
A Study on the Parallelization of
Terrain-Covering Ant Robots Simulations

Alessandro Pellegrini and Francesco Quaglia

DIAG, Sapienza, University of Rome

Abstract. Agent-based simulation is used as a tool for supporting (time-
critical) decision making in differentiated contexts. Hence, techniques
for speeding up the execution of agent-based models, such as Parallel
Discrete Event Simulation (PDES), are of great relevance/benefit. On
the other hand, parallelism entails that the final output provided by
the simulator should closely match the one provided by a traditional
sequential run. This is not obvious given that, for performance and effi-
ciency reasons, parallel simulation engines do not allow the evaluation of
global predicates on the simulation model evolution with arbitrary time-
granularity along the simulation time-axis. In this article we present a
study on the effects of parallelization of agent-based simulations, focus-
ing on complementary aspects such as performance and reliability of
the provided simulation output. We target Terrain Covering Ant Robots
(TCAR) simulations, which are useful in rescue scenarios to determine
how many agents (i.e., robots) should be used to completely explore a
certain terrain for possible victims within a given time.

1 Introduction

Thanks to the expressive power intrinsically exhibited by agent-based models,
agent-based simulation constitutes a proven solution to study complex real-world
scenarios. In these models, agents exhibit individual or collective interactions,
which have been shown to reliably express interactions between different ob-
jects/entities in real world phenomena such as disaster rescue [1], computational
sociology [2], logistics [3], biomedical applications [4], and economic analysis [5].

On the other hand, for several application domains, one core aspect to cope
with is the timeliness according to which the simulation system is able to de-
liver its outputs. One example is related to supporting (time-critical) decision
making [6] via, e.g., what-if analysis carried out through agent-based simulation
models, such as when employing agent-based models in disaster-rescue contexts.
To achieve timeliness in the delivery of simulation outputs, parallelization tech-
niques have been adopted with success in several fields (see, e.g., [7]).

Nevertheless, one peculiar aspect of agent-based simulation models is that
they are employed not only to study steady state or equilibrium properties of
a system, rather to determine the exact simulated-time when a given predi-
cate becomes true. High precision in the determination of such a time instant
would require frequent inspection of the state of the simulation model (ideally at
each state transition, namely after the execution of each simulation event). This



may result feasible in traditional sequential simulation, where the unique run-
ning thread may quickly retrieve the information for predicate evaluation from
the data structures (representing the simulation model state) within its address
space. On the other hand, when employing parallel/distributed simulation tech-
niques, such a fine grain inspection along the simulation-time axis may result
inviable due to the overhead for process coordination, which may hamper the
achievable speedup. Also, for high performance optimistic parallel simulation,
where the computation performed might be subject to rollback due to violations
event-causality caused by speculative processing, the inspection on the simu-
lation model trajectory may be explicitly delayed to the time instant when a
given portion of the computation becomes committed (namely no rollback can
even occur in a given simulated-time interval while further executing the simu-
lation model). As a consequence, a shift may appear between the simulated time
when the parallel run detects that the predicate holds, and the corresponding
simulated time when the sequential run tracks the holding of the same predicate.

In in this article we present a study on the tradeoff between performance
and reliability of the simulation outputs when exploiting optimistic PDES tech-
niques, particularly the ROOT-Sim PDES platform [8, 9], for the case of simu-
lations of Terrain-Covering Ant Robots (TCAR). More in detail, we study how
the frequency of inspection on committed portions of the parallel simulation
run impacts both the achievable speedup and the distribution of the estimated
simulated-time for fully exploring a target spatial region. This has been done
while varying the population of robots (hence one parameter determining the
simulation model complexity), and by relying on parallel executions carried out
on a 32-core HP ProLiant machine equipped with 64 GB of RAM, which is rep-
resentative of current off-the-shelf commodity facilities for scientific computing.
Beyond providing results for this specific application contexts, to the best of our
knowledge, this is the first study along the direction of evaluating the reliability
of asynchronous (non-time stepped) parallel simulation outputs for the assess-
ment of non-steady state properties of the real-world phenomenon targeted by
agent-based simulation.

