞds;
ð9Þ

where the fourth order tensor lGðtÞ denotes the elastic

modulus, EðtÞ the value of the strain at the time t and

Et the past history defined by

Et: ð0; 1Þ ! Sym

t�! EtðsÞ :¼ Eðt � sÞ:
ð10Þ

The elastic modulus is assumed such that its time

derivative _lG 2 L1ðIRþ; LinðSymÞÞ so that, for all

positive t,

lGðtÞ ¼ lG0 þ
Z t

0

_lGðsÞds; lG0 :¼ lGð0Þ; ð11Þ

where the initial value of the elastic modulus lG0 is

termed instantaneous elastic modulus [68]; further-

more, since _lG 2 L1; then

lGð1Þ :¼ lim
t!1

lGðtÞ 2 LinðSymÞ ð12Þ

which represents the equilibrium elastic modulus. The

state and the strain history of a viscoelastic body is

characterized, according to [2, 68, 69], by a visco-

elastic state function r: IR! Sym� Sym; which

associates t 7!rðtÞ: � ðEðtÞ; EtÞ: Hence, the visco-

elastic state function is known when the strain tensor

EðtÞ and the strain past history, Et which belong to a

suitable Hilbert space, are assigned. Physically
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meaningful viscoelastic phenomena, are characterized

by a finite stress tensor TðtÞ for all times t and hence

they belong to the vectorial space

C :¼
�

Et: ð0; 1Þ ! Sym:

Z 1
0

_lGðsþ sÞEtðsÞds

����
����

\1; 8s� 0

�
: ð13Þ

According to [68], the material is said to enjoy the

fading memory property when, corresponding to any

arbitrary e [ 0 there exists a positive constant ~a ¼
aðe; EtÞ s.t.Z 1

0

_lGðsþ aÞEðt � sÞds

����
����

¼
Z 1

0

lGðsþ aÞ _Eðt � sÞds

����
����\e; 8a [ ~a: ð14Þ

The same way of reasoning followed in the previous

sub-Section allows to establish that admissible states

are only those ones related to a finite viscoelastic

work, and the equivalence between any couple of

different states as those ones associated to the same

value of the viscoelastic work. Note the analogy

between the two conditions (14) and (8): it shows that

the couples, lG; Et; on one side, and k; �gt; on the other

one, play, respectively, the same role in the two

different formulae.

Remark Note that definition (14), and also (8), is not

affected by the generalization here considered since

when lGðtÞ; and also kðtÞ; is allowed to admit an

infinite limit t! 0; _lG; and also _k; is not integrable at

the origin; however, it belongs to L1ða; þ1Þ; 8a [ 0:

3 Heat conduction evolution problem

In this Section the evolution problem of a rigid heat

conductor with memory is considered. The classical

regular initial boundary value problem with homoge-

neous initial and Neumann boundary conditions is

recalled. In the next sub-Section the corresponding

singular problem is studied.

3.1 Regular memory kernel

The one-dimensional evolution equation which mod-

els rigid heat conduction with memory can be written

ut ¼
Z t

0

kðsÞuxxðx; t � sÞdsþ f ðx; tÞ; ð15Þ

where in the term f, which represents the source term,

also the past history of the material is incorporated.

Generally, f is assumed to be sufficiently regular to

allow integration and partial derivation with respect to

time and, in addition, is also supposed to be L2

integrable in the space variable. This choice allows to

write the corresponding evolution problem, when

initial and boundary conditions are assigned, under the

form of a Volterra equation. Here homogeneous

Neumann boundary conditions

uxð0; tÞ ¼ uxðL; tÞ ¼ 0; 8t [ 0; ð16Þ

and the initial condition, at t ¼ 0 are imposed. The

three-dimensional initial boundary value problem

with homogeneous initial and Dirichlet boundary

conditions is studied in [62]. Equation (15), on

introduction of s :¼ t � s; reads

ut ¼
Z t

0

kðt � sÞuxxðx; sÞdsþ f ðx; tÞ: ð17Þ

Derivation with respect to time of the latter gives

utt ¼ kð0Þuxx þ
Z t

0

_kðt � sÞuxxðsÞdsþ f t; ð18Þ

then, consider the i.b.v.p. obtained imposing on (18)

the following initial and boundary conditions

ujt¼0 ¼ u0ðxÞ; utjt¼0 ¼ f ðx; 0Þ;
uxjoX�ð0;TÞ ¼ 0; t\T ;

