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Abstract

This note discusses the mechanism of turbulent energy cascade through an opportune bifurcations analysis of the
Navier–Stokes equations, and furnishes explanations on the more significant characteristics of the turbulence. A sta-
tistical property of the Navier–Stokes equations in fully developed turbulence is proposed, and a spatial representation
of the bifurcations is presented, which is based on a proper definition of the fixed points of the velocity field. The
analysis explains the mechanism of energy cascade through the aforementioned property as due to bifurcations, and
gives reasonable argumentation of the fact that the bifurcations cascade can be expressed in terms of length scales,
and that the local deformation is much more rapid than the fluid state variables. These properties, adopted as basic
assumptions in previous works, are here justified through this bifurcations analysis. Next, the study provides a link
between the order of magnitude of the critical Taylor–scaleReynolds number and the number of bifurcations at the
onset of turbulence.
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1. Introduction

The main aim of the work is to analyze the turbulent mechanismof energy cascade by means of specific properties
of bifurcations of the Navier–Stokes equations. Moreover,through this analysis, we want to corroborate the basic
hypotheses of previous works (de Divitiis (2010, 2013, 2012)) where the finite–scale Lyapunov theory is used to de-
scribe the homogeneous isotropic turbulence. There, the theory, which leads to the closure of von Kármán & Howarth
(1938) and Corrsin (1951) equations, is based on the assumption that the bifurcations cascade law can be expressed in
terms of the characteristic length scales of turbulence, and on the hypothesis that the relative kinematics between two
contiguous particles is much faster than the fluid state variables. This latter, justified by the fact that, in turbulence,
the kinematics of fluid deformation exhibits a chaotic behavior and huge mixing (Ottino (1989, 1990)), allows to
express velocity and temperature fluctuations with Navier–Stokes and temperature equations, through the local fluid
deformation (de Divitiis (2010, 2012)). The present work analyzes only the mechanism of kinetic energy cascade of
an incompressible fluid in an infinite region, whereas does not consider the phenomenon of temperature cascade.

The work first introduces the bifurcations of the Navier–Stokes equations (NS–bifurcations), in line with the classi-
cal theory of differential equations (Ruelle & Takens (1971); Eckmann (1981)), and thereafter studies the phenomenon
of energy cascade through a statistical property of the Navier–Stokes equations in regimes of fully developed chaos.
This property, which represents an important element of this work, is based on basic characteristics of bifurcations.
Next, to found the link between scales of turbulence and NS–bifurcations, the fixed points of the velocity field and the
corresponding bifurcations (u–bifurcations) are properly defined. According to this definition, these u–bifurcations
are shown to be non–material moving points which represent the trace of the NS–bifurcations in the fluid domain.

Through these elements, we furnish plausible argumentations that the NS–bifurcations are responsible for the main
properties of turbulence, such as the chaotic fluid motion, the energy cascade, the continuous distribution of the length
scales, and for the fact that the local fluid strain can be muchmore rapid than the fluid state variables. In particular, the
aforementioned statistical property gives the link between NS–bifurcations and energy cascade mechanism, whereas
the u–bifurcations justify the fact that the bifurcations cascade can be expressed in terms of length scales. Moreover,a
description of the bifurcations cascade in terms of length scales is presented, which is based on properties of the route
toward the chaos, and a relationship between the order of magnitude of the critical Reynolds number and number
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of bifurcationsN at the transition is found. This estimation, based on adequate hypotheses about the length scales,
givesN = 3 and the critical Taylor–scale Reynolds numberR∗λ = 4÷14, in agreement with the several theoretical
and experimental sources of the literature. Next,R∗

λ
is also determined beginning from the fully developed isotropic

turbulence with the von Kármán–Howarth equation, by assuming the closure equation proposed by de Divitiis (2010)
and a proper condition regarding the effect of the energy cascade. The two procedures give results inagreement with
each other.