The remainder of this paper is structured as follows. In Section 2, related
work is discussed. The target TCAR model is depicted in Section 3. The paral-
lelization approach for TCAR simulations via ROOT-Sim is presented in Section
4. Experimental data are reported in Section 5.

2 Related Work

In literature, several special-purpose simulation environments to support agent-
based simulations have been presented. In the MASON framework [10] special
attention was paid to performance, trying to address computing-intensive mod-
els (i.e., large scenarios with many agents), and to portability, ensuring repro-
ducibility of results across different hardware architectures. Interfaces can be
connected to simulation models, and the simulations can be paused and moved
to different computers (which is regarded as a benefit in case of long simula-
tions). A distributed version is also presented [11], which relies on time-stepped



synchronization and on the master/slave paradigm. Compared to this work, we
focus on performance/reliability tradeoffs for the case of asynchronous (non-time
stepped) PDES, which is recognized as a more scalable paradigm for generic
simulation-object interaction patterns.

Pandora [12] is a C++-based simulation framework enabling executions in
parallel/distributed environments. It features several AI algorithms for support-
ing agents’ decision making, provides python binding (which is a benefit for in-
experienced programmers), and is complemented by Cassandra, a visualization
tool created to detect spatial-temporal patterns generated by the simulation for
post-analysis. On the other hand, we use ROOT-Sim [8, 9], a general-purpose
PDES simulation framework, to support agent-based simulation. We do not
rely on specific agent-based facilities, rather the simulation model is written
in plain ANSI-C, giving the modeler the freedom to implement the logic using
the general-purpose libraries. This lead us to develop a highly efficient C-based
simulation model for TCAR, which represents a stress case for parallel runs due
to very reduced event granularity (about 0.7 microsec on the used architecture).

The work in [12] has studied the efficiency and scalability of agent-based mod-
els in the Cloud. The authors analyze how the simulation performance changes
when moving the simulation framework and the model from a cluster to the
Cloud. We target a different aspect, because we only focus on optimistic simula-
tion on clusters in order to show what is the price (in terms of results accuracy)
to be paid for having a considerable performance gain.

The work in [13] recognizes the importance (in terms of performance) of re-
lying on the PDES paradigm to carry on complex and resource-intensive simula-
tions. Differently from our goal, the authors concentrate on the difficulty which
might arise when mapping any agent-based model onto the PDES paradigm,
and propose a middleware which can easily help in this task.

In [14], the performance of one particular simulation model run on top of
GPUs is presented, showing that relying on graphic cards to carry on agent-
based simulations can provide a considerable speedup with respect to sequential
simulations—passing from hours to seconds. In this work, we address CPU sim-
ulation, where general models with any kind of intra-agent synchronization and
any change in the size of the simulation state is allowed during the evolution of
the model, thus allowing to implement complex scenarios much more easily.

The work in [15] tries to bridge the gap between the results in [13] and [14],
proposing a simulation environment which can benefit from the PDES paradigm
(run on CPUs) and the availability of a large number of cores in GPUs. In partic-
ular, within the PDES event handlers, the simulation-model writer can specify
which code blocks can be run on top of GPUs, and then the simulation platform
offloads that computation to the graphic cards, ultimately relying on OpenCL.
In our proposal, we target transparency, i.e. the simulation model writer simply
writes the model’s logic, and then the simulation framework efficiently runs it
in parallel.

Another proposal related to the present study can be found in [7]. It ad-
dresses the tradeoff between reliability of the simulation output and simulation
speed when running large-scale numerical simulations (such as molecular dynam-



ics simulations) on GPU architectures. The focus of this paper is on the effects
of data representation, namely single vs double precision floating point represen-
tation, on the speed of GPU based runs. This is orthogonal to the tradeoff we
target in our study, namely the one between the overhead for global predicates’
evaluation in parallel runs vs the precision in the detection of the simulated-time
when the predicate is verified.