ð19Þ

where X denotes the interval ð0; LÞ; L [ 0: Note that

the linear problem (18)–(19) is of the same form of the

integro-differential problem which models the visco-

elastic body evolution (26)–(27), in the next Section,

hence, when the heat flux relaxation function k, finite

at the origin, satisfies the thermodynamical assump-

tions (5), then Dafermos’ results [29, 30] imply the

existence and uniqueness of the solution.

3.2 Singular memory kernel

In this sub-Section, the one-dimensional singular heat

conduction problem is studied. Now, aiming to model

a wider class of materials with memory, the functional
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requirements on the heat flux relaxation function k are

relaxed, removing the condition _k 2 L1ð0; TÞ; thus

kðtÞ[ 0; _kðtÞ	 0; €kðtÞ� 0; t 2 ð0; 1Þ;
ð20Þ

and

k 2 L1ð0; TÞ \ C2ð0; TÞ 8T 2 IRþ: ð21Þ

Now, the same method valid in studying the visco-

elasticity problem, can be applied straightforwardly.

Hence, key steps of the Approximation Strategy can be

sketched as follows:

• construct suitable regular approximated problems;

• find approximated solutions ue; 0\e
 1;

• show the existence of u :¼ lime!0 ue;
• prove the uniqueness of the limit solution u which

represents a weak solution admitted by the singu-

lar problem.

Accordingly, first of all the approximated problems

are introduced: let keð�Þ :¼ kðeþ �Þ then, the problem

Pe
D;heat can be defined

Pe
D;heat: ue

tt ¼ keð0Þue
xx þ

Z t

0

_keðt � sÞue
xxðsÞdsþ f :

ð22Þ

The integro-differential problem (22), when condi-

tions (19) are imposed on ue; is regular since keð0Þ is

finite and, therefore, [29, 30] admits a unique solution.

It, in addition, corresponding to each value of e; is

equivalent, to the following integral problem

Pe
I;heat:ueðtÞ¼

Z t

0

Keðt� sÞue
xxðsÞdsþu0þ

Z t

0

f ðsÞds;

ð23Þ

where,

KðnÞ :¼
Z n

0

kðsÞds Kð0Þ ¼ 0; ð24Þ

is well defined since k 2 L1ð0; Þ; 8T 2 IRþ:K is

termed integrated relaxation function. Partial deriva-

tion w.r.to t, twice, of (23) delivers (22) together with

conditions (19). Note that, on use of (24), when e ¼ 0

and the superscripts 0 are omitted, the following well

defined integral problem

PI;heat: uðtÞ ¼
Z t

0

Kðt� sÞuxxðsÞdsþ u0 þ
Z t

0

f ðsÞds;

ð25Þ

is obtained.

4 Viscoelastic problem

In this Section the linear integro-differential problem

in the case of the one-dimensional viscoelastic clas-

sical model, is considered. Thus, from here on, the

tensor lG is denoted as G since we are restricting our

attention to the one-dimensional case. In the starting

sub-Section, following the same lines as in the heat

conduction problem, the classical regular case is

recalled to point out the functional requirements the

kernel satisfies in such a case. Then, in the subsequent

sub-Section, the regularity requirements on G are

relaxed.

4.1 Regular memory kernel

According to Dafermos [29, 30], such a model can be

represented by

utt ¼ Gð0Þuxx þ
Z t

0

_Gðt � sÞuxxðsÞdsþ f ; ð26Þ

uð�; 0Þ ¼ u0; utð�; 0Þ ¼ u1 in X; ux ¼ 0

on R ¼ oX� ð0; TÞ;
ð27Þ

where X ¼ ð0; LÞ; the initial and boundary conditions

are assigned while, respectively, u and f denote the

displacement and the external force which includes

also the history of the material. In addition, according

to the model assumptions (see, for instance [2, 41])

GðtÞ[ 0; _GðtÞ	 0; €GðtÞ� 0; t 2 ð0; 1Þ;
ð28Þ

and, in addition,

_G 2 L1 IRþð Þ GðtÞ ¼ G0

þ
Z t

0

_GðsÞds G1 :¼ lim
t!1

GðtÞ;
ð29Þ
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G enjoys the fading memory property (14). When the

relaxation modulus satisfies assumptions (29), the

problem (26)–(27), here termed Regular Memory

Kernel, admits a unique solution according to Dafer-

mos [29, 30].