2. Bifurcations of the Navier–Stokes equations

This section studies the elements of the bifurcations of theNavier–Stokes equations for a homogeneous incom-
pressible fluid in an infinite domain, which are necessary forthe present analysis. The dimensionless equations are

∇ · u = 0,

∂u
∂t
= −u · ∇u − ∇p+ Re−1∇2u

(1)

whereRe= UL/ν is the Reynolds number,u=u(x, t), andp=p(x, t) are dimensionless velocity and pressure, whereas
U andL are the reference velocity and length. For sake of convenience, the momentum Navier–Stokes equations are
formally written by eliminating the pressure field in Eqs. (1) through the continuity equation

u̇ = N(u; Re) ≡ N0(u) + Re−1Lu (2)

whereu̇ is the Eulerian time derivatives of the velocity field,

N : {u} →
{

∂u
∂t

}

(3)

is the nonlinear operator representing the R.H.S. of the momentum Navier–Stokes equations, and{u} and{∂u/∂t} are
the sets of the fieldsu and∂u/∂t, respectively. In Eq. (2),N0(u) is the nonlinear operator which represents the inertia
and pressure forces, whereas the linear operatorLu gives the viscosity term. In the case of homogeneous fluid in
infinite domain, ifu(x, t) is a solution of Eq. (2), thenu(x+h, t) satisfies Eq. (2), whereh is an arbitrary displacement,
i.e.

u̇(x, t) = N(u(x, t); Re) ⇒ u̇(x + h, t) = N(u(x + h, t); Re), ∀h (4)

In line with Ruelle & Takens (1971), we suppose that{u} can be replaced by a finite-dimensional manifold, thus
Eq. (2) is here analyzed through the classical theory of the differential equations. Now, to define the bifurcations of the
Navier–Stokes equations, observe that, ifRe= Re0 is properly small, the unique steady solutionu(Re0) = u(x; Re0)
is calculated by inversion of Eq. (2), whereas for higher values ofRe, other steady solutionsu(Re) can be obtained
starting fromu(Re0), by applying the implicit function theorem to Eq. (2)

u(Re) = u(Re0) −
∫ Re

Re0

∇uN−1 ∂N
∂Re

dRe (5)

where∇uN ≡ ∂N(u; Re)/∂u is the Jacobian ofN with respect tou. The velocity fieldu(Re) can be determined with
Eq. (5) as long as∇uN is nonsingular, i.e. when the determinant det(∇uN) , 0.

The bifurcations of the Navier–Stokes equations occur when∇uN exhibits at least an eigenvalue with zero real
part (NS–bifurcations). There, det(∇uN) = 0 thus, following Eq. (5),u(Re) can degenerate in two or more solutions.
As the consequence of the structure of Eq. (2), we have the following route toward the chaos: For smallRe, the
viscosity forces are stronger than the inertia ones andN behaves like a linear operator with det(∇uN) , 0. When
the Reynolds number increases, as long as∇uN is nonsingular,u(Re) exhibits smooth variations with respect toRe,
whereas at a certainRe, this Jacobian becomes singular and∂u/∂Reappears to be discontinuous with respect toRe
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Figure 1: Left: qualitative scheme of NS–bifurcations. Right: qualitative scheme of phase trajectories in the hodograph plane.

(Guckenheimer (1990)). Of course, the route toward the turbulence can be of different kinds, such as, for example,
those of Ruelle & Takens (1971), of Feigenbaum (1978), and ofPomeau & Manneville (1980). In general, the chaotic
motion is observed when the number of encountered bifurcation is about greater than three. Figure 1 (Left) reports a
qualitative scheme of the bifurcations tree, where a component ofu(xA, t̄) is shown in function ofRe, andxA andt̄ are
assigned position and time. Starting fromRe0, the diagram is regular, untilReP, where the first bifurcation determines
two branches. Increasing againRe, other bifurcations occur. In the figure,∆u denotes the distance between two
branches which born from the same bifurcation,∆Rerepresents the distance between two successive bifurcations and
n is the number of the encountered bifurcations starting fromRe0.

If the Reynolds number does not exceed the critical valueRe∗, the velocity fields satisfying Eq. (5), are limited in
number, thus alson is moderate. These branches, which give the intermediate stages of the route toward the chaos,
form a tree whose overall dimension alongu is of the order of∆u1.

