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Abstract In this article we create a new algorithm for the perfect simulation of the
infinite random cluster model for a sufficiently small or a sufficiently high value of
the parameters. This implies the simulation of the Ising and Potts models with free
boundary conditions.
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1 Introduction

Given a finite or countable graph G = (V, E), a positive real number q and parameters
p = {pe ∈ [0, 1] : e ∈ E}, the random cluster measure is defined on the measurable
space (�,F), where� = {0, 1}E and F is the σ -algebra generated by finite cylinders.
This measure was introduced by Fortuin and Kasteleyn as a way to study the Ising and
Potts models (see [6]). Notice that, in our paper, we do not require the parameters pe

to be all equal to the same constant; however we limit our attention only on the models
with q > 1. This choice has been made both to maintain the article simpler and also
because the case q > 1 has important connections with the statistical mechanics and
in particular with the models of Ising and Potts.

E. De Santis (B)
Dipartimento di Matematica, Università di Roma La Sapienza, P.le A. Moro 2, 00185 Roma, Italy
e-mail: desantis@mat.uniroma1.it

A. Maffei
Dipartimento di Matematica, Università di Pisa, P.le B. Pontecorvo 5, 56127 Pisa, Italy
e-mail: maffei@dm.unipi.it

123



E. De Santis, A. Maffei

Our aim is to construct an algorithm which gives a perfect simulation of a random
cluster measure on a finite region of an infinite graph. Notice that even if the perfect sim-
ulation is obtained only on a finite region, it takes into account the fact that the random
field on this region is influenced by the value of the field on the whole infinite graph.

Now we briefly explain how this simulation is obtained. As will be recalled in
Sects. 3 and 4 the random cluster measure is invariant under a Markovian dynamics.
Introduce a countable number of copies of the graph G and think them as placed
at level, 0, −1, −2, etc. Choose also an order of the edges of G: e1, e2, etc. For a
configuration ω ∈ � of the graph at level N create new configurations at level above
N updating the value of ωek one at the time, according to the conditional probabilities
that depends on the geometry of the configuration. The details of this dynamics are
given in Sect. 4. Let us just recall here that the law used to update the value of ωek

depends on the existence of a connected path of edges e, different from ek , such that
ωe = 1, joining the end vertices of ek . The construction of this dynamics can be seen
as a particular case of a Glauber dynamics. In the study of the random cluster measures
similar dynamics where already considered, for example by Grimmett in [9].

We construct a coupling of all the dynamics for each possible initial configuration.
We color with black, gray or white, in an independent way, the edges of all the copies
of G. The law used to color the edge e at a certain level depends only on the parameter
pe. The coupling is constructed in such a way that for all possible initial configurations
ω, the value of the configuration in e at level � will be 1 whenever the edge e at level
� is black and 0 whenever it is white.

Now fix a finite set of edges F of G. In Theorem 9, in the case of high temperature
(which corresponds to pe close to zero), we prove that, for almost all coloring as above,
there exists a finite region Cb

F of the union of all the copies of G that is “surrounded”
by white edges and containing the region F at level 0. Finally, in Theorem 6 we prove
that, given a coloring, if the region Cb

F is finite then we can determine a bigger finite
region H̄ such that the output of the dynamics described above at level 0 in the region
F does not depend on the choice of ω and on the coloring outside the region H̄ .

Similar results are proved in Theorems 5 and 8 in the case of low temperature
which corresponds to pe close to one. However in this case the meaning of the word
“surrounded” is different. To treat this case we have to make some further assumptions
on the geometry of the graph G. For this reason in Sect. 5 we introduce the concept of a
simplicial graph. These are the graphs that can be obtained as the vertices and edges of a
tessellation of a Euclidean space. The first example we have in mind is the cubic lattice
L

d = (Zd ,Ed). In Sect. 5 we prove also the results required in the proof of Theorem 5.
In Sect. 8 we summarize these results and we show how to obtain an algorithm

for the perfect simulation of the random cluster measure. We give the details only in
the case of low temperature which is the most difficult and interesting. The case of
high temperature can be treated in a similar way. As a byproduct we also obtain the
uniqueness of the random cluster measure at low or high temperature, which, at least
in the case of L

d is well known (see [9,11]).
In Sect. 9 we describe the objects introduced in the paper in an explicit example. We

also illustrate the simulation in one example regarding the random cluster measure with
q = 2, the parameters pe constant and free boundary conditions at low temperature.
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This example is related to the Ising model. In the end of Sect. 9 we briefly recall how
to deduce from the simulation of the random cluster measure the simulation of the
Ising and Potts model with free boundary conditions.

We also refer to some literatures on perfect simulation. In [13] was introduced
the perfect simulation algorithm for Markov chains. If the chain is ergodic with this
algorithm it is possible to simulate the unique stationary measure associated with the
chain. This paper has started some new research fields. One area of research concerns
the Markov fields (see [3,12]); a second one concerns the processes with infinite
memory (see [1,4,5,7]). Recently, these two areas of research have been in some
sense unified by studying Gibbs measures with infinite interaction range (see [2,8]).
Our paper is included in the latter context.

2 Some notations on graphs

In this section we recall some definitions on graphs that will be used in the sequel. In
this paper a graph will be a collection of two sets, V called the set of vertices and E
called the set of edges, and of a map from E to the set of unordered pairs of different
elements of V . The pair associated to an edge e are called the end vertices of e and
the two vertices are said to be adjacent. As it is common in the literature we will
denote a graph by G = (V, E). A path in G joining the vertices u and v is a sequence
e1, . . . , em in E such that ei and ei+1 have a common vertex, u is an end vertex of
e1 and v is an end vertex of em . The integer m is called the length of the path. Two
vertices are said to be in the same connected component if there is a path joining them.
The graph-distance of two vertices u and v is the length of a minimal path joining
them, and it is infinite if the two vertices are in different connected components. We
denote by BG(v, r) the ball of center v and radius r with respect to this distance.

3 The random cluster measure

In this section we define the random cluster measure introduced by Fortuin and Kaste-
leyn as explained in the book of Grimmett [11]. Since our setting will be slightly more
general than the one exposed by Grimmett we give the construction of the measure.
However all the arguments given in his book easily generalize to our setting, so we
refer to [11], Chapter 4, for the details.

3.1 Construction as thermodynamic limit

For our constructions we fix a graph G = (V, E). We further assume that it is countable
of finite degree, meaning that V is countable and that every vertex is an end vertex of
a finite number of edges.

Set� = {0, 1}E and let F be the σ -algebra generated by finite cylinders. If ω ∈ �
we denote by E(ω) the set of the elements e ∈ E such that ωe = 1.

The space � is also equipped , as usual, with the partial order given by: ω ≤ ω̂ if
ω(e) ≤ ω̂(e) for all e ∈ E .

123



E. De Santis, A. Maffei

An event A ∈ F is called increasing (respectively, decreasing) if ω ∈ A implies
that ω̂ ∈ A whenever ω ≤ ω̂ (respectively, whenever ω̂ ≤ ω).

As in [11] Sect. 3.1 for two probability measures μ1 and μ2 on (�,F) we say that
μ1 is stochastically smaller than μ2, writing μ1 ≤st μ2, if μ1(A) ≤ μ2(A) for each
increasing event A ∈ F .

To define a random cluster measure we also fix parameters p = (pe ∈ [0, 1] : e ∈
E), and q ∈ (0,∞). For simplicity in this paper we will assume q ≥ 1 which is the
more significant for the application to statistical mechanics.