Finally, the work in [16] addresses the issue of parallelizing multi-agent path
planning. This is done via parallelization of a forward search algorithm on GPUs,
where the parallelization approach tries to cope with the exponential growth of
the search space vs the number of agents. Conversely, our simulation model
is targeted at executions on CPU oriented platforms, and implements a map
coverage scenario based on a unique dynamic robot-move plan evolving according
to probabilistic rules.

3 Reference Simulation Model

The agent-based simulation model which we have targeted for our experimental
study is a variant of the Terrain-Covering Ant Robots (TCAR) model presented
in [17]. This type of simulation model is particularly interesting for the assess-
ment of rescue scenarios. In particular, if some kind of accident occurs in a region
which is either unknown by the rescuers or altered by the accident itself, the first
action in order to actually rescue the victims is to explore the whole region.

The terrain is modeled as an undirected graph, therefore an agent (i.e., an ant
robot) is able to move from one space region to another in both directions. This
mapping is created by imposing a specific grid on the space region. The agents
are then required to visit the entire space (i.e., cover the whole graph) by visiting
each cell (i.e., graph node) once or multiple times. In our implementation, the
model is able to simulate a square region (12 Km2) divided into 4900 hexagonal
cells (rather than square cells, as in the original model). This allows for a better
representation of the agents’ mobility in the real world, as the real ant robots (as
physically realized in [18]) have the ability to steer to any direction during the
exploration. Robots start from specific border-cells in the terrain, and from each
cell a given number of robots starts moving around (mimicking the fact that
rescue teams start from specific positions, and unleash robots for discovery).

The model relies on a node-couting algorithm, where each cell is assigned a
counter which gets incremented whenever any robot visits it, i.e. tracks the num-
ber of pheromones left by ants, to notify other ones of their transit. Whenever
an agent (i.e., an ant robot) reaches a cell, it increments the counter and deter-
mines its new destination. Choosing a destination is a very important factor to
efficiently cover the whole region, and to support this the trail counter is used. In
particular, the ant robots adopt a greedy approach, so that when a robot is in a
particular cell, it targets the neighbor with the minimum trail count. A random
choice takes place if multiple cells have the same (minimum) trail count.

Although this greedy approach might not be optimal, it allows for a complete
coverage of the region taking into account the simplicity of the agents, which
may have a very limited and noisy sensing capability [18]. In the original model,



whenever an agent is in a given cell, it accesses the information stored in the
neighbor cells (i.e., trail counters) to make its decision. This is a pull approach,
which, as we will discuss in Section 4 might entail a non-negligible performance
drop when running parallel/distributed simulations.

According to the original specification of the model [17], each ant robot moves
from one cell to another in a time interval of variable length (provided that the
destination is reachable, i.e. no obstacle is in between the current and the des-
tination cell). In our configuration of the model, we have made two important
choices: i) there are no obstacles in the terrain; ii) time interval is drawn accord-
ing to an exponential distribution with mean value 100 sec (corresponding to
the typical speed of an ant robot of 50 cm per sec), which models the set of vari-
ables that can potentially impact the robot move. As for choice i), this allows us
to study a lower bound of complete region-coverage time. In fact, inserting any
obstacle will prevent agents to freely move around, not allowing certain actions,
and increasing the exploration time. Choice ii), instead, allows us to study how
much time is required by a group of agents to explore a small area with a very
high detail, due to the intrinsic speed limitations (one meter per second [18]).

4 Parallelization

We have implemented the model1 described in Section 3 in order to be run on top
of the ROme OpTimistic Simulator (ROOT-Sim) [8, 19]. This is an open source
C/MPI-based simulation platform targeted at POSIX systems, which imple-
ments a general-purpose parallel/distributed simulation environment relying on
the optimistic (i.e., rollback-based) synchronization paradigm. It offers a very
simple programming model relying on the classical notion of simulation-event
handlers, both for processing events and for accessing a committed and glob-
ally consistent state image upon Global Virtual Time (GVT) calculation. The
GVT value corresponds to the (periodically) reevaluated commitment horizon
of the optimistic (speculative) simulation run. No causality violation, hence no
rollback, can even occur for processed simulation events whose timestamp falls
before the current GVT value. GVT updates typically trigger memory recovery
procedures, e.g., of obsolete state logs.