4.2 Singular memory kernel

In many applications, however, to model the physical

behavior of new materials or polymers, the relaxation

modulus does not satisfy the functional requirements

(29). Hence, to model a wider class of materials with

memory, the functional requirements imposed on G

are relaxed, that is G is assumed to satisfy (28) further

to the condition

G 2 L1ð0; TÞ \ C2ð0; TÞ 8T 2 IR: ð30Þ

Note that, now, according to (28) and (30), the

relaxation function GðtÞ is not required to be finite at

t ¼ 0; since limt!0þ GðtÞ ¼ þ1; then Eq. (26) needs

to be replaced by a different one. Here the method,

devised in [61], is adapted to the case of Neumann

boundary conditions. The three-dimensional general-

ization is under investigation [63]. The key steps of the

Approximation Strategy can be sketched as follows:

• construct suitable regular approximated problems;

• find approximated solutions ue; 0\e
 1;
• show the existence of u :¼ lime!0 ue;

• prove the uniqueness of the limit solution u which

represents a weak solution admitted by the singu-

lar problem.

Accordingly, first of all, ad hoc regular kernel

problems termed approximated problems are intro-

duced. Following the same strategy already shown in

the previous Section referring to linear rigid heat

conduction with memory, let Geð�Þ :¼ Gðeþ �Þ then,

the integro-differential problem Pe
D;visco can be defined

Pe
D;visco: ue

tt ¼ Geð0Þue
xx þ

Z t

0

_Geðt � sÞue
xxðsÞdsþ f ;

ð31Þ

together with the initial and boundary conditions

uejt¼0 ¼ u0ðxÞ; ue
t jt¼0 ¼ u1ðxÞ; ue

xjoX�ð0;TÞ ¼ 0;

t\T : ð32Þ

The latter is a regular problem since Geð0Þ is finite and,

therefore, the initial boundary value problem (31)–

(32) admits a unique solution. In addition, corre-

sponding to each value of e; it is equivalent to the

following integral equation

Pe
I;visco: ueðtÞ ¼

Z t

0

Keðt � sÞue
xxðsÞdsþ u1t þ u0

þ
Z t

0

ds
Z s

0

f ðnÞdn; ð33Þ

where

KðnÞ :¼
Z n

0

GðsÞds Kð0Þ ¼ 0; ð34Þ

is well defined since G 2 L1ð0; TÞ; 8T 2 IRþ:K is

termed integrated relaxation function. Partial deriva-

tion w.r.to t, twice, of (33) delivers (31) together with

initial and boundary conditions (32).

Again, as observed in the case of the integral

equation (25), when e ¼ 0 and the superscripts 0 are

omitted, also

PI;visco: uðtÞ ¼
Z t

0

Kðt � sÞuxxðsÞdsþ u1t þ u0

þ
Z t

0

ds
Z s

0

f ðnÞdn; ð35Þ

is well defined.

Notably, even if the physical meaning of the

involved quantities is different in the two cases, the

integral equations (23) and (33) share the same terms

which depend on e : the other ones, related to the

different initial and boundary conditions, do not

depend on e and, hence, are unchanged when the limit

e! 0 is performed.

5 Existence and uniqueness of the limit solution

This Section is devoted to the existence and unique-

ness of the limit solution in both the cases of one-

dimensional singular problems considered. Indeed,

following the same method, both (23) and (33) can be

proved to admit and unique solution. To improve

readability, in this Section only the crucial steps to

prove the results are given while details on proofs are

postponed to the Appendix.