There are two ways of defining random cluster measure on G. The first method is as
a limit on finite subgraphs and is called the thermodynamic limit. The second method
is by giving the conditional probabilities on all finite subgraphs and it is called the
Dobrushin-Lanford-Ruelle or DLR method. We now explain briefly the construction
as thermodynamic limit.

Given ξ ∈ � and F ⊂ E a finite set, let �ξF = {ω ∈ � : ωe = ξe for all e �∈ F}.
We define the measure φξF,p,q on � by:

φ
ξ
F,p,q(ω) =

{

1
Zξ,F

[∏

e∈F pωe
e (1 − pe)

1−ωe
]

qk(ω,F) if ω ∈ �ξF ,
0 otherwise,

(1)

where k(ω, F) is the number of connected components of the graph (V, E(ω)) that
intersects F and Zξ,F is just the normalizing constant.

Following [11] Definition 4.15 we say that a probability φ on (�,F) is a limit
random cluster measure if there is a sequence (ξn, Fn) such that φ is the weak limit
of the measures φξn

Fn ,p,q
and we denote by Wp,q the set of these measures.

If we fix ξn to be constantly equal to 1 (resp. to 0) the limit of the measures φξn
Fn ,p,q

exists, and it does not depend on the choice of the sequence Fn (see Theorem 4.19 in
[11]). This limit will be denoted by φ1

p,q (resp. φ0
p,q ). Moreover, for all φ ∈ Wp,q , we

have

φ0
p,q ≤st φ ≤st φ

1
p,q .

Another important property of these measures is the so called finite energy property.
Let

p̂e = pe/(pe + q(1 − pe)), (2)

then for all φ ∈ Wp,q and e ∈ E , we have

p̂e ≤ φ(Le|Te)(ω) ≤ pe, a.s.

where Le = {ω : ωe = 1}, Te is the σ -algebra generated by the finite cylinders with
base contained in E\{e}.
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3.2 DLR construction

In the case of a finite graph G = (V, E) the definition given above furnishes a unique
measure on (�,F) which is characterized by the conditional probability of ωe = 1
given the values ofω in E\{e}. In this model these probabilities depend on the existence
of a path in E(ω)\{e} joining the two end vertices of the edge e. Let Ke be the set of
configurations ω having this property.

In the case of infinite graph this property can be formalized as follows:

φ(Le|Te)(ω) =
{

pe if ω ∈ Ke,

p̂e if ω �∈ Ke.
(3)

A probability φ on (�,F) is a DLR random cluster measure if it satisfies Eq. (3) for
all e ∈ E . We denote by Rp,q the set of these measures.

In the infinite setting the two definitions of random cluster measure are not always
equivalent. However (see [11], Chapter 4, Section 4) it is known that Rp,q is not
empty, in particular φ0

p,q and φ1
p,q are elements of Rp,q and for all φ ∈ Rp,q one has

φ0
p,q ≤st φ ≤st φ

1
p,q .

In particular notice that

card(Wp,q) = card(Rp,q) = 1 if and only if φ0
p,q = φ1

p,q .

4 Construction of the dynamics

In this paper, following the literature, to give a sample of a measure on (�,F) we
introduce families of auxiliary random variables (ue)e∈E that are independent and
uniformly distributed on [0, 1], which in the algorithm we present in Sect. 8 can be
thought as the output of a pseudorandom function on a computer.

We define a stochastic dynamic such that the measures in Rp,q are invariant. In the
study of the random cluster measure a similar dynamics was already considered by
Grimmett in [9].

Let G = (V, E) be a countable graph of finite degree and we choose an order for
its edges so that E = {e1, e2, . . .}.

For a negative number N we define

AN = {(n, k) ∈ Z × Z : −1 ≥ n ≥ N and k ≥ 1}, A =
⋃

N≤−1

AN (4)

and U = [0, 1]A. On U we put the Lebesgue product measure so that the coordinates
un,k are i.i.d. random variables having uniform distribution on [0, 1]. We define also
ÃN = AN ∪ {(n, 0) : n = N , . . . , 0} and Ã = ⋃

N ÃN .
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For a fixed N < 0 and for a fixed X N ,0 : U −→ � let (Xn,k : U −→ �, for
(n, k) ∈ ÃN ) be a process with values in � constructed in the following way: given
(n, k) ∈ ÃN define

(Xn,k+1(u))e =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(Xn,k(u))e if e �= ek+1,

1 if un,k+1 < p̂e, e = ek+1,

1 if p̂e ≤ un,k+1 < pe, e = ek+1, Xn,k(u) ∈ Ke,

0 if p̂e ≤ un,k+1 < pe, e = ek+1, Xn,k(u) /∈ Ke,

0 if pe ≤ un,k+1, e = ek+1.

(5)

Furthermore notice that for all n and all e there exists the limit (Xn,k(u))e for k going
to infinity. We construct Xn+1,0 as this limit. We call such a process an F K N

p,q -process.
All DLR random cluster measures are invariant under this process. Indeed if φ ∈

Rp,q and Xn,k has law φ then Xn,k+1 has the same law. Hence, for h > k Xn,h has
also law φ. Moreover any probability measure on (�,F) is determined when it is
given on finite cylinders. By construction given a finite cylinder A the probability that
Xn+1,0(u) belongs to A is the same of the probability that Xn,h(u) belongs to A for h
large enough, hence it is also equal to φ(A), proving that the law associated to Xn+1,0
is equal to φ. Hence the law associated to Xm,k is equal to φ for m > n.

Finally, for any integer N < 0 and any ω ∈ � we denote with X (ω,N )n,k (u) the

F K N
p,q -process constructed starting with X N ,0(u) = ω.

In the main result of this paper, under suitable assumption on the parameters p, q
and on the graph G, given a finite F ⊂ E and for almost all u ∈ U we will show
how to determine an integer N such that (X (ω,N )0,0 (u))e does not depend on ω ∈ �

for all e ∈ F . Moreover we show how to determine a finite region H̄ ⊃ F such that
(X (ω,N )0,0 (u))e does not depend on the values of un,k for ek /∈ H̄ .

Since the Rp,q -measures are invariant in this way we prove that they are all equal
and we give a perfect simulation of them on any finite subset of E . In particular we
prove Rp,q = Wp,q = {φ0

p,q}.

5 Simplicial graph

In this section we define the notion of simplicial graph and we prove some geometric
properties of these graphs. It is possible that these results are already known, maybe
with different notations, however we could not find any reference.

The prototypical graph we have in mind is the graph L
d whose vertices’ are the

elements of Z
d and whose edges are the segments of length one joining them. More

in general a simplicial graph will be the graph obtained by considering vertices and
segments of a polyhedral tessellation of R

d .
Before giving the details and to introduce the necessary and somehow heavy nota-

tion, we explain roughly the problem we want to consider in the next sections. Let
G = (V, E) be a graph and color each edge of G white or black in a random way
(more precisely we will color the graph black, white or grey but it is not important
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here). Consider a finite subset F of E . We want to determine a region H̄ containing F
such that for all e ∈ F if there is a path of black edges joining the two end vertices of
e then there is a path contained in H̄ of black edges joining the two end vertices of e
(see Theorem 5). Moreover we want H̄ to be small as possible so that if the probability
of an edge to be black is high, then, if F is finite, H̄ is also almost surely finite (see
Theorem 8). We construct first a set H by adding inductively to F white edges until
its “boundary” is entirely composed by black edges and then we set H̄ to be equal to
the union of H with its boundary. The idea is that, in this way, if two points are in the
boundary of H̄ , then they can be connected by a path contained in the boundary and
in particular of black edges (for the precise statement see Proposition 3). In this way
a path of black edges joining two end vertices x , y of an edge in F can be replaced by
a path of black edges joining x and y contained in H̄ , by replacing the pieces outside
H̄ with paths along the boundary. A first try could be to construct H by adding edges
to F until there are white edges that “have a vertex in common” with the set. In this
way H would be the union of F with the connected components of the subgraph of
white edges having non trivial intersection with F . However it is immediate to see
that this H has not the required properties. For a simplicial graph we can construct H
replacing the condition “to have a vertex in common” with a different condition. We
construct H by adding to F white edges until there are white edges in the “boundary”
of this set. The correct notion of “boundary” is defined in Sect. 5.3, now we explain it
in the case of the simplicial graph L

d . We say that an edge e′ is in the “boundary” of
an edge e if they are different and if there exists a d-dimensional hypercube of side 1
with vertices in Z

d containing both e and e′. In this section we prove that this notion
of boundary has the required geometrical properties (see Proposition 3).

