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CHARGING STRATEGIES FOR ELECTROSTATIC CONTROL

OF SPACECRAFT FORMATIONS

Leonard Felicetti* and Giovanni B. Palmerini†

Formation control by means of electrostatic forces, generating attractive or re-
pulsive actions by charging the satellites’ surfaces, has been recently proposed
for high altitude orbits to precisely maintain the configuration without risk of
plume impingement. This paper focus on electrostatic control and switching
strategies for charge distribution in spacecraft formations, taking into account
the limits on the power requirements. Two nonlinear global control approaches
are presented and applied to two and three satellites’ formations. Then, an opti-
mized charge distribution process among the satellites is discussed and applied
to the three spacecraft formation case. Numerical simulations are performed in
order to evaluate the advantages and drawbacks of this configuration control
technique.

INTRODUCTION 

The use of electrostatic forces (Coulomb forces) has been recently proposed for formation ac-
quisition, maintenance and reconfiguration1. This new concept of formation control is based on 
the idea of generating attractive or repulsive actions among spacecraft by charging the satellites’ 
surfaces, in order to control their mutual distances.  

Some theoretical and numerical studies were carried on by important space agencies (NASA2

and ESA3,4) through their advanced concept teams, in order to analyze the system performances 
and needs. The results of such studies were encouraging because they showed the possibility of 
achieving high specific impulses with limited power requirements. A surprising result of the Cou-
lomb interaction study was that the magnitude of the inter-spacecraft forces is comparable with - 
and may actually exceed - the one provided by micro-propulsion systems proposed for formation 
keeping. New missions involving two or more spacecraft flying in very strict formation are al-
lowed, with very limited propellant consumption and low amount of required power.  Applica-
tions which can benefit from this control technique can be optical interferometry missions like 
large field-of-view planetary detectors or distributed  remote sensing system observing the Earth 
in the visible band from higher orbits (MEO and GEO) 5.

With respect to the classical formation control the most suitable advantages are5: (a) no risk of 
thruster plume impingement or contamination of neighboring spacecraft, which is especially im-
portant for optical payload, (b) high equivalent specific impulse, despite limited electrical power 
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requirements and (c) very high precision in control. Classic chemical propulsion systems cannot 
provide so fine and continuous thrust. On the other hand, electric thrusters allow for strict for-
mation position tolerances, but the generated ion fluxes pollute the environment in a way which is 
especially dangerous in case of optical payloads. Instead, the Coulomb force based control con-
cept allows for continuous, fine-resolution maneuverability, which will greatly improve formation 
acquisition and maintenance maneuvers, because of the rapidity at which the Coulomb forces can 
be continuously varied5.

A limit of the technique is represented by the effectiveness of the electrostatic action that is re-
lated to the Debye length parameter, quantifying the shielding effect generated by space plasma. 
As a result, electrostatic control seems better suitable for high altitude orbits. 

 All formations present an unstable behavior if controlled by means of electrostatic forces ap-
plied in an open-loop strategy. Therefore, a feedback law is needed to gain a suitable behavior. 
The extensive research effort by Schaub et al. produced significant advances on modelling and 
control formations of two6,7,8, three9,10,11 and more12 spacecraft. These studies clearly demonstrat-
ed the possibility to acquire and to precisely maintain desired distances between spacecraft. 

 In the case of two spacecraft formation the strategy provides the value of the product of the 
charges to be commanded to the two spacecraft, and its square root is clearly the homogeneous 
and preferred solution for each individual charge. When the number of spacecraft belonging to 
the formation increases, the problem becomes more and more complicated. There is indeed a 
larger number of parameters, but also a richer set of constraints imposed by the desired geometric 
configuration of the formation – not necessarily easy to apply at the same time on the existing 
orbital dynamics. Feasible solutions different from the square root of the charge products are like-
ly to appear, and the continuity in the required forces should not be given as granted. An addi-
tional, operational constraint to limit the variations in time of the currents to be induced on the 
platforms should be included to handle sudden variations in required forces. Overall, the switch-
ing law for the charging of different spacecraft becomes a far from trivial problem. This paper is 
then focused on the strategies to distribute the charges in formations involving three platforms, 
with the goal to attain the desired configuration in a fast and efficient way, and a constraint on the 
currents to be generated on the spacecraft surfaces, that have to be kept as low as possible. A pre-
liminary selection of the equations to design the controller was performed in 11,12. In this work a 
nonlinear global control strategy is computed before, giving as output three desired product 
charges which cannot always be satisfied together. The selection of what charge product must be 
followed is accomplished following the control computation. 