As in typical PDES engines, in ROOT-Sim the simulation model can be par-
titioned into N simulation objects, each one modeling a subportion of the whole
environment. Each simulation object i ∈ [0, N − 1] is associated with a private

simulation state Si, so that the global simulation state is S =
∪N−1

i=0 Si and
Si ∩ Sj = ∅ ∀i, j i ̸= j. Any simulation objects is handled by a Logical Process
(LP), which takes care of executing the events which are passed by the simulation
framework to the application layer. Any LP implements a process-event callback
(to be invoked by the platform), which is in charge of updating the data struc-
tures representing the current state of the simulation object. Each event passed
in input to the callback is associated with a Local Virtual Time (LVT), which
describes the (simulated) time advancement of the currently scheduled LP.

1 The source code of our implementation is available at http://www.dis.uniroma1.it/∼
hpdcs/ROOT-Sim/tcar.tbz.



Events can be scheduled across simulation objects via a proper schedule-
event API supported by ROOT-Sim, which maps onto application transparent
message-interactions within the parallel platform. Also, log/restore of the LP
state for correctly recovering causality errors within the optimistic processing
scheme (caused by out of timestamp-order speculation) is fully transparent to
the application programmer and autonomically optimized (e.g in terms of the
selection of the frequency of log operations as a function of the rollback prob-
ability of any individual LP) [20]. Hence, the programmer can use any kind of
(dynamic) data structure to implement the simulation object within the appli-
cation code (which allows the LP callback function to be implemented accord-
ing to the ANSI-C standard), and is provided with the illusion of a sequential
discrete-event run, while the LPs are actually executed in parallel across different
processes.

ROOT-Sim also supports a very peculiar service that, once a new GVT value
is available, transparently rebuilds a Committed and Consistent Global Snap-
shot (CCGS), formed by a collection of individual LPs’ states [21]. This occurs
via update operations applied to local committed checkpoints of individual LPs
so to eliminate mutual dependencies among the final-achieved state values. Once
the CCGS is built, each LP gains control via an additional callback within the
API, referred to as OnGVT, by also having access to the copy of its state image
belonging to the CCGS. Such a service can support, e.g., termination detection
schemes based on global stable predicates evaluated on a committed and consis-
tent global snapshot. This is a relevant alternative to typical optimistic PDES
engines where the run is assumed to be completed only when overstepping a
given GVT value. However, the evaluation of the global predicate on the CCGS
has a frequency which is bounded by the frequency of GVT calculation, thus
a temporal shift can occur before the simulation application layered on top of
the ROOT-Sim platform can track the holding of a global predicate while sim-
ulation time advances. This is the core point we address in our study, which is
targeted at evaluating the effects of variations of the frequency of GVT calcula-
tion (which may impact the speedup of the parallel run, given that it contributes
to the overhead for distributed coordination) on the estimation of the final time
for area-coverage within the TCAR model.

The TCAR model depicted in Section 3 has been implemented on top of
ROOT-Sim by having each LP modeling an individual hexagonal cell within the
target coverag area, while robots trajectories are simulated via proper mobil-
ity events across the LPs. As mentioned, the original TCAR model adopts a
pull approach for gathering trail counters from adjacent cells. Considering our
programming model, where LPs communicate by means of (transparently han-
dled) message passing (i.e, LPs’ simulation states are disjoint), a large number
of events should be exchanged to proceed in the simulation, whenever an agent
must change its position. Given that the optimistic synchronization protocol [22]
shows higher efficiency when the number of exchanged messages is reduced, we
have rather adopted a push approach, relying on a notification message which
is used to inform all neighbors of the newly updated trail counter whenever an
agent enters a cell. Then, each LP stores in its own simulation state the neigh-



bors’ trail-counters values. In this way—by relying on only one message—the
agents are able to make their decisions locally.