Conversely, whenRe> Re∗, we have the region of developed turbulence. The diverse velocity fields satisfying
Eq. (5), determine an extended complex geometry made by several points whose minimum distance is very small.
This determines that the equationN(u,Re) =0 is satisfied in a huge number of points of the velocity fields set which
are very close with each other, whereasN(u,Re) ,0 elsewhere. Therefore, both the operatorsN and∇uN will exhibit
abrupt variations on{u}.

During the fluid motion, multiple solutionŝu can be determined, at each instant, through inversion of Eq.(2)

u̇ = N(u; Re)

û(Re) = N−1(u̇; Re) = û(Re0) −
∫ Re

Re0

∇uN−1 ∂N
∂Re

dRe
(6)

If Re<< Re∗, N behaves like a linear operator, and Eq. (6) givesû ≡ u(x, t) as unique solution, whereas ifRe is
properly high,N−1 is a multivalued operator and Eq. (6) determines several velocity fields û. That is, the current
velocity fieldu(x, t) corresponds to several other solutionsû(x, t; Re) which give the same fielḋu(x, t). ForRe> Re∗

a huge number of these solutions are unstable, thus such solutions and the bifurcations determines a situation where
u(x, t) tends to sweep the entire velocity field set, accordingly the motion is expected to be chaotic with a high level
of mixing.

From another point of view, whenRe is given, a single NS–bifurcation corresponds to several phase trajectories
bifurcations in the hodograph space and to a growth of the velocity gradient∇xu. To show this, consider now the two
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velocity fieldsu = u(x, t) andu′ = u(x + r , t), wherer is assigned. Their differenceξ = u′ - u varies withx andt.
Taking into account the property (4) (homogeneous fluid in infinite space),u andu′ are both solutions of Eq. (2), thus
the evolution equation ofξ coincides with that of perturbation of the velocity field. Ifr = |r | is properly small, this
equation reads as

ξ̇ = ∇uN ξ (7)

where∇uN depends onu(x, t) which in turn varies according to

u̇ = N(u; Re) (8)

For sake of convenience, we suppose that, at the onset of the motion, all the eigenvalues of∇uN exhibit negative real
part, and that the NS–bifurcation happens fort = t∗ > 0. There, at least an eigenvalue crosses the imaginary axis,and
the phase trajectories, initially contiguous, thereafterdiverge. Figure 1 (Right) shows three pairs of phase trajectories
in the hodograph plane (ux, uy), each representing the velocity components in the pairs ofpoints (x1, x1 + r ), (x2,
x2+ r ) and (x3, x3+ r ), where the arrows denote increasing time. Continuous and dashed lines represent the velocities
calculated inx1, x2, x3 andx1+ r , x2+ r , x3+ r , respectively, whereas the pointsB1, B2, B3 give the velocities att = t∗,
thus these are the image of the NS–bifurcation in the hodograph plane. After the NS–bifurcationξ1(t), ξ2(t) andξ3(t)
diverge, and this means that a bifurcation causes a lost of informations with respect to the initial valuesξ1(0), ξ2(0)
andξ3(0) (Prigogine (1994)). In particular, for what concerns the single trajectory2–B2, afterB2 it degenerates in the
two branchesB2 − C andB2 − D which represent two possible phase trajectories, thus∂u/∂t =0 in B2. After B2, Eq.
(8) does not indicate which of the branches the fluid will choose, thus very small variations on the initial condition
or little perturbations, are of paramount importance for the choice of the branch that the fluid will follow (Prigogine
(1994)).

2.1. Local fluid deformation

This section gives reasonable argumentations that, in turbulence, the fluid deformation can be much more rapid
than the fluid state variables. To show this, observe thatξ corresponds to variations of the velocity gradient∇xu which
changes according to Eq. (7).

∂∇xu
∂t
= ∇uN ∇xu (9)

where∇xu is formally expressed by

∇xu(x, t) = exp

(∫ t

0
∇uNdt

)

∇xu(x, 0) (10)

This is the formal solution of Eq. (9), where the exponentialdenotes the series expansion of operators

exp

(∫ t

0
∇uNdt

)

= I +
∫ t

0
∇uN dt+ ... (11)

∇xu(x, 0) is the initial condition, andI is the identity map. The bifurcations determine abrupt variations of∇uN which
in turn produces an exponential growth of the velocity gradient according to Eq. (10). Thus, fort > 0,∇xu can exhibit
non–smooth spatial variations, and||∇xu|| is very high in a myriad of points of the fluid domain.