Following material begins with the description of the governing equations of spacecraft charg-
ing (section 1) and of the formation dynamics forced by electrostatic actions (section 2). The 
overall control scheme adopted in this paper is presented in section 3, where also two different 
global control strategies (Lyapunov based and SDRE controls) are described. Then a selection 
criteria and the switching strategy for the case of three spacecraft formation are presented in sec-
tion 4, while in section 5 optimal charge distribution laws are derived satisfying a part of the 
charge products obtained from the global controller The numerical results for both two- and 
three-spacecraft formations reported in the last section before the conclusions, even if prelimi-
nary, proof the interest of the proposed technique, suggesting an in depth analysis taking into ac-
count technological constraints. 

SPACECRAFT CHARGING MODEL 

The charging technology is currently used for controlling the spacecraft potential with respect to 
the surrounding plasma environment. Specific devices (as the plasma contactor used on the Inter-
national Space Station13 or ion and electron emitters used in electric propulsion14) are commonly 
used for neutralizing the electrostatic charge of the spacecraft with respect the neighbor environ-
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ment, in order to avoid breakdowns which can damage on board electronic hardware. It is worth 
to notice that the space plasma, interacting with the spacecraft surfaces, naturally charges the 
spacecraft negatively3. The phenomenon depends upon the local plasma density of electrons/ions, 
the local temperature of electrons/ions and the reached spacecraft charge. The resulting spacecraft 
charge dynamics is the resultant of an equilibrium between fast electrons and slower ions fluxes 
from/to the spacecraft and the neighbor space plasma: if the spacecraft is charged with positive 
charges, it will attract electrons coming from the neighbor plasma, vice-versa a flux of positive 
ions from the plasma will occur if the spacecraft charge is negative 3. The possibility to actively 
control the charge of the spacecraft with respect to the neighbor plasma potential was experimen-
tally demonstrated by SCATHA15 and ATS16 missions. Hollow cathodes (emitting flows of elec-
trons through electron guns) and ion thrusters (emitting positive charges to the space) are com-
monly used for this purpose13,14.

These flows can be considered as positive (for electrons) or as negative (for ions) currents ( ii
and ei  respectively) which modify the spacecraft charge status scq  through the relation3

sc
t

dq i
dt

� (1) 

where it ei i i� �  is the resulting electric current. In the following the currents will be considered 
as positive when the electrons go from the spacecraft to the external environment, and the natural 
charging due to the surrounding plasma will be neglected by assuming that currents produced by 
the actuators are higher than natural election/ion fluxes (the contribution of charging devices will 
be actually limited by the on board power and by the dimensions of the hollow cathodes/anodes). 
Under these hypotheses we can assume that the charging and discharging phases are ruled by the 
following relation: 
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where rqi  is the requested current (which will be calculated by a dedicated controller) and the si �

and si � are saturation currents of the electron and ion emitters respectively. 
 The resulting spacecraft potential scV  with respect to the surrounding environment can be evalu-
ated as: 

sc
sc

sc

qV
C

� (3) 

where scC  is the resulting electric capacitance of the external spacecraft surfaces.  
In order to avoid breakdowns between the spacecraft and the outer plasma, a condition concern-
ing the differences between the two potentials must be satisfied during all the electrostatic ma-
neuvers. In particular, the resulting condition can be roughly written as sc pl brV V V� � � , where 

plV  is the potential of the plasma and brV�  is the maximum admissible potential ensuring that no 
breakdown current occurs between spacecraft and plasma. In order to take into account this prob-
lem, a saturation limit on spacecraft charge is included by assuming the following relation: 

s sc sq q q� �� � (4) 
where sq �  and sq �  are the lower and upper limits of the spacecraft charges calculated by taking 
into account Eq.(3) and the breakdowns potential limits. 
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The required power and the total energy needed will be taken into account as indexes of the per-
formance of the maneuvers. In particular the required power to charge the spacecraft can be com-
puted by the following relation1:

sc sc scP i V� (5) 
and a estimation of the required energy can be obtained by the integration of Eq.(5), leading to: 