5.1 Definitions

Let A be a closed convex subset of R
� which is the intersection of a finite number of

closed half-spaces. Such a set will be called a convex cell and will be the starting point
of our constructions. For such a set we can identify the subset of vertices, edges and
i-dimensional faces and we denote by Ai the set of i-dimensional faces of A.

In some constructions will be useful to have a more general notion of cell. If A
is a convex cell of dimension m and ϕ : A −→ R

d is a piecewise affine continuous
injective map we call the image σ of A a cell of R

d of dimension m. We define also
the collections σi = {ϕ(B) : B ∈ Ai } and the datum of σ0, . . . , σm will be called a
polyhedron.

The assumption piecewise affine onϕ could be highly relaxed, however this assump-
tion makes some of the arguments below more elementary and does not change the
generality of our applications.

A polytope P in R
d is a collection of cells in R

d which intersect properly. More
precisely P is the datum of sets P0, P1, . . . , Pm such that

(i) the elements of Pi are i-dimensional cells of R
d ;

(ii) Pi is locally finite: this means that for all bounded regions R of R
d σ ∩ R = ∅

for all σ ∈ Pi but a finite number;
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(iii) if, for all σ ∈ Pi and all j ≤ i , we denote by Pj (σ ) = {τ ∈ Pj : τ ⊂ σ } then
the datum

P(σ ) : P0(σ ), . . . , Pi (σ )

is a polyhedron and the set Pj (σ ) will be called the set of j-faces of σ ;
(iv) for all σ ∈ Pi and τ ∈ Pj the intersection σ ∩ τ is either empty or a union of

faces of σ and τ .

The elements of Pi will be called the i-cells of P and in particular we will call P0
(resp. P1) the set of vertices (resp. of edges) of P . The union of all the cells of P will
be called the support of P and will be denoted by supp (P).

The graph G(P) = (V, E) associated to P is defined as follows: V = P0, E = P1
and the end vertices of an edge e ∈ E is the pair of vertices contained in e. Notice
that if x and y are two vertices of P then they are in the same connected component
of supp (P) if and only if they are in the same connected component of G(P).

The simplest possible convex cell are the simplexes. The � dimensional standard
simplex is the set S = {(x0, . . . , x�) ∈ R

�+1 : xi ≥ 0 for all i and
∑

i xi = 1}.
A n-dimensional convex simplex (resp. an �-dimensional simplex) is the image of S
under an affine (resp. piecewise affine and continuous) injective map. We notice that
every cell can be obtained as the support of a polytope whose cells are simplexes.

A refinement of a polytope P is a polytope P ′ such that supp (P) = supp (P ′)
and each cell of P ′ is contained in a cell of P .

5.2 Internal and external part of codimension one smooth polytopes

We say that a polytope C in R
d is smooth if its support is smooth as a topological variety.

In this case this means that for every x ∈ supp (C) there exists a natural number j , a
neighborhood W of x in R

d an open ball W ′ of R
d and a piecewise affine continuous

map ψ : W −→ W ′ which defines an homeomorphism between W and W ′, such that
ψ(x) = 0 and ψ(W ∩ supp (C)) = {(t1, . . . , tn) ∈ W ′ : t1 = · · · = t j = 0}. If,
moreover all the connected components of supp (C) have dimension n −1 we say that
it is a smooth polytope of codimension one. Notice that if C is smooth of codimension
one in R

d then for all x in supp (C) there exists a neighborhood W of x in R
d which

is divided by supp (C) into two open connected components. Now we give a more
global construction of these components.

Let C be a codimension one smooth polytope in R
d with a finite number of vertices

and let U be the complement of supp (C). For all x ∈ U we consider the set Sx (C)
of half-lines � starting in x and whose intersection with supp (C) is generic. More
precisely we require that for all cells σ of C if �∩ σ �= ∅ then σ ∈ Pd−1 and �∩ σ is
a finite set and moreover this intersection is contained in the set of points of σ that are
linearly smooth: for all y ∈ �∩σ there exists a neighborhood U of y and an hyperplane
such that σ ∩ U = U ∩ H . Then the parity of the cardinality of �∩ supp (C) does not
depend on � ∈ Sx (C). Moreover this parity is locally constant on x ∈ U .

Hence we define the internal part of C, that we will denote by Int C as the set of
points x ∈ U such that this cardinality is odd and the external part, that we will denote
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by Est C, as the set of points such that this cardinality is even. Notice that Int C and
Est C are two open subsets of R

d with boundary equal to supp (C). In particular for
all path joining an element of Int C with an element of Est C the intersection of γ with
supp (C) is not empty. Finally notice that Int C is bounded.

Notice that for all x ∈ supp (C) if W is a neighborhood of x as in the beginning of
this section, then the two connected components of W\supp (C) are the intersection
of W with Int C and Est C. We say that a path γ cross C in x if γ (t0) = x for some
t0 and there exist sequences {tn} and {sn} going to t0 such that γ (sn) ∈ Est C and
γ (tn) ∈ Int C for all n.

Lemma 1 Let C be a codimension one smooth polytope in R
d with a finite number of

vertices. Then for all x, y ∈ supp (C) such that there exists a path in Int C joining x
and y, and a path in Est C joining x and y, then x and y are in the same connected
component of supp (C). In particular if x, y are vertices then they are in the same
connected component of G(C).

Proof Let α (resp. β) be a path joining x and y in Int C (resp. Est C). Consider the
connected component D of supp (C) containing x and let D be the polytope whose
cells are the cells of C contained in D, so that supp (D) = D. The polytope D
is a connected codimension one smooth polytope with a finite number of vertices.
Notice that, by what noticed above, in a small neighborhood W of D we have that
W\D has two connected components W1 and W2 and we have W1 = W ∩ Int C and
W2 = W ∩ Est C. Similarly W1 and W2 must be the intersection with Int D and Est D,
and both the possibilities

{

W1 = W ∩ Int C
W2 = W ∩ Est C

and

{

W1 = W ∩ Est C
W2 = W ∩ Int C

can occur. Since α and β do never cross C they also never cross D and we have that α
is contained in IntD and β is contained in EstD or the opposite.

Hence the final point y of α and β belongs to Int D ∩ Est D hence it is in D. �

5.3 Polyhedral tessellation and simplicial graph

We say that a polytope P is a polyhedral tessellation of R
d if supp (P) = R

d . In this
case we say that G = G(P) is a simplicial graph.

If A ⊂ P0 we define the boundary �P (A) of A as the set of vertices v ∈ P0\A
for which there exists, w ∈ A and a cell σ of P , such that v,w ∈ σ and we define
G(A) as the graph whose set of vertices is equal to A and whose edges are given by
the elements in P1 joining two elements of A. Notice also that if x ∈ A and y ∈ P0\A
any path in G(P) joining x and y intersects �P (A).