On the other hand, the local fluid deformation is related to the relative kinematics between two contiguous parti-
cles, and this link can be expressed through the Lyapunov theory. This kinematics is represented by the infinitesimal
separation vectordx between the particles, which varies according to

dẋ = ∇xu dx (12)

The Lyapunov analysis of Eq. (12) gives the local deformation in terms of the maximal Lyapunov exponentΛ > 0

∂x
∂x0
≈ eΛ(t−t0) (13)
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whereχ : x0→ x is the function which gives the current positionx of a fluid particle located at the referential position
x0 at t = t0. As ||∇xu|| >> 0, the exponentΛ ≈ ||∇xu|| is expected to be high, thus according to Eq. (13)∂x/∂x0 can be
much faster than∇xu andu, and can exhibit non–smooth spatial variations.

Remark. This property can have implications for what concerns the consequences of the basic formulation for
deriving the Navier–Stokes equations. In fact, the Navier–Stokes equations are derived from an integral formulation
of balance equations by means of the Green theorem, and this latter can be applied to regions which exhibit smooth
boundaries during the motion (Truesdell (1977) and references therein). Now, if∂x/∂x0 is much more rapid thanu
and exhibits abrupt spatial variations, the boundaries of fluid region become irregular in very short times, and this
implies that the Navier–Stokes equations could require theconsideration of very small scales and times for describing
the fluid motion.

3. Fully developed chaos and energy cascade

To analyze the mechanism of energy cascade, this section presents a simple statistical property of the Navier–
Stokes equations in the regime of fully developed chaos. This property, arising from basic elements of the bifurcations,
is here applied to the Navier–Stokes equations in the form (2). To this purpose, consider now Fig. 2, where a scheme
of two contiguous phase trajectories in the hodograph planeis shown in proximity of the trajectory bifurcationB.
These phase trajectories correspond to velocity variations in two assigned pointsx1 andx2 = x1+ r , wherer = |r | > 0

Figure 2: Scheme of the velocities variations near a bifurcation in the hodograph plane.

is arbitrarily small. The figure shows the velocity arrowsP1 andP2 which describe the two phase trajectories, initially
close with each other, that thereafter diverge because of the bifurcation. Lett− andt+ instants for which bothP1 and
P2 approach toB and move away from it, respectively. As the phase trajectories diverge

|u+2 − u+1 | >> |u
−
2 − u−1 | (14)

and, thanks to the bifurcation, det(∇uN) = 0, therefore we expect that

|u+1 | ≈ |u
−
1 |, |u

+
2 | ≈ |u

−
2 | (15)

The inequality (14) and Eq. (15) imply that

u+1 ·
(

u+2 − u+1
)

<< u−1 ·
(

u−2 − u−1
)

(16)
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The condition (16) is frequentely satisfied in the chaotic regime, whereas the opposite inequality is possible but not
probable. Hence, it is reasonable that

∂

∂t
〈

u ·
(

u′ − u
)〉

≤ 0, ∀r small (17)

Moreover, for relatively high values ofr, due to the numerous phase trajectory bifurcations in betweenx1 andx2, the
inequality (16) will be satisfied in average, therefore we assume that

∫

V

∂

∂t
〈

u ·
(

u′ − u
)〉

dV′ ≤ 0, ∀ V (18)

where〈.〉 denotes the average over the velocity ensemble anddV′ = drxdrydrz is the elemental volume withdr =
(drx, dry, drz). Taking into account Eq. (2), Eqs. (18) and (17) are both written in terms ofN

〈N · ∆u + u · ∆N〉 ≤ 0, ∀ r small,

∫

V
〈N · ∆u + u · ∆N〉 dV′ ≤ 0, ∀ V

(19)

where nowu = u1, u′ = u2, N = N1, ∆N = N′ − N1, ∆u = u′ − u. Observe that Eq. (19) has been obtained from Eq.
(2), for arbitraryRe> Re∗. Due to this arbitrarily and considering that the bifurcations are caused by the nonlinear
terms of the Navier–Stokes equations, Eqs. (19) read as