The set of events which are generated/executed by the simulation model and
handled by ROOT-Sim callback operations are the following:

– REGION IN: an ant robot enters a given cell. When this event is executed,
the trail counter is incremented. Then, an UPDATE NEIGHBORS event is sched-
uled at all adjacent cells, with an associated timestamp which is equals to
the REGION IN’s one. This means that every neighbor is immediately notified
of the presence of a new ant robot in this cell at a given simulation time.

– UPDATE NEIGHBORS: upon receiving this event, the LP taking care
of its execution finds in the local simulation state the entry describing the
trail counter for the sender of this event. Its value is updated with the one
piggybacked by this event. This allows any ant robot in the cell to have
(locally) a global view of the state of the neighbors.

– REGION OUT: this event is associated with an ant robot leaving the cell
simulated by the LP which will process the event. The logic associated with
this event entails finding which is the neighbor to be reached (by consult-
ing the locally stored information on neighbors’ trail counters) and therefore
scheduling a REGION IN event to the destination cell. We note that, since
the time spent by an agent in the cell is modeled by the difference be-
tween the timestamps associated with a REGION IN event and its subsequent
REGION OUT event, and given that a REGION IN event in any neighbor cell
entails the immediate (i.e., at the same timestamp) update of all trail coun-
ters in the neighbors, upon the execution of a REGION OUT event the ant
robot can safely consult the locally-stored neighbors’ trail counters, being
sure that they contain the most up-to-date information, obtained using the
aforementioned push approach.

ROOT-Sim natively schedules an INIT event at the beginning of the sim-
ulation at every LP in the system, so to allow them to initialize their private
simulation states. At simulation startup, every LP determines what is its posi-
tion in the square region (in terms of hexagonal coordinates) and checks whether
they are boundary regions or not. In the positive case, they store this information
in order to prevent ant robots to leave the terrain.

The cells which (at configuration time) are selected as sources for unleashing
the ant robots (e.g., the cells associated with the position of rescue teams on the
terrain) detect this, and schedule at themselves a REGION IN event, at simulation
time 0. This allows the actual simulation to start.

5 Experimental Results

We have run experiments on a 32-core HP ProLiant server equipped with 64GB
of RAM and running Debian 6 on top of the 2.6.32-5-amd64 Linux kernel. We
have used 32 instances of the ROOT-Sim kernel (i.e., every instance takes care
of about 154 cells, namely LPs) giving each instance one available processing
core. The simulation model has been run until reaching a 100% coverage of the



 0

 100

 200

 300

 400

 500

8 16 32 64 128 256 512 1024

T
ot

al
 E

xe
cu

tio
n 

T
im

e

Model Size (Number of Ant Robots)

Execution Time

Serial
GVT=1
GVT=2
GVT=3
GVT=4
GVT=5

Fig. 1. Global Execution Times

 3.8e+07

 4e+07

 4.2e+07

 4.4e+07

 4.6e+07

 4.8e+07

 5e+07

 5.2e+07

 5.4e+07

8 16 32 64 128 256 512 1024

T
ot

al
 (

C
om

m
itt

ed
) 

E
xe

cu
te

d 
E

ve
nt

s

Model Size (Number of Ant Robots)

Executed Events

Serial
GVT=1
GVT=2
GVT=3
GVT=4
GVT=5

Fig. 2. Committed Events

whole region, with a visit factor of 20 (i.e., every cell must be visited at least 20
times before the simulation can complete). This has been done in order to avoid
interference in the performance data due to the initial I/O (to access configu-
ration files) and setup operations executed in the early phase of the simulation
run. We have set ingress cells for robot unleash to 4, mimicking a situation where
the rescue terrain is accessed by a limited number of rescue teams (which can
be significant in real disasters). Each rescue team is able to unleash a variable
number of ant robots, in the range [4, 32], thus having a number of agents in the
simulation in between 8 and 1024.