Proposition 2 Let P be a polyhedral tessellation of R
d and let V be its set of vertices.

Let A be a finite subset of V and set B = V \A. Let x, y ∈ A adjacent respectively to
x ′, y′ ∈ B. Assume now that x, y are connected in G(A) and that x ′, y′ are connected
in G(B). Then x ′, y′ are connected in G(�P (A)).
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Proof The proof follows exactly the same lines in the case of a tessellation using
convex cells and in the case of a general tessellation. However in the first case all
construction are more intuitive and direct. For this reason we give first the proof in the
case of a tessellation made of convex cells and then we briefly explain how to change
the proof in the general case.

In the first step of the proof we assume also that all cells are convex simplexes.
We construct a smooth polytope C of codimension one that separate A and B in the
following way.

We define the set of vertices C0 of C as the set of middle points of edges joining
an element of A and an element of B. For all i-dimensional simplexes σ of C which
contain an element of C0 the convex envelope of σ ∩ C0 is a (i − 1)-cell. Let Ci−1
be the collection of these cells and let C be the polytope whose i-dimensional cells
are given by Ci for i = 0, . . . , n − 1. By construction C is a smooth polytope of
codimension one with a finite number of vertices. Notice also that a path in G(A) or
in G(B) will never cross supp (C).

Let now u, v ∈ C0 be the middle points of the edges joining x , x ′ and y and y′
respectively. By Proposition 1, u and v are in the same connected component of G(C).
Hence there exists a sequence of verticesw0 = u, w1, . . . , wm = v in C0 determining
the path connecting u and v in G(C). Furthermore let ti ∈ A and t ′i ∈ B be such that
wi is the middle point of the edge joining ti and t ′i . Then (here we use the cells are
simplexes) t ′0 = x ′, t ′1, . . . , t ′m = y′ determine a path in �P (A) joining x ′ and y′.

Let now P be any tessellation with convex cells. We construct a sequence P(i) of
refinements of P and of finite subsets A(i) of the vertices of P(i).

• P(1) is P and A(1) = A.
• P(2) is the tessellation obtained by adding a vertex vσ in the barycentre of all

2-dimensional faces σ ∈ P2 which are not a simplex and adding the edges joining
vσ with the vertices of σ . Finally we set A(2) = A ∪ {vσ : σ ∩ A �= ∅}.

• more generally given P(i−1), P(i) will be the tessellation obtained adding a vertex
vσ in the barycentre of every i-dimensional cell σ of C(i−1) which is not a simplex
and adding all the j-dimensional cells obtained by joining this vertex with the
j − 1 cells contained in σ . Finally we set A(i) = A(i−1) ∪ {vσ : σ ∩ A(i−1) �= ∅}.

Set P ′ = P(d) and A′ = A(d), and B ′ is the complement of A′ in the set of vertices
of P ′. Notice that all cells of C′ are convex simplexes and that �P (A) = �P ′(A′).
Hence we can apply to this situation what we have already proved.

In the case of a tessellation whose cells are not convex some of the constructions
we have described have to be modified. Indeed it does not make sense to consider the
middle point of an edge or the convex envelope of the middle points in the first part
of the proof or the barycentre in the second part of the proof. As an example we show
which changes are necessary in the construction of the sequence P(i).

Suppose we have already constructed P(i−1) and that all j-dimensional cells of
P(i−1) are simplexes for j ≤ i − 1. Now consider a i-dimensional cell σ of P(i−1)

which is not a simplex. Letϕ : A −→ σ be the piecewise affine map which parametrise
σ where A is a convex cells. Notice that by induction all faces of A are convex
simplexes. Now let v be the barycentre of A and that we can divide A into simplexes
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Aτ joining v with the faces of A. We obtain the new tessellation by considering the
restriction of ϕ to the simplexes Aτ . �

The result we will use in the next section is a variation of Proposition 2 where the
set of vertices A is replaced by a set of edges.

If H ⊂ P1 we define the boundary �P (H) of H as the set of edges e ∈ P1\H for
which there exist f ∈ H and σ ∈ Pd such that e, f ⊂ σ . Let also VH = {v ∈ P0 :
v ∈ e for some e ∈ H} and let G(H) be the subgraph (VH , H) of G(P).
Proposition 3 Let P be a polyhedral tessellation of R

d and H ⊂ P1 be a finite set.
Let x, y ∈ VH be connected in G(H) and in G(P1\H). Then x and y are connected
in G(�P (H)).

Proof Let e1, . . . , em be a path in H which join x and y and let f1, . . . , fn be a path in
P1\H which joins x and y. Let x = u0, . . . , um = y and x = v0, . . . , vn = y be the
sequences of adjacent vertices determined respectively by the path in H and in P1\H .
Dividing the path into smaller pieces we can assume that ui �= v j for 1 ≤ i ≤ m − 1
and 1 ≤ j ≤ n − 1.

We construct a refinement Q of P replacing each vertexw with a small convex cell
so that we will be able to apply Proposition 2 to this situation.

More precisely for each vertexwwe consider a “small” ball Bw with centerw. Here
small means that two balls do not intersect and that the geometry of the polytope inside
Dw is the geometry of a cone with vertex in w. We set also Dw to be the intersection
of the boundary of Bw with the edges in P1 containingw and Aw to be the intersection
of the boundary of Bw with the edges in H containing w. We set

Q0 = P0 ∪
⋃

w∈P0

Dw and A = {ui : i = 0, . . . ,m} ∪
⋃

w∈P0

Aw.

We now describe the higher dimensional cells of Q. Let Fw be convex envelope of
the set Dw and let Mw be its boundary and Nw its open part. If Bw is small enough
for every i-dimensional cell σ of P containing w the intersections σw = σ ∩ Fw
and σ∂w = σ ∩ Mw are respectively an i-dimensional cell and an (i − 1)-dimensional
cell. Finally for all i-dimensional cells σ of P the set σ̃ = σ\⋃

w Nw is also an
i-dimensional cell. The tessellation Q is the collection of the cells σ̃ , σw and σ∂w for
σ a cell of P and w ∈ P0.

Notice that if σ̃ is an edge in G(�Q(A)) then σ is an edge in G(�P (H)).
We now apply Proposition 2. The sequence of edges

(e1)u0 , ẽ1, (e1)u1 , (e2)u1 , ẽ2, . . . , ẽm, (em)um

is a path in G(A) joining x and y. Let x ′ = ( f1)
∂
x and y′ = ( fn)

∂
y then they are two

vertices adjacent respectively to x and y and the sequence of edges

f̃1, ( f1)v1, ( f2)v1, f̃2, . . . , ( fn)vn−1 , f̃n

is a path in G(Q0\A) joining x ′ and y′. Hence there exists a path

τ1, . . . , τr1 , σ̃1, τr1+1, . . . , τr2 , σ̃2, . . . , τrd
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in G(�Q(A)) joining x ′ and y′ where we assume that τi is of the form ηw or η∂w for
all i . Then σ1, . . . , σd−1 is a path in G(�P (H)) joining x and y. �

For the application of our results to the Potts Model with constant boundary con-
dition we need also a dual version of the result above. To state it we need to introduce
some further notations. For a subset H of E we denote by �(H) the set of edges
which are not in H and which have a vertex in common with an edge in H . Given a
tessellation P with associated simplicial graph G(P) = (V, E), we introduce also the
graph G = G(H,P) = (V, E) defined as follows: V = H and two elements e, e′ ∈ V
are joined by an edge in E if and only if there exists a cell in P which contains e and
e′.