〈N0 · ∆u + u · ∆N0〉 ≤ 0, ∀ r small,

∫

V
〈N0 · ∆u + u · ∆N0〉 dV′ ≤ 0, ∀ V

(20)

Equations (20) express the influence of bifurcations on the fluid motion.
At this stage of the analysis, we furnish adequate explanations that the bifurcations determine the transfer of

kinetic energy from large to small scales. This is shown in case of homogeneous isotropic turbulence, by means of the
evolution equation of the velocity correlation. This equation is obtained through the Navier–Stokes equations written
in two pointsx andx′ = x+ r , taking into account that, in such condition〈N0u〉 ≡ 0 (von Kármán & Howarth (1938))

∂

∂t
〈

u · u′
〉

= Re−1 (2 〈u · Lu〉 + 〈Lu · ∆u + L∆u · u〉)

+ 〈N0 · ∆u + ∆N0 · u〉
(21)

The first integral of Eq. (21) is the von Kármán & Howarth (1938) equation, the evolution equation of the longitudinal
velocity correlation function. First and second terms at the R.H.S. of Eq. (21) give respectively, the rate of kinetic
energy and the spatial variations of the velocity correlation due to the viscosity, whereas the third one, arising from
the inertia forces, is responsible for the mechanism of energy cascade and identifies the term with the third–order
statistical moment of velocity difference (von Kármán & Howarth (1938))

〈N0 · ∆u + ∆N0 · u〉 = ∇ ·
〈

(u · u′)(u − u′)
〉

(22)

where

lim
r→∞
〈N0 · ∆u + u · ∆N0〉 = 0, ∇ ·

〈

(u · u′)(u − u′)
〉

= O(r2) nearr = 0 (23)

In homogeneous isotropic turbulence,∇·〈(u · u′)(u − u′)〉 is an even function ofr which vanishes forr =0 (von Kármán & Howarth
(1938)). According to the present analysis, Eq. (20) statesthat

〈

(u · u′)(ur − u′r )
〉

and the skewness of the longitudinal
velocity difference are both negative, and that the turbulent kinetic energy flows continuously from large to small
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scales, in agreement with the accepted idea of the mechanismof kinetic energy cascade (Batchelor (1953)). In fact,
in line with von Kármán & Howarth (1938)

1
r2

∂

∂r

(

r3K(r)
)

≡ ∇ · 〈(u · u′)(u − u′)
〉

(24)

whereK(r) is an even function ofr directly related to the longitudinal triple correlation functionk(r) = 〈u2
r u′r〉/u3,

according to

1
r4

∂

∂r
(r4k(r)) =

K(r)
u3

(25)

whereu =
√

〈u2
r 〉 ≡

√
〈u · u〉/3, andur = u · r/r. Now, integrating Eq. (24) with respect to the volumeV and taking

into account Eq. (20) and thatK(0) = 0, we haveK(r) < 0 ∀r > 0, where due to isotropy,dV′ = drxdrydrz = 4πr2dr.
Next, integrating Eq. (25) withk(0) = 0, we obtaink(r) < 0 ∀r > 0. Accordingly, the skewness of∆ur and of∂ur/∂r
are both negative

H3(r) =
〈(∆ur )3〉
〈(∆ur )2〉3/2

≡
6k(r)

(2(1− f (r)))3/2
< 0, ∀r > 0,

H3(0) = lim
r→0

H3(r) =
kIII (0)

(− f II (0))3/2
< 0

(26)

where f = 〈uru′r〉/u2 is the longitudinal correlation function, and the superscript Roman numerals denote derivatives
with respect tor. Furthermore, as∇ · 〈(u · u′)(u − u′)〉 = O(r2) near the origin,H3(0) < 0 assumes a finite value.

In conclusion, the phenomenon of kinetic energy cascade is here explained with the proposed property (20) which
deals with the bifurcations in the fully developed chaotic regime, and through the fact thatN0(u) really depends on
the velocity gradient. Therefore, Eq. (20) provides the link between bifurcations and energy cascade mechanism and
states that the bifurcations are the driving force of turbulence. Moreover, the condition that∇ · 〈(u · u′)(u − u′)〉=0 in
the origin, means that the bifurcations do not modify the average kinetic energy, but only influence the kinetic energy
distribution at the different scales.