Here a unified approach to both the problems is

given. Accordingly, the following existence Theorem

can be stated referring to both the integral problems

Pe
I;heat as well as Pe

I;visco:
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Remark The existence and uniqueness results are

proved via the same method in both the different

problems (23) and (33) since they share the same

integral term which depends on e; namely

Z t

0

Keðt � sÞue
xxðsÞds: ð36Þ

Theorem 1 Given ue solution to the integral prob-

lem Pe
I;heat in (23), or Pe

I;visco (33), then

9 uðtÞ ¼ lim
e!0

ueðtÞ in L2ðQÞ; Q ¼ X� ð0; TÞ:

ð37Þ

Proof’s Outline

• weak formulation, on introduction of test functions

u 2 H1ðX� ð0; TÞÞ s.t. ux ¼ 0 on oX;

• consider separately the terms without e;
• the terms with ue and Ke;
• prove convergence via Lebesque’s Theorem.

Furthermore, the following uniqueness Theorems,

respectively, concerning the heat and viscoelastic

problems can be proved.

Theorem 2 The integral problems (25) as well as

(35) admit a unique weak solution.

Proof’s Outline in both cases, the result is proved

by contradiction assuming there are two different

solution and, then, showing that such an assumption

leads to a contradiction. Note that the proof is unified

since, on use of linearity, given two different solutions

v and ~v; of any of the two Eqs. (25) or (35), then their

difference is again a solution. In addition, let w :¼
v� ~v; it follows to satisfy

wðtÞ ¼
Z t

0

Kðt � sÞwxxðsÞds;

in both the considered problems.1

6 Conclusions and perspectives

A crucial role in achieving most of the results

presented [59, 60], is played by the free energy.

Indeed, in the case of the singular problems both in

viscoelasticity and in rigid thermodynamics with

memory [61, 62] are based on the free energy in one

dimensional as well as in the general three-dimen-

sional case [63]. This, aspect is one of the crucial ones

which are currently under investigation, in particular,

aiming to study evolution problems in the case of

viscoelastic fluids as modeled in [11]. Also the a priori

estimates both, in the one-dimensional as well as in

higher dimensions magneto-viscoelasticity problems

[59, 60], are based on the free energy. The perspective

research aims to extend the study of singular kernel

problems to further materials whose evolution can be

modeled in a similar way. Already under investigation

is the case of a magneto-viscoelasticity problem, when

the singular viscoelastic behaviour is coupled with the

magnetic effects [70].
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Appendix

This Appendix comprises the proofs of both Theorems

in Sect. 5. They refer to the rigid heat conduction

problem. Indeed, the difference is mainly in the

physical meaning of the quantities involved.

To prove Theorem 1, the following Lemma

provides a needed estimate.2

Lemma 1 Let ue be the unique solution to the

problem (18)–(19), then

1

2

Z
X

uxj j2dxþ 1

2

Z
X

utj j2dx	 ceT C f ; u0ð Þ; ð38Þ

where c ¼ maxfðkðT þ 1ÞÞ�1; 1g:

Proof The statement follows when (18) is multiplied

by ut; then, integrated over X; after use of various

integrations by parts, also integrating over the time

interval ð0; tÞ: Key tools are represented by the ther-

modynamical assumptions (20) on the heat flux

relaxation function and by taking into account the

assigned boundary conditions, Specifically, (18)

multiplied by ut and integrated over X; when all the

1 Details are in the Appendix.

2 An analogous result can be proved in the viscoelasticity

problem. The Dirichlet boundary value problem with assigned

initial conditions is in [61] here the Neumann problem is

considered.
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superscripts e are removed to simplify the notation,

gives:

1

2

d

dt

Z
X

utj j2dxþ
Z

X
kðt þ eÞuxuxtdx

þ
Z

X
utðtÞdx

Z t

0

_kðsþ eÞ uxxðtÞ � uxxðt � sÞ½ �ds

¼
Z

X
f tutdx; ð39Þ

which can be written as

1

2

d

dt

Z
X

utj j2dxþ 1

2

d

dt

Z
X

kðt þ eÞ uxj j2dx

� 1

2

Z
X

_kðt þ eÞ uxj j2dx

�
Z

X
dx

Z t

0

_kðsþ eÞuxt uxðtÞ � uxðt � sÞ½ �ds

¼
Z

X
f tutdx:

ð40Þ

In particular, the last term can be written

�
Z

X

Z t

0

_kðsþ eÞuxt uxðtÞ � uxðt � sÞ½ �dxds

¼ � 1

2

d

dt

Z t

0

ds

Z
X

_kðsþ eÞ uxðtÞ � uxðt � sÞj j2dx

þ 1

2

Z
X

_kðt þ eÞ uxðtÞ � uxð0Þj j2dx

�
Z

X

Z t

0

_kðsþ eÞuxtðt � sÞ uxðtÞ � uxðt � sÞ½ �dxds;

ð41Þ

which, since

2uxtðt� sÞ uxðtÞ � uxðt� sÞ½ � ¼ d

ds
uxðtÞ � uxðt� sÞj j2;

can be further manipulated to deliver

�
Z

X

Z t

0

_kðsþ eÞuxt uxðtÞ � uxðt � sÞ½ �dxds

¼ � 1

2

d

dt

Z t

0

ds

Z
X

_kðsþ eÞ uxðtÞ � uxðt � sÞj j2dx

þ 1

2

Z
X

Z t

0

€kðsþ eÞ uxðtÞ � uxðt � sÞj j2dxds;

ð42Þ

which, substituted in (40) implies

1

2

d

dt

Z
X

kðt þ eÞ uxj j2dx� 1

2

d

dt

Z t

0

ds

Z
X

_kðsþ eÞ uxðtÞj

�uxðt � sÞj2dxþ 1

2

d

dt

Z
X

utj j2dx

¼
Z

X
f tutdxþ 1

2

Z
X

_kðt þ eÞ uxj j2dx

� 1

2

Z t

0

ds

Z
X

€kðsþ eÞ uxðtÞ � uxðt � sÞj j2dx:

ð43Þ

The latter, integrated over the time interval ð0; tÞ;
taking into account the conditions (20), delivers

1

2

Z
X

kðt þ eÞ uxj j2dxþ 1

2

Z
X

utj j2dx

	
Z

X

Z t

0

f tutdxdsþ 1

2

Z
X

kðeÞjuð0Þj2dx

þ 1

2

Z
X
jf ðx; 0Þj2dx;

ð44Þ

which allows to write

1

2

Z
X

kðt þ eÞ uxj j2dxþ 1

2

Z
X

utj j2dx

�
Z t

0

Z
X

utj j2dxds	C f ; u0ð Þ;
ð45Þ

and, Gronwall’s Lemma implies

1

2

Z
X

kðt þ eÞ uxj j2dxþ 1

2

Z
X

utj j2dx	 eT C f ; u0ð Þ:

ð46Þ

Since kðt þ eÞ� kðT þ 1Þ;

1

2

Z
X

uxj j2dxþ 1

2

Z
X

utj j2dx	 ceT C f ; u0ð Þ; ð47Þ

wherein c ¼ maxfðkðT þ 1ÞÞ�1; 1g: h

Proof of Theorem 1 The existence of the solution

admitted by the singular problem is given by

u ¼ limeh!0 ueh ; where ueh is a solution of (18)–(19)

i.e., it solves

Peh : uehðtÞ ¼
Z t

0

Kehðt � sÞueh

xxðsÞds

þ
Z t

0

f ðsÞds; KehðnÞ :¼
Z n

0

k eh þ sð Þds:

ð48Þ
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This thesis is proved following the outline given in

Sect. 5: here each step is given. h

• weak formulation of the integral problem;

consider the test functions u; which depend on both

time and space variables, subject to assigned i.c. and

homogeneous Neumann boundary conditions on the

boundary, oX; of X ¼ ð0; LÞ � IR;

u 2 C1ðQÞ; Q ¼ X� ð0; TÞ;
s:t: uxjoX ¼ 0 8t 2 ð0; TÞ:

ð49Þ

Multiplication of (48) by u and integration over Q

givesZ Z
Q

uehðtÞudxdt ¼
Z Z

Q

u

Z t

0

Kehðt � sÞueh

xxðsÞdsþ
Z t

0

f ðsÞds

� �
dxdt:

ð50Þ

• consider separately the terms without e;

The termZ Z
Q

u
Z t

0

f ðsÞds

� �
dxdt; ð51Þ

does not depend on eh and, hence, it is unchanged in

the limit eh ! 0: Furthermore, it is bounded since the

history f of the material with memory is assumed to be

regular and Q is bounded too.