We have compared the optimistic parallel results with sequential ones, i.e.
where events are executed sequentially relying on a competitive scheduler based
on Calendar Queues [23]. The GVT computation period in ROOT-Sim has been
varied in between 1 and 5 sec (in wall-clock-time) to check how the confidence
interval in the simulation results changes. Each plot is averaged over 20 different
runs, both in the parallel and in the sequential case. The initial random seed has
been varied across the different runs, in order to account for variations in the
execution dynamics, but the set of seeds in the sequential and parallel executions
is the same, to really compare similar execution patterns.

In Figure 1 we present the global execution times for both the sequential and
the parallel execution (on top of ROOT-Sim) of the TCAR simulation model. By
the results, we see that the parallel execution provides a speedup in between 15
and 22. Different settings for the GVT computation interval provide a different
completion time. In particular, the higher the GVT, the higher the simulation
wall-clock-time. This is not related to a loss of precision in the simulation, it is
rather due to the way the simulation termination condition is evaluated. As men-
tioned, the GVT reduction protocol is a periodic computation. If the termination
condition is verified immediately after the GVT reduction, then a non-negligible
amount of wall-clock time will pass before it will be checked again (leading
simulation time to advance). On the other hand, for significantly increased val-
ues of the GVT period, the opposite behavior is noted, since the delayed GVT
computation allows to catch the termination condition right after it holds. This
situation can be seen as well in Figure 2, where the total number of (committed)
events executed by the simulation are reported. As it can be clearly seen, the



Configuration Sequential GVT=1 GVT=2 GVT=3 GVT=4 GVT=5

16 Robots
Mean 211.86 216.31 218.27 218.69 234.99 221.81

Std. Dev. 1,56 15.11 13.28 11.07 12.46 15.64

128 Robots
Mean 26.56 27.37 28.41 28.29 32.61 29.24

Std. Dev. 0.16 1,08 1,37 3,25 1.83 1.01

Table 1. Mean Completion Simulation Time (in Simulated Hours)

parallel runs commit a higher number of events than the sequential. Also, the
peak values for the parallel runs are not alway noted for larger GVT period, just
for the reasons explained above.

In order to assess the results’ reliability, in Table 1 we present the LVT values
at which two intermediate configurations of the simulation were stopped. These
are the ones with 16 and 128 robots. The reported information is useful to model
writers, as it is part of the outcome of the simulation itself. In particular, this
tells how much time (in simulated hours) the ant robots would need to cover
the entire region. From the data (presented in form of mean time and standard
deviation), it can be clearly seen that the sequential simulations offer the most
stable result2. Interestingly, the parallel executions show a completion simulated
time which is always higher that the sequential. This is related, again, to the way
the termination condition is checked upon GVT reduction. This result is very
important, showing that the outcome of a parallel (optimistic) simulation does
not give the most precise result, rather it places a (correct) upper bound on the
real values of simulation. Of course, it is up to the simulation model writer to
decide how much this divergence from the real simulation results can affect her
simulation, and how much benefit she can gain from the increased performance.

References

1. Takahashi, T., Tadokoro, S., Ohta, M., Ito, N.: Agent based approach in disaster
rescue simulation - from test-bed of multiagent system to practical application. In:
RoboCup 2001: Robot Soccer World Cup V, Springer-Verlag (2002) 102–111

2. Macy, M.W., Willer, R.: From factors to actors: Computational sociology and
agent-based modeling. Annual Review of Sociology 28(1) (2002) 143–166

3. Junli, L.: Agent-based logistics simulation system design and implementation. In:
Proceedings of the 2nd IEEE International Conference on Computer Science and
Information Technology. ICCSIT, IEEE Computer Society (2009) 602–606

4. Macal, C., North, M.: Tutorial on agent-based modeling and simulation part 2: How
to model with agents. In: Proceedings of the 2006 Winter Simulation Conference.
WSC, Society for Computer Simulation (2006) 73–83

5. Page, S.E.: Agent-based models. In Durlauf, S.N., Blume, L.E., eds.: The New
Palgrave Dictionary of Economics. Palgrave Macmillan (2008)