4. Fixed points and bifurcations of velocity fields

In order to analyze the link between NS–bifurcations and length scales of turbulence, the fixed points associated
to the current velocity fieldu(x, t) ∈ C1 ({x} × {t}) are first introduced. These fixed points are defined as the points X
satisfying

û(X; Re) = 0, (27)

whereû(X; Re) is calculated with Eq. (6). To study these points, we recallthat u(x, t) corresponds tôu(x; Re) =
N−1(u̇; Re) which is not unique and depends on the Reynolds number. Thanks to this non–unicity and to the time
variations ofu(x, t), these points continuously vary with the time. These points also depend onRe, and if X(Re0)
represents the fixed points calculated atRe0 << Re∗, X(Re) can be formally obtained with the implicit function
theorem

X(Re) = X(Re0) +
∫ Re

Re0

∇xu−1∇uN−1 ∂N
∂Re

dRe (28)

whereRe> Re0. X(Re) can be determined with Eq. (28) if det(∇uN ∇xu) , 0. If we exclude the cases where det∇xu
= 0, the u–bifurcations are defined as those fixed points where the operator∇uN admits at least one eigenvalue with
zero real part. Hence, the u-bifurcations are the image of the NS–bifurcations in the fluid domain, and the previous
considerations concerning the route toward the chaos can beapplied to Eq. (28).

7



Figure 3: Qualitative scheme of bifurcations of a given velocity field.

Figure 3 shows a situation at a given instantt̄ qualitatively similar to that of Fig. 1 (Right), where a component of
X is reported in terms ofRefollowing Eq. (28). In the figure,∆X is the bifurcation scale, a length associated to each
bifurcation which expresses the distance between brancheswhich born from the same bifurcation. Such branches
form a complex geometry which exhibits self–similarity asRe increases, whose overall dimension at the transition
can be expressed asX ≡ ∆X1 − ∆XN (Mandelbrot (2002); Mainzer (2005)). WhenRe< Re∗, the bifurcations are
limited in number, and the sum of the distances between contiguous branches does not exceedX

∑

n,1

∆Xn < ∆X1 − ∆XN (29)

Vice versa, forRe> Re∗, the bifurcations frequentely happen and the several trajectories tend to describe the entire
physical domain. As the result, the bifurcations tree will exhibit fractional dimension and self–similarity (Mandelbrot
(2002); Mainzer (2005)), whereas the distance between the successive u–bifurcations is very small, and the sum of
∆X is greater thanX (see for instance Mandelbrot (1967, 2002) and references therein), i.e.

∑

n,1

∆Xn > ∆X1 − ∆XN (30)

This situation corresponds to the current velocity fieldu(x, t̄), whereu(x, t) follows the Navier–Stokes equations.
As the result, we observe an unsteady motion depending onRe. Specifically, immediately before the transition
(Re . Re∗), the motion is quasi–periodic characterized by a discretedistribution of independent basic scales∆X
and frequencies, each associated to a single bifurcation (Eckmann (1981) and refs. therein), whereas forRe> Re∗,
the fluid motion is chaotic with a high level of mixing, the bifurcations behave like continuous transitions, where∆X
and frequencies play the role of real variables (Eckmann (1981) and refs. therein).

This spatial representation of NS-bifurcations and their continuous variations with respect tot, justify the contin-
uous distribution of wavenumbers of the energy spectrum, and the assumption that the bifurcations cascade law can
be expressed in terms of length scales (de Divitiis (2010)).

5. Bifurcations cascade in terms of length scales

The previous analysis justifies the fact that the bifurcations cascade can be expressed in terms of the scales∆X.
As these latter vary with time, their average valuesln are considered in function ofn. Figure 4 qualitatively showsln
immediately before the transition (Re. Re∗, filled symbols), whereN is the number of encountered bifurcations at
Re∗. These independent basic scales, discretely distributed,are represented by a given succession.
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Figure 4: Filled symbols: Bifurcations cascade law forRe. Re∗. Dashed line: scales distribution forRe& Re∗