0 0

f ft t

sc sc sc sc
t t

E P dt i V dt� �  (6) 

DYNAMICS OF CHARGED SATELLITE FORMATIONS 

Let us consider a formation of N  satellites in a circular orbit and let us associate a Local Ver-
tical Local Horizontal (LVLH) reference frame whose origin is coincident with the center of mass 
of the formation F , as depicted in Figure 1. 

Figure 1. LVLH reference frame and id  vector definition  

The position of each spacecraft, with respect to the LVLH reference frame, is given by idd , whose 
components are aligned along the R̂r , ˆ

R�  and ˆ
Rh  axes representing the radial, the in track and the 

orbit normal unit vectors respectively. 
The dynamics of each satellite can be represented by the Clohessy-Wiltshire equations of mo-
tion17:
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where 3
0 / Rn r���  is the reference orbit mean motion, Rr  is the reference orbit radius and iff

is the specific control force applied to the i-th spacecraft. 
For electrostatic actuated spacecraft, the modeling of the control force is given by the follow-

ing relation4:
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where im  is the spacecraft mass, iq  and jq  are respectively the charges of the i-th and the j-th
spacecraft and d�  is the Debye length, taking into account the shielding effects due to the space 
plasma. The vector ijdd (see Figure 2): 

ˆ
ij ij ij i jd d d d d� � �ˆd d d d dd d d (9) 
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defines the distance between the spacecraft, with ˆ
ijd  the relevant unit vector joining  the i-th and

j-th satellites. 

Figure 2. Distances among the spacecraft 

Note that the specific forces defined by Eq.(8) are internal ones and cannot produce variations in 
the center of mass of the formation: only changes of relative position among spacecraft are possi-
ble by using electrostatic forces.  
Equation (7) can be rearranged by taking into account Eq.(9) and considering all the possible 
spacecraft pairs in the formation. The resulting equations are representative of the dynamics of 
the � �1 / 2N N �  virtual links, connecting all the spacecraft of the formation, and can be written 
as:
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(10) 

The forces ruling the dynamics of each virtual link18,19 can be divided between the “internal” to
the link (electrostatic action between the i-th and j-th spacecraft) and the external ones, which 
involve a spacecraft of the selected pair and another spacecraft in the formation. Figure 3 shows 
the virtual link between the 1st and the 2nd spacecraft: the internal action (in green) acts only 
along the joining direction between the two spacecraft, producing a variation of the length of the 
virtual link. On the other hand the “external” forces (in red) can also produce a rotation or a trans-
lation of the virtual link by their components normal to the virtual link direction.  

Figure 3. Electrostatic forces acting to the virtual link joining Sat 1 and Sat 2 
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In fact we can be project Eq.(10)  along the ˆ
ijd  direction, the only one which the electrostatic 

force can act on, to obtain the following scalar equation of motion representing the axial dynam-
ics of a virtual link connecting the i-th spacecraft with the j-th spacecraft: 
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where ij i jQ q q� is the product between two satellite charges.  

The � �1 / 2N N �  equations of motion, resulting by iteration of Eq.(11), can be represented in the 
state space form as follows20:

X (X)X (X)U� �A BX (X)X(X)X(X)X (12) 
with the state vector is defined as: 
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The plant matrix and the control distribution matrix can be detailed as: 
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where the term of the sub-matrix (X)A(X)A   and of the sub-matrix (X)B(X)B  are directly obtained by tak-
ing into account Eq.(11), and E is the identity matrix.  Finally, the control vector includes all the 
charge products: 

12 1,

T

ij N NU Q Q Q �� �� ! "
T

�Q Q "ij N N1, ��1 N1Q Q (15) 

FORMATION CONTROL STRATEGIES BY MEANS OF ELECTROSTATIC FORCES 

One of the most peculiar aspects of the system of equation of motion in Eq.(11) is that the 
control actions depend on the product of the charges between two interacting spacecraft and not 
on their individual values.  It is also clear that it would be impossible to act on a single spacecraft 
without affecting the others: a global guidance and control strategy is therefore the preferred op-
tion with respect to platform’s individual guidance.  