Proposition 4 Let H be a finite subset of E. Let e, e′ ∈ �(H) with end vertices
respectively x, y and x ′, y′ with x, x ′ ∈ VH and y, y′ ∈ V \VH . Assume that x, x ′ are
connected in G(H) and y, y′ are connected in G(E\(H ∪ �(H)). Then e, e′ are in
the same connected component of G(�(H),P).

Proof We indicate only the main steps of the proof which is completely analogous to
the proof of Proposition 2. First we analyze the case where the cells are convex sim-
plexes producing, as in the proof of Proposition 2, a smooth polytope of codimension
one separating A = VH and B = V \A, and apply Proposition 1. Then to analyze
the general case, one produce a refinement of P as in the proof of Proposition 2 and
adding to H the new edges joining a new vertex with a vertex in A. �

6 Coupling of the random cluster measure at low or high temperatures

In this section we fix a polyhedral tessellation P in R
d and we denote by G = (V, E)

the underlying simplicial graph. We introduce a new graph G∗ = (V ∗, E∗) where
V ∗ = Z × V and E∗ = Z × E ∪ Z × V where if x, y are the end vertices of
e ∈ E then (n, x), (n, y) are the end vertices of (n, e) ∈ E∗ and if v ∈ V and
n ∈ Z then we denote with en,v the corresponding element in E∗ and its end vertices
are (n, v), (n + 1, v) ∈ V ∗. Notice that G∗ is the simplicial graph of a polyhedral
tessellation P∗ of R

d+1 = R×R
d whose i-dimensional cells are the collection of the

cells of the form {n} × σ where σ is an i-dimensional cell of P and n ∈ Z and of the
cells of the form [n, n + 1] × τ and τ is an (i − 1)-dimensional cell of P and n ∈ Z.
We consider G as the subgraph G × {−1} of G∗.

Fix u ∈ U . We define the following coloring of the edges E∗ of G∗:

W = W (u) = {(n, ek) ∈ Z × E : n ≤ −1 and pek ≤ un,k ≤ 1},
M = M(u) = {(n, ek) ∈ Z × E : n ≤ −1 and p̂ek ≤ un,k < pek },
B = B(u) = E∗\(M(u) ∪ W (u)).

We define also Bn = {e ∈ E : (n, e) ∈ B}. We say that the elements of B are black,
the elements of M are gray and the elements of W are white.

Given a subset F of M(u)we define the cluster of white or gray edges Cw
F = Cw

F (u)
as the minimum subset H of E∗ containing F such that if e ∈ E∗ and e ∈ �P∗(H)
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then e ∈ B(u). More in general if F ⊂ E is not necessarily a subset of M we
define Cw

F = F ∪ Cw
F∩M . Equivalently if F ⊂ M we can construct Cw

F inductively
by adding the white or gray edges “near” to F as follows. Let D0 = F ∩ M and
Di+1 = Di ∪ (�P∗(Di )\B) then Cw

F = F ∪ ⋃

i Di .
Notice that as the numbers pe grow the probability that Cw

F is finite increases. In
the Ising model the pe’s are related to a parameter called temperature and when this
parameter is small the pe are closer to 1. For this reason we refer to the case in which
Cw

F is almost surely finite as the situation at low temperature.
Assume now that Cw

F (u) is finite for a given u ∈ U . In this case we define Nw(u, F)
as the biggest negative integer N such that Cw

F ⊂ E × [N + 1,−1]. We define

Hw
n = Hw

n (u, F) = {

e ∈ E : (n, e) ∈ Cw
F or (n − 1, e) ∈ Cw

F

}

(6)

and we set H̄w
n (u, F) = Hw

n ∪�P (Hw
n ) and finally H̄w(u, F) = ⋃

n{n} × H̄w
n .

Theorem 5 Fix u ∈ U such that Cw
F (u) is finite and an integer N ≤ Nw(u, F). Let

u′ ∈ UN such that u′
n,k = un,k for all (n, ek) ∈ H̄w(u, F). Then for all ω,ω′ ∈ � we

have

(

X (ω,N )0,0 (u)
)

e = (

X (ω
′,N )

0,0 (u′)
)

e

for all e ∈ H̄w−1(u, F).

Proof Let ηn,k = X (ω,N )n,k (u) and η′
n,k = X (ω

′,N )
n,k (u′). Let also C = Cw

F and Cn =
{e ∈ E : (n, e) ∈ C}, Hn = Cn ∪ Cn−1 and H̄n = Hn ∪�P (Hn). We notice first that
�P (Hn) ⊂ Bn ∩ Bn−1. Indeed let e ∈ �P (Hn), then there exists e′ ∈ Hn and a cell
σ in P such that e and e′ are contained in σ . If e /∈ Bn then by the definition of C and
of the cells of P∗ we have that (n, e) ∈ C , hence e ∈ Cn which is in contradiction
with e ∈ �P (Hn). Similarly we get an absurd if e /∈ Bn−1. By the definition of a
F K N

p,q -process this implies that

�P (Hm) ⊂ E(ηm,h) ∩ E(η′
m,h) (7)

for all m > N and h ≥ 0.
We will prove that

(

ηm,h
)

e = (

η′
m,h

)

e (8)

for all (m, h) ∈ ÃN and for all e ∈ H̄m (for the definition of A see Eq. (4)). We prove
this by induction starting with m = N and h = 0. For m ≤ Nw(u, F) and for all h
the equality (8) is trivially satisfied since Cm = ∅.

Now we prove that if Eq. (8) holds for m = N , . . . , n − 1 and for all h and for
m = n and h = 0, 1, . . . , k then it holds also for m = n and h = k + 1. Let e ∈ H̄n .
If e �= ek+1 then, by induction, and definition of F K N

p,q -process we get

(

ηn,k+1
)

e = (

ηn,k
)

e = (

η′
n,k

)

e = (

η′
n,k+1

)

e
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proving the claim. If e = ek+1 and e ∈ H̄n we compute
(

ηn,k+1
)

ek+1
. If un,k+1 ≥ pek+1

then we have
(

ηn,k+1
)

ek+1
= 0 and similarly for η′. If un,k+1 < p̂ek+1 then we have

(

ηn,k+1
)

ek+1
= 1 and similarly for η′. If p̂ek+1 < un,k+1 ≤ pek+1 we need to prove

that
ηn,k ∈ Kek+1 iff η′

n,k ∈ Kek+1 . (9)

Let x and y be the end vertices of ek+1 and assume that there is a path γ : ε1, . . . , εm

in E(ηn,k)\{ek+1} joining x and y.
If the path is contained in H̄n = Cn ∪ Cn−1 ∪ �P (Hn) then we prove that the

same path is contained in E(η′
n,k)\{ek+1}. Let er be an edge of the path. By induction

(ηn,k)er = (η′
n,k)er hence er ∈ E(η′

n,k).

If γ is not contained in H̄n we show there is another path joining x and y contained in
H̄n . By (7) and the fact that p̂ek+1 < un,k+1 ≤ pek+1 we have ek+1 ∈ Hn . Let D be the
connected component of Hn containing ek+1. Let ε1, . . . , εi−1 ∈ D, εi , . . . , ε j /∈ D
and ε j+1 ∈ D. Let x ′ be the vertex common to εi−1 and εi and y′ the vertex common
to ε j and ε j+1. We can apply Proposition 3 and we construct a path β in �P (D) ⊂
�P (Hn) joining x ′ and y′. Since �P (Hn) ⊂ E(ηn,k) ∩ E(η′

n,k) we can replace γ
with the path γ ′ : ε1, . . . , εi−1, β, ε j+1, . . . , εm . Repeating this process we see that
we can substitute the path γ with a path entirely contained in D ∪�P (D) ⊂ H̄n as
claimed. Hence we are reduced to the previous case.