Conversely, to represent the continuous scalesl in developed turbulence,l is in terms ofξ, a real variable which
replacesn and that expresses the continuous progress of the bifurcations in developed turbulence, whereξ ∈ [1,N] ⊂
R, with [ξ] = n, and [.] denotes the integer part. Hence

l = l(ξ), ξ ∈ [1,N] ⊂ R (31)

andl(ξ) dξ represents the elemental distance between neighbors transitions branches in developed turbulence.
For Re << Re∗, the flow is characterized by given frequency and spatial structure. RisingRe < Re∗, when

the first bifurcation occurs, a new frequency, independent from the first one, appears together to the corresponding
flow structure (Eckmann (1981); Gollub & Swinney (1975)). Atthe transition (Re= Re∗), the power spectra tend
to become continuous, while their peaks preserve the frequencies immediately after the transition (Eckmann (1981);
Gollub & Swinney (1975); Libchaber & Maurer (1979); Crutchfield et al (1980)). As these frequencies are associated
to spatial structures ofu through the Navier–Stokes equations, such preservation ofpeak frequencies corresponds to
the keeping of the caracteristic scales of the velocity fieldthrough the transition. Therefore, the scalesln obtained for
Re. Re∗ maintain their values forRe& Re∗ andξ=n. Accordingly, the functionl(ξ) is chosen in such a way that

l(n) = ln, n = 1, 2, ...,N (32)

Next, because of the aforementioned self–similarity,ln andl(ξ) are supposed to be, respectively, a geometric progres-
sion and an exponential function, i.e.

ln =
l1

qn−1
, n = 1, 2, ...,N, for Re. Re∗

l(ξ) =
l1

qξ−1
, ξ ∈ [1,N] ⊂ R, for Re& Re∗

(33)

whereq > 1.
Now, the inequality (29) states that, forRe. Re∗, the sum of the distances∆X does not exceedX, i.e.

N
∑

n=2

ln < l1 − lN ≡ l1

(

1− 1
qN−1

)

(34)

On the contrary, forRe& Re∗, the sum of such these distances is much greater thanX (see ineq. (30)), and this can
be expressed taking into account thatξ ∈ R

∫ N

1
l(ξ)dξ > l1 − lN ≡ l1

(

1− 1
qN−1

)

(35)
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Table 1: Critical Taylor–scale Reynolds number calculatedfor N = 2, 3, and 4, for different values ofq.

q Re∗λ(N=2) Re∗λ(N=3) Re∗λ(N=4)
2.000 1.03 4.13 16.52
2.250 1.31 6.62 33.50
α ≃ 2.503 1.62 10.13 63.49
e≃ 2.718 1.91 14.10 104.16

As {ln, n = 1, 2, ...} is a geometric succession, the inequality (34) is satisfied for q > 2 andN arbitrary, whereas the
condition (35) is satisfied forq < e, that is

2 < q < e (36)

6. Estimation of the critical Taylor–scale Reynolds number

In fully developed turbulence, the Taylor–scale Reynolds number is defined by

Rλ =
uλT

ν
(37)

whereλT = 1/
√

− f II (0) is the Taylor scale.Rλ, λT andu are linked by means of the relation (Batchelor (1953))

λT

ℓ
= 151/4

√

Rλ, (38)

whereℓ is the Kolmogorov microscale.
The critical Taylor–scale Reynolds numberR∗λ is first estimated starting from the route toward the chaos, using the

bifurcations cascade seen at the previous section, and assuming an opportune property of the length scales. Thereafter,
R∗λ is also estimated beginning from the fully developed isotropic turbulence, adopting the closure equation presented
in de Divitiis (2010) for the von Kármán–Howarth equation, and a plausible condition forf .

6.1. Estimation of R∗λ through the route toward the chaos
To estimateR∗λ through the route toward the turbulence, the relationship betweenR∗λ andN is searched. Now, to

obtain this link, it is worth to remark that, forRe& Re∗, the minimum lengthl(N), can not be less than the Kolmogorov
scaleℓ, whereasl(1) = λT (see Fig. 4), thusℓ < ln < λT for Re. Re∗, and

ln =
λT

qn−1
, ℓ =

λT

qN−1
(39)

Combining Eqs. (39) and (38), we have

R∗λ =
q2N−2

√
15

(40)

which expresses the searched relationship. With referenceto table 1, all the values ofR∗λ calculated forN = 2, and
q ∈ [2, e], are of the order of the unity and this is not compatible withλT which represents the correlation scale, while
the valuesR∗λ = 4 ÷ 14 obtained forN = 3 andq ∈ [2, e], are acceptable. In particular, ifq is assumed to be equal
to the second Feigenbaum constant (α = 2.502...), R∗λ ≃ 10. ForN = 4, all the values ofR∗λ seem to be quite high in
comparison with a plausible minimum values ofRλ, expecially for high values ofq.