• consider the term with ue and Ke;

the only term which needs to be considered isZ t

0

Kehðt � sÞuehðsÞds ¼
Z t

0

KehðsÞuehðt � sÞds;

ð52Þ

since it depends on e: Both the test functions u as well

as ueh satisfy the homogeneous Neumann b.c. (49),

then,Z Z
Q

udxdt

Z t

0

KehðsÞueh

xxðt � sÞds

¼
Z Z

Q

uxxdxdt

Z t

0

KehðsÞuehðt � sÞds:

ð53Þ

Now, adding and subtracting

Z Z
Q

uxxdxdt

R t

0
KðsÞuehðt � sÞds; the latter gives

Z Z
Q

uxx

Z t

0

Kehðt � sÞuehðsÞdsdxdt

¼
Z Z

Q

uxx

Z t

0

KehðsÞ � KðsÞ½ �uehðt � sÞdsdxdt

þ
Z Z

Q

uxx

Z t

0

KðsÞuehðt � sÞdsdxdt:

ð54Þ

Observe that

Lemma 2 Given the integral problem (48)–(49),

then

lim
eh!0

Z Z
Q

uxx

Z t

0

KehðsÞ �KðsÞ½ �uehðt� sÞdsdxdt ¼ 0:

ð55Þ

Proof of Lemma 8ðx; tÞ 2 Q ¼ X� ð0; TÞ ¼)
juj 	CjXj; and juxxj 	M; furthermore

KehðsÞ �KðsÞj j ¼ K ehþ sð Þ �KðsÞj j ¼
Z ehþs

s

kðsÞds;

ð56Þ

hence, since k 2 L1ð0; TÞ; Lebesgue’s Theorem

implies the limit convergence (55) and the Lemma is

proved. h

Hence, recalling also estimate (38), the Theorem is

proved that is

(a) ueh �! u weakly in H1ð0; T ; H1ðXÞÞ as eh ! 0;

(b) ueh �! u strongly in L2ðDÞ as eh ! 0:

h

Proof of Theorem 2 (uniqueness of the solution

admitted by (25) and by (35))

The thesis is proved by contradiction; thus, assume

v and ~v; v 6¼ ~v; both satisfy the linear equation (25).

Then, also w :¼ v� ~v; as any linear combination of v

and ~v; is a solution of the same equation. Let w :¼
v� ~v; it is a solution to

wðtÞ ¼
Z t

0

Kðt � sÞwxxðsÞds; ð57Þ

subject to the assigned homogeneous initial and

boundary Neumann conditions. Accordingly, let X ¼
ð0; pÞ; i.e., for convenience, let L ¼ p; wxð0; tÞ ¼
wxðp; tÞ ¼ 0; 8t 2 ð0; TÞ: The test functions wðx; tÞ
can be chosen as
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wmðx; tÞ ¼ uðtÞ cosðmxÞ; m 2 IN; ð58Þ

which satisfy the assigned initial and boundary

conditions, then, the solution wðx; tÞ can be written

wðx; tÞ ¼
X1
n¼1

anðtÞ cosðnxÞ: ð59Þ

The weak solution, when Q ¼ ð0; pÞ � ð0; TÞ and

wðx; tÞ denotes any test function, reads

Z Z
Q

wðtÞwðx; tÞdxdt ¼
Z Z

Q

wðx; tÞ
Z t

0

Kðt � sÞwxxðsÞdsdxdt;

ð60Þ

or equivalently

Z Z
Q

wðtÞwðx; tÞdxdt ¼
Z Z

Q

wxxðx; tÞ
Z t

0

Kðt � sÞwðsÞdsdxdt:

ð61Þ

Substitution of the expressions of w and w; in turn, (59)

and (58), combined with the orthogonality of the

cosine functions, gives

Z T

0

uðtÞ amðtÞ �
Z t

0

Kðt � sÞm2amðtÞds

� �
dt ¼ 0:

ð62Þ

Then, since the test function u are arbitrary, it follows:

amðtÞ ¼
Z t

0

Kðt � sÞm2amðtÞds; ð63Þ

which implies

amðtÞj j 	KðTÞm2

Z t

0

amðsÞj jds; ð64Þ

and, via Gronwall’s Lemma, amðtÞ ¼ 0 8m 2 IN: h
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