6. Karmakharm, T., Richmond, P.: Large scale pedestrian multi-simulation for a
decision support tool. In: TPCG. (2012) 41–44

7. Taufer, M., Padron, O., Saponaro, P., Patel, S.: Improving numerical reproducibil-
ity and stability in large-scale numerical simulations on gpus. In: IPDPS. (2010)
1–9

2 We recall that all the results are averaged over 20 different runs, with different initial
random seeds.



8. The High Performance and Dependable Computing Systems Research Group
(HPDCS), Sapienza, University of Rome: ROOT-Sim: The ROme OpTimistic Sim-
ulator - v 1.0. http://www.dis.uniroma1.it/~hpdcs/ROOT-Sim/ (October 2012)

9. Pellegrini, A., Vitali, R., Quaglia, F.: An evolutionary algorithm to optimize
log/restore operations within optimistic simulation platforms. In: Proceedings
of the 4th International ICST Conference on Simulation Tools and Techniques.
SIMUTools, SIGSIM (2011)

10. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent
simulation environment. Simulation 81(7) (July 2005) 517–527

11. Cordasco, G., Chiara, R.D., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.:
A framework for distributing agent-based simulations. In: Euro-Par Workshops
(1). (2011) 460–470

12. Wittek, P., Rubio-Campillo, X.: Scalable agent-based modelling with cloud hpc
resources for social simulations. In: Proceedings of the 4th International Conference
on Cloud Computing Technology and Science. CloudCom, IEEE Computer Society
(2012) 355–362

13. Hybinette, M., Kraemer, E., Xiong, Y., Matthews, G., Ahmed, J.: Sassy: A design
for a scalable agent-based simulation system using a distributed discrete event
infrastructure. In: Proceedings of the 2006 Winter Simulation Conference. WSC,
Society for Computer Simulation (2006) 926–933

14. Richmond, P., Walker, D.C., Coakley, S., Romano, D.M.: High performance cellular
level agent-based simulation with FLAME for the GPU. Briefings in Bioinformatics
11(3) (2010) 334–347

15. Marurngsith, W., Mongkolsin, Y.: Creating gpu-enabled agent-based simulations
using a pdes tool. In Omatu, S., Neves, J., Rodriguez, J.M.C., Paz Santana, J.F.,
Gonzalez, S.R., eds.: Distributed Computing and Artificial Intelligence. Volume
217 of Advances in Intelligent Systems and Computing. Springer International
Publishing (2013) 227–234

16. Caggianese, G., Erra, U.: Exploiting gpus for multi-agent path planning on grid
maps. In: HPCS. (2012) 482–488

17. Koenig, S., Liu, Y.: Terrain coverage with ant robots: a simulation study. In:
Proceedings of the fifth international conference on Autonomous agents. AGENTS,
ACM (2001) 600–607

18. Svennebring, J., Koenig, S.: Building terrain-covering ant robots: A feasibility
study. Autonomous Robots 16(3) (May 2004) 313–332

19. Pellegrini, A., Vitali, R., Quaglia, F.: The ROme OpTimistic Simulator: Core
internals and programming model. In: Proceedings of the 4th International ICST
Conference on Simulation Tools and Techniques. SIMUTools, ICST (2011)

20. Vitali, R., Pellegrini, A., Quaglia, F.: Autonomic log/restore for advanced opti-
mistic simulation systems. In: Proceedings of the Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems. MASCOTS,
IEEE Computer Society (2010) 319–327

21. Cucuzzo, D., D’Alessio, S., Quaglia, F., Romano, P.: A lightweight heuristic-based
mechanism for collecting committed consistent global states in optimistic simula-
tion. In: DS-RT. (2007) 227–234

22. Jefferson, D.R.: Virtual Time. ACM Transactions on Programming Languages
and System 7(3) (July 1985) 404–425

23. Brown, R.: Calendar queues: a fast O(1) priority queue implementation for the
simulation event set problem. Communications of the ACM 31 (October 1988)
1220–1227