Finally we prove that if (8) holds for a fixed m and all h ≥ 1 then it holds also for
m + 1, 0. Let e ∈ Cm+1. If e ∈ H̄m this follows by definition of the F K N

p,q -process.

If e = er ∈ H̄m+1\Cm then e ∈ Bm otherwise e would be an element of Cm). Then

(ηm+1,0)er = (ηm,r )er = 1 = (η′
m,r )er = (ηm+1,0)er

proving the claim. �

6.1 Coupling at high temperatures

We give now a similar result corresponding, in the Ising model, to high temperatures.
Let G = (V, E) be a countable graph (in this case we do not assume simplicial).

Define Ḡ as the graph with set of vertices V̄ = Z<0×V and edges Ē = Z<0×E where
if e ∈ E has end vertices x, y then the edge (n, e) has end vertices (n, x) and (n, y).
We consider G as the subgraph G × {−1} of Ḡ. For all u ∈ U define M(u),W (u) as
in the previous section.

Recall from Sect. 5.3 that for a subset H of E we denote by �(H) the set of edges
which are not in H and which have a vertex in common with an edge in H .

Fix u ∈ U and a subset F of Ē . If F ⊂ M(u) we define the cluster of black or
gray edges Cb

F = Cb
F (u) as the smallest set C of Ē containing F and such that for

all (n, e) ∈ Ē\C if either (n − 1, e) or (n, e) or (n + 1, e) have a vertex in common
with an edge in C then (n, e) ∈ W (u). If F is not necessarily contained in M(u) we
define Cb

F (u) = Cb
F∩M(u)(u) ∪ F . For all n < 0 we define

Hb
n = Hb

n (u, F) = {

e ∈ E : (n, e) ∈ Cb
F (u) or (n − 1, e) ∈ Cb

F (u)
}
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and we set H̄b
n (u, F) = Hb

n ∪ �(Hb
n ) and H̄b(u, F) = ⋃

n{n} × H̄b
n .

Finally if Cb
F (u) is finite we define N b(u, F) as the biggest negative integer N such

that Cb
F ⊂ E × [N + 1,−1].

Theorem 6 Fix u ∈ U such that Cb
F (u) is finite and an integer N ≤ N b(u, F). If

ω,ω′ ∈ � and u′ ∈ UN is such that u′
n,k = un,k for all (ek, n) ∈ H̄b(u, F) then

(

X (ω,N )0,0 (u)
)

e = (

X (ω
′,N )

0,0 (u′)
)

e

for all e ∈ H̄b−1(u, F).

Proof The proof follows exactly the same strategy of the proof of Theorem 5. However
in this case it is simpler since we do not have to use the result of Sect. 5. We give here
only the main lines. Indeed an argument analogous to proof of equation (7) gives

�(Hb(u, F)) ⊂ W (u). (10)

Then we prove the equality (8) by induction as in the proof of Theorem 5. Also in
this case we are reduced easily to prove the equivalence (9). This equivalence is easier
in this case, since, by (10), we have that E(ηn,h) ⊂ Hb

n for all n > N and similarly
for η′ so we can assume that the path joining the extremal point of ek+1 is contained
in Hb

n without using any further remark, while in the proof of Theorem 5 we need
Proposition 3. The remaining part of the proof is completely similar to the proof of
Theorem 5. �

7 Assumptions for the finiteness of clusters

In this section, given a countable graph G, we present some conditions on it and on
the parameters p such that the cluster Cw

F of Theorem 5 is almost surely finite or such
that the cluster Cb

F of Theorem 6 is almost surely finite.
We start by recalling a general lemma. Let G = (V,E) be a graph and let π =

(πv)v∈V be an element of [0, 1]V. Consider the product measure on the space �G =
{0, 1}V such that P(ωv = 0) = πv . For each ω ∈ �G let G[ω] be the subgraph of
G with set of vertices V[ω] = {v ∈ V : ωv = 0} and with set of edges E[ω] of the
elements of E joining two vertices in V[ω]. Moreover for each ω ∈ �G and for any
v ∈ V set Gv[ω] the connected component of G[ω] containing v (possibly empty if
v �∈ V[ω]) and if n is a natural number let Vv,n[ω] be the set of vertices in Gv[ω]
whose graph-distance from v in the graph Gv[ω] is equal to n.

Lemma 7 Let G and π be as above. For each vertex v ∈ V let Av be the set of
vertices adjacent to v and set gv = ∑

w∈Av πw. If g = sup{gv : v ∈ V} < 1 then
P({ω ∈ �G : Vv,n[ω] �= ∅}) ≤ gn.

Proof Define the random variables Zv,n[ω] = card
(

Vv,n[ω]). The conditional mean
value E(Zv,n+1|Zv,n) verifies E(Zv,n+1|Zv,n) ≤ g Zv,n , in particular the sequence
{Zv,n}n is a supermartingale. Hence the mean value E(Zv,n) is less or equal to gn . By
Markov’s inequality the claim follows. �
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7.1 Assumptions for the finiteness of clusters at low temperatures

Now we give conditions on G and p such that the cluster Cw
F (u), defined in Sect. 6, is

finite for almost all u ∈ U . We fix a polyhedral tessellation P of R
d . Let G = (V, E)

be the associated simplicial graph and let P∗ and G∗ = (V ∗, E∗) be defined as in
Sect. 6.

For the proof of our next theorem we set also G = G(E∗,P∗) = (V,E). Recall
from Sect. 5.3 that V = E∗ and two elements e, e′ ∈ V are joined by an edge in E if
and only if there exist a cell in P∗ which contains e and e′.

If H ⊂ E∗ and u ∈ U we define also the subgraph G(H, u) = (V(H, u),E(H, u))
of G whose set of vertices V(H, u) is equal to H\B(u) and whose edges E(H, u) are
all the edges of E joining two vertices in V(H, u).

For e ∈ E define

ĝe = 2(1 − p̂e)+ 3
∑

e′∈�P ({e})
(1 − p̂e′), (11)

where p̂e is defined in (2).

Theorem 8 Let G = (V, E) be a simplicial graph in R
d . Assume that p̂e > 0 for all

e ∈ E, and that

lim
�↑E

sup
e �∈�

ĝe < 1.

Then for all e ∈ E the cluster Cw
e (u) is finite for almost all u ∈ U .

Proof First we do a preliminary remark: the event I = ∪e∈E {u ∈ U : card
(

Cw
e (u)

) =
∞}, is in the tail σ -algebra. Therefore, by Kolmogorov 0-1 law, this event has proba-
bility zero or one, in particular to prove our claim it is enough to prove that P(I ) < 1.

Define Fn = {e ∈ E : ĝe > 1 − 1
n }. By assumption there exists n0 such that

card(Fn0) < ∞ and set F = Fn0 and g = 1 − 1
n0

. Set also F̃ = F ∪ �P (F) and

define F̂ = Z × F ⊂ Z × E ⊂ E∗. Fix an edge ê ∈ E and, for � ≥ 1 set

�� = [−�,−1] × BG(ê, �) ⊂ Z × E

and set also S� = card(��).

Choose �0 such that 3 card(F̃)
1−g g�0 < 1

2 and, for � ≥ �0 + 1, define the events

W� = {u ∈ U : un,k < p̂ek for any (n, ek) ∈ [−�− S�,−�− S� + �0] × F},
X� = {u ∈ U : card

(

Cw
��
(u)

) = ∞}.