These orders of magnitude ofR∗λ calculated forN = 3, agree with the different theoretical routes to the turbulence
(Ruelle & Takens (1971); Feigenbaum (1978); Pomeau & Manneville (1980); Eckmann (1981)), and with the diverse
experimental data (Gollub & Swinney (1975); Giglio et al (1981); Libchaber & Maurer (1979)) which state that the
transition occurs whenN & 3.
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6.2. Estimation of R∗λ through the fully developed turbulence

Next, to estimateR∗
λ

starting from the regime of fully developed homogeneous isotropic turbulence, the solutions
of the von Kármán–Howarth equation are considered in function of Rλ. To determineR∗λ, we need an auxiliary
condition which defines the lower limit for the existence of this regime of turbulence. To found this condition,
observe that the homogeneous isotropic turbulence is an unsteady regime, whereu andλT change witht according to
(von Kármán & Howarth (1938); Batchelor (1953))

du2

dt
= −10u2ν

λ2
T

(41)

5ν

λ4
T

+
1

λ3
T

dλT

dt
=

7
6

ukIII (0)+
7
3
ν f IV (0) (42)

where Eqs. (41) and (42) are the equations for the coefficients of the powersr0 and r2, respectively, of the von
Kármán–Howarth equation. The term responsible for the energy cascade is the first one at the R.H.S. of Eq. (42),
whereas the second one is due to the viscosity. According to Eq. (42), if the energy cascade is sufficiently stronger
than the viscosity effects, thendλT/dt < 0. Hence, a reasonable condition to estimateR∗

λ
can consist in to search the

value ofRλ for which

dλT

dt
= 0 (43)

This value ofR∗
λ

depends on the adopted closure equation forK. If we use the results of the Lyapunov theory proposed
by de Divitiis (2010),K is in terms off and∂ f /∂r

K = u3

√

1− f
2
∂ f
∂r

(44)

thus Eq. (43) is satisfied for (Batchelor (1953))

Rλ ≡ R∗λ = 2

(

7
3
ϕ − 5

)

whereϕ =
f IV (0)

(

f II (0)
)2

(45)

Following such estimation,R∗
λ

is related to the behavior off near the origin throughϕ > 15/7. For instance, whenf
is a gaussian function

f = exp

(

f II (0)
r2

2

)

, thenϕ = 3, R∗λ = 4. (46)

whereas if, according to the Kolmogorov law,f behaves like

f ≈ 1− cr2/3, c > 0, thenϕ = 4.8, R∗λ = 12.4. (47)

wheref I (λT/
√

2) andf II (λT/
√

2) are assumed to be equal to the corresponding derivatives of 1+1/2 f II
0 r2+1/4! f IV

0 r4

in r = λT/
√

2. These values are in qualitatively good agreement with those of the previous analysis based on the
bifurcations.

7. Conclusion

We conclude this work by observing that the proposed statistical property of fully developed turbulence based on
bifurcations, explains the energy cascade phenomenon in agreement with the literature, and motivates the fact that
the local fluid deformation can be much faster than the velocity field. Furthermore, the spatial representation of the
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bifurcations justifies that the bifurcations cascade can beexpressed in terms of length scales, and allows to argue that
the scales are continuously distributed in developed turbulence. The proposed preservation of the bifurcation scales
through the transition, leads to a link between critical Reynolds number and number of bifurcations at the transition,
resultingN=3 andR∗λ ≈ 4 ÷ 14 in line with the literature.R∗λ is also estimated as that value of the Taylor–scale
Reynolds number which determinesdλT/dt = 0 in the isotropic turbulence. The two procedures provide values ofR∗

λ

in agreement with each other.
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