Notice that the probability P0 = P(W�) does not depend on � and it is a positive
constant being p̂e > 0 for any e ∈ E . We also notice that X� ⊂ X�+1 and that their
union is equal to I . Therefore

123



Perfect simulation for the random cluster model

P(I ) = P

(

⋃

�

X�

)

= lim
�→∞ P(X�).

Define the events

Y� = {u ∈ U : there exists a sequence e1, . . . , em ∈ W (u) ∪ M(u)\F̂

such that ei is adjacent to ei+1 in the graph G, e1 ∈ �� and em /∈ ��+S�},
Z̃�,i = {u ∈ U : there exists a sequence e1, . . . , em ∈ W (u) ∪ M(u) such that

e j is adjacent to e j+1 in the graph G,

e1 ∈ {−�− S� + i} × F , em /∈ ��+S� and e j /∈ F̂ for 1 < j < m}.

Finally define Z�,1 = Z̃�,1 and Z�,i = Z̃�,i\Z̃�,i−1 for i > 1. It is clear that

X� ⊂ Y� ∪
(

�
⋃

i=1

Z�,i

)

,

in particular P(X�|W�) ≤ P(Y�|W�)+ ∑�
i=1 P(Z�,i |W�).

Now we notice that the event W� is decreasing meaning that if u ∈ X� and u′ ∈ U is
such that u′

n,h ≤ un,h for all n, h then u′ ∈ W�. With a similar definition the events Y�
and Z�,i are increasing. Hence, by the FKG inequality we obtain P(Y�|W�) ≤ P(Y�)
and P(Z�,i |W�) ≤ P(Z�,i ) (see [10], Chapter 2). Hence, noticing that P(Z�,i |W�) =
0 for i < �0, we get P(X�|W�) ≤ P(Y�)+ ∑

i≥�0
P(Z�,i ).

Now we estimate P(Y�) and P(Z�,i ) using Lemma 7. We start with Y�. Consider
the random graph G(F̂c, u) and set πe = 1 − p̂e. Notice that Y� ⊂ ⋃

e∈��{u ∈ U :
V(F̂c, u)e,S� �= ∅} hence using Lemma 7 we get

P(Y�) ≤ card(��) gS� = S� gS� ,

for � large enough. For Z�.i we proceed in a similar way. Consider again the random
graph G(F̂c, u). Notice that in the sequence e1, . . . , em which appears in the definition
of Z̃�,i the subsequence e2 . . . , em−1 is in F̂c and e2 ∈ F̃�,i := {−�− S�+ i −1,−�−
S� + i,−�− S� + i + 1} × F̃ . Hence Z�,i ⊂ ⋃

e∈F̃�,i
{u ∈ U : V(F̂c, u)e,i �= ∅} and

using Lemma 7 we get

P(Z�,i ) ≤ card(F̃�,i ) gi = 3 card(F̃) gi .

Recall that P0 = P(W�) does not depend on �, hence we have

P(X�) = P(X�|W�)P(W�)+ P(X�|Wc
� )P(Wc

� ) ≤ P(Wc
� )+ P(X�|W�)P(W�)

≤ 1 − P0 + P0

⎛

⎝P(Y�)+
∞
∑

i=�0

P(Z�,i )

⎞

⎠
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≤ 1 − P0 + P0

(

S� gS� + 3 card(F̃)

1 − g
g�0

)

≤ 1 − P0

2
+ P0S� gS� .

Finally notice that lim�→∞ S� gS� = 0. Hence

lim
�→∞ P(X�) ≤ 1 − P0

2
< 1

as claimed. �

7.2 Assumptions for the finiteness of clusters at high temperature

Let G = (V, E) be a countable graph of finite degree. We remark that in this case we
do not need to assume that G is a simplicial graph. For all e ∈ E define

ge = 2 pe + 3
∑

e′∈�({e})
pe′ .

Theorem 9 Let G be a countable graph of finite degree. If pe < 1 for all e ∈ E and

lim
�↑E

sup
e �∈�

ge < 1

then for all e ∈ E the set Cb
e (u) is finite for almost all u ∈ U .

The proof follows exactly the same line of the proof of Theorem 8, however we do
not need any result from Sect. 5.

8 Perfect simulation of the random cluster measure at low or high temperature

As an application of the previous results we now explain how to prove uniqueness
of the random cluster measure and how to obtain a perfect simulation of the random
cluster measure. We consider the case of low temperature, the case of high temperatures
can be obtained in a similar way. In this section, from now on we assume that G is
a simplicial graph, that pe > 0 for all e ∈ E and that lim�↑E supe �∈� ĝe < 1. The
uniqueness proved in the following Corollary is well known at least in the case of L

d .

Corollary 10 Assuming the hypotheses above the random cluster measure on G is
unique.

Proof Let φ, φ′ be two DLR random cluster measures.
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To prove that φ and φ′ are equal we prove that for each finite subset F of E
the projections φF and φ′

F of φ and φ′ on {0, 1}F are equal. We denote also by

X (N ,ω)F ∈ {0, 1}F the projection of X (N ,ω)0,0 .
Let ω be a random variable with law φ and ω′ a random variable with law φ′. By

Theorem 5 we have that

‖X (N ,ω)F − X (N ,ω
′)

F ‖T V ≤ P
(

u ∈ U : Nw(u, F) ≤ N
)

where the left hand side is the total variation distance between the law of X (N ,ω)F

and X (N ,ω
′)

F . Recall now that as noticed in Sect. 4 the DLR random cluster measures
are invariant under a F K N

p,q -process. Hence, since ω has law φ, the random variable

X (N ,ω)F has law φF and X (N ,ω
′)

F has law φ′
F . Hence we get ‖φF − φ′

F‖T V ≤ P
(

u ∈
U : Nw(u, F) ≤ N

)

. Finally by Theorem 8, Cw
F (u) is finite for almost all u ∈ U .

Hence P(u ∈ U : Nw(u, F) ≤ N ) goes to zero as N goes to infinity. Hence φ and φ′
are equal. �

8.1 Description of the algorithm

Under the same assumptions, given a finite subset F of E we briefly describe an
algorithm which furnishes a sampling of the random cluster measure on H̄−1 and in
particular on F .

The algorithm follows exactly the strategy of the proof of Theorem 5. We assume
that the tessellation P of R

d and the graph G = (V, E) is already implemented
in an algorithmic way. This means that there is an algorithmic way to describe the
graph G and given two edges is possible to say if they belongs to the same cell (in
actual examples this implementation is very easy to do, see also Sect. 9). This allow,
given a finite subset E ′ of E to compute the set �P (E ′) which we recall is the set of
edges f /∈ E ′ for which there exists an edge e ∈ E ′ such that e and f belong to the
same cell. Notice that given a finite subset C of Z<0 × E we can determine the set
�̃(C) = {(n, ek) ∈ Z<0 × E : there exists (m, eh) ∈ C with |m − n| ≤ 1 and the
edges eh and ek belonging to the same cell}. The definition of this �̃ is equivalent, for
the purposes of this pseudocode, to the definition of C ∪�P∗(C) of Sect. 6.

Let also be given a generator of independent random numbers un,k . The algo-
rithm takes a finite subset F of E as an input and gives as output subsets C , H̄ of
Z<0 × E , a subset H̄−1 of E and a configuration Y ∈ {0, 1}H̄−1 . It uses also local
variables B, B ′, D, D′, F ′, H, L ,M and generates un,k for (n, ek) ∈ H̄ . We describe
the algorithm with the following pseudocode where we have added some comments
in brackets.

Step 1: generate the random numbers un,k for n = −1 and ek ∈ F and set F ′ =
{−1} × F [color randomly the starting set];

Step 2: set M = {(−1, ek) ∈ F ′ : p̂ek ≤ u−1,ek < pek } and B = {(−1, ek) ∈ F ′ :
pek ≤ u−1,ek } [compute black and gray edges];

Step 3: set D = M ;
Step 4: set L = �̃(D) [enlarge the set D in “all possible directions”];
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Step 5: generate the random numbers un,k for (n, ek) ∈ L\(B ∪ D ∪ F ′);
Step 6: set B ′ = B ∪ {(n, ek) ∈ L\(B ∪ D ∪ F ′) : pek ≤ un,ek } [compute the new

black edges];
Step 7: set D′ = D ∪ (L\B ′) [add the new white and gray edges to the cluster];
Step 8: if D′ �= D assign to D the value given by D′ and to B the value given by

B ′ and goes to step 4 [if there is something new iterate the procedure];
Step 9: if D′ = D then C = D ∪ F ′ and set N = min{n : there exists k and

(n, ek) ∈ C} − 1 [if there is nothing new start to compute the output];
Step 10: use the formula (6) to compute the sets Hw

n and define H̄ = ⋃−1
n=N {n}× H̄n

where H̄n = Hw
n ∪�P (Hw

n ) as in Sect. 6 [compute the set H̄ and H̄−1];
Step 11: generate the random numbers un,k for (n, ek) ∈ H̄\C [generate the missing

random numbers];
Step 12: if e ∈ H̄−1 use the process described in Sect. 4 to compute the value Ye =

X (ω,N )0,0 where ωe = 0 for all e ∈ H̄N [as explained in the proof of Theorem
5, by Proposition 3, for this computation it is enough to know the value of u
only inside the region H̄ ].

Notice that under the assumption of Theorem 8 this algorithm will end in a finite
number of steps almost surely. Notice also that the output C is the set Cw

F (u, F), H̄
is the set H̄w(u, F). Finally, as explained in proof of uniqueness above, Y has law
φF where φF is the projection onto {0, 1}F of the unique random cluster measure on
{0, 1}E .

Moreover if further assume that supe∈E ĝe < 1 it can be easily proved that the
average complexity of this algorithm goes linearly with the cardinality of F .

9 Examples

We illustrate the objects introduced in the paper in one example. To fix the ideas we
consider the random cluster measure with q = 2. The associated graph is equal to
L

2 = (Z2,E2) and can also be described as the graph obtained from the tessellation P
of R

2 by squares with vertices in Z
2. For simplicity we assume also that the parameters

pe are all equal to a number p = 1 − e−β , where β ∈ (0,∞) is the parameter called
the inverse of the temperature and the interactions are fixed equal to 1.

In this case p̂e = p
2−p =, ĝe = 40 1−p

2−p and ge = 8p, are independent of the edge e.
The results of Sect. 7 can be stated in the following way. If p > 38/39 or equivalently
the temperature 1/β < 1/ ln 39 � 0.27, then the cluster Cw

F is almost surely finite
for any finite F ⊂ E2. Similarly, if p < 1/8 or equivalently the temperature 1/β >
1/(ln 8−ln 7) � 7.49, then the cluster Cb

F is almost surely finite for any finite F ⊂ E2.
We now explain more concretely the construction of the geometric objects. If A ⊂

E2 then�P (A) is the set of edges not in A which are a side of a square containing an
element of A (see Fig. 1), while �(A) is the set of edges not in A which have a vertex
in common with an edge in A (see Fig. 1).

The tessellation P∗ is the tessellation of R
3 by cubes with vertices in Z

3 and the
associated graph is L

3 = (Z3,E3). The tessellation P∗ is introduced so that we can
apply the results of Sect. 5. To understand the application to the original problem what
it is really important are the horizontal sections of L

3 corresponding to negative levels
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Fig. 1 On the left the
description of �P (A) and on
the right the description of
�(A). In both cases in bold
black the set A and in bold gray
the sets �P (A) and �(A)

3−=n2−=n1−=n

ef

Fig. 2 Coloring of a region around e at levels −1,−2,−3. B is the set of edges colored black and bold,
M is the set of edges colored gray and bold and W is the set of remaining edges

Fig. 3 Description of CwF (bold
dashed gray edges), Hw

F
(dashed or not dashed bold gray
edges) and �Hw

F (bold black
edges) at levels n = −1,−2

2−=n1−=n

of the height. These graphs are all isomorphic to the original graph and their edges
are parameterized by Z<0 × E2. For two different edges (m, e) and (n, f ) of this type
we have that (m, e) ∈ �P∗((n, f )) if and only if they are sides of the same cube. In
particular we consider the original graph placed in level −1.

We explain now the construction of the cluster of white or gray edges Cw
F . Assume

F is just one single edge e initially colored with gray. In Fig. 2 we describe a coloring
of a region around F at levels n = −1,−2,−3. For our purposes this is equivalent to
give u on this set.

Recall that Cw
F is constructed by adding iteratively all the white or gray edges which

belongs to its boundary. For example at the first step of the iteration we add the 2 edges
colored white on the square on the left of e at level n = −1, and the 3 white edges at
level n = −2 in the central row. The sets Cw

F and H̄w
F resulting from this iteration are

given in Fig. 3. In particular notice that N = −3 in this case.
Our definition does not depend on the ordering of the edges. For this reason we

have to consider edges in the boundary looking also at levels in higher position. For
example the element f in Fig. 2 is an element of Cw

F .
However to apply the dynamics described in Sect. 4 we have to fix an ordering of

the edges. In this example this order is described in Fig. 4 where we have specified
this order only for the edges which are relevant in our computations (in particular
e = e17).

We can now apply the dynamics and compute the process (X (ω,−3)
n,k )e for n =

−1,−2 and (n, ek) ∈ H̄w
F } and for an arbitrary initial configuration ω using formula

(5). In the final output we will have (X (ω,−3)
0,0 )e = 0 (notice the if we exchange the
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Fig. 4 Ordering of the edges

1

18

19

2

3

4

567

8

9

10

11

12

13

14

15

16

17

numbering of the edges now numbered 1 and 17 in the final output we would have
(X (ω,−3)

0,0 )e = 1).
The example we have considered above is related with the two dimensional Ising

model. We conclude our paper recalling how to apply the results on the random cluster
measure to the Ising and Potts model with free boundary conditions. Following the
original paper by Fortuin and Kasteleyn [6], the book of Grimmett [11], Chapter 1
it is clear the connection between the random cluster measure and the Ising or Potts
model. Starting from the random cluster measure to construct the Ising or Potts model
just need to know if two given vertices v,w ∈ V are in the same component or not,
then one color randomly any component independently from each other.

Under the hypotheses of Theorems 5 and 8, using our algorithm to simulate the
random cluster measure on a finite F ⊂ E one obtain a perfect simulated configuration
Y on a larger finite set H̄ ⊃ F . Moreover the knowledge of the configuration Y on
H̄ is sufficient to establish if two vertices v,w belonging to some edges of F are in
the same component or not (as a consequence of results in Sect. 5). Therefore one can
color randomly and independently each component obtaining a perfect simulation for
the Ising or Potts model. It is easy to translate this description in an actual pseudocode
producing a configuration of the Ising or Potts model with free boundary conditions
on a finite set V ′ ⊂ V . More care is required in dealing with the Ising or Potts model in
the case of constant boundary conditions. Indeed, using the same idea, it is not possible
to give a perfect simulation but, with a new hypothesis on the graph, for a prescribed
error ε one can construct a simulation of a random field that has total variation distance
from the Ising (resp. Potts) model lesser or equal than ε.
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