The analysis performed in the following is based on the architecture illustrated in Figure 4.The  
system’s dynamics is represented by the Clohessy-Wiltshire equations of motion with the electro-
static forces (Eqs. (7)-(8)) and by an additional equation for each spacecraft of the formation de-
scribing the charge dynamics (Eq.(1)), with the relevant saturation limits on the currents (Eq.(2)) 
and the maximum and minimum allowable charges (Eq.(4)). The controller takes into account 
only the range and range rates among the spacecraft and, by means of the reduced set of equations 
of motion expressed by Eq.(12), computes the charge products needed to appropriately maneuver 
the spacecraft. The  charge distribution function takes into account these products and selects 
which one among them must be implemented first, avoiding impossible control realizations. The 
selection process is continuously reconsidered in order to track the evolution of the formation and 
to give the priority to larger errors with respect to the desired configuration.  The charge distribu-
tion provides as output the desired charges to each spacecraft. 

A low level controller, acting on each spacecraft, takes the desired charge value and the actual 
charge status of the satellite and computes the required current. The charging actuators will track 
the current commanded by the charge controllers and produce the ion or electron fluxes the 
charges and the electrostatic forces to accomplish the maneuver. 
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Figure 4. Architecture of the control strategy 

Due to the highly non-linear dynamics which characterize the system, two non-linear for-
mation control strategies will be investigated in the following. Specifically a Lyapunov based 
control scheme and the SDRE technique are considered. The two global control strategies will be 
described first, them a switching strategy will be presented for the three spacecraft formation 
case. 

Lyapunov based control strategy 

This control strategy, which can be applied to the system of equation of motion represented by 
the Eq.(11), is based on the definition of the following Lyapunov function9,10,11,21:
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which is positive semi-definite and vanishes when the desired configuration is attained. Deriving 
Eq.(12) with respect to time offers 
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to be negative semi-definite in order to ensure the asymptotic stability of the system. It is possible 
to substitute Eq.(11) leading to the following expression: 
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The stability is granted by means of the position: 
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which provides the following condition for each (i-th, j-th) couple of spacecraft: 
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The set of Eq.(20) iterated for all the � �1 / 2N N � pairs in the formation can be usefully recollect-
ed the following matrix expression: 

� � � �X X X X (X)X (X)U 0des des
P d D d ddd � � � � � �K K Α B)X)XX)X (X)U 0(X)U�X X �desX X � (X�dX XX �X XX � (X(X((X(X (21) 

where PK  and DK is the gain matrix containing the p
ijk and d

ijk  in their diagonals.

 Starting from the Eq.(21), the resulting control action reads as, if the matrix (X)B(X)B can be invert-
ed: 
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It is worth to notice that Eq.(22) contains feedback terms. The stability of such control scheme 
will be proved by numerical simulations in next sections. In that section, it will be also shown 
that this control strategy cannot cancel the steady state errors, while ensuring the stability of the 
system. In order to correct this problem, an integrative term is added to Eq.(22), leading to the 
following control strategy: 
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where the matrix IK  is diagonal and contains the gains related to the integral terms. 

State dependent Riccati equation based control strategies 

A different, suitable methodology of control is based on the minimization of the following 
cost function: 

� � � �
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X X (X) X X U (X)Udes des

t

T TJ dt
(
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where (X)Q  is the matrix weighting the reachability of the desired state of the system and 
(X)R is the matrix weighting the control effort.

The solution of the optimization problem is granted if the system is linear, which is not the cur-
rent case as all the matrices are state dependent. Recent advances in control research led to the 
development of the so called “state dependent Riccati equation” approach22,23,24, identifying a 
sub-optimal solution of the problem provided that the system of equations of motion could be 
written in a “state dependent coefficient form” (SDC form). Eq.(12) clearly satisfies this re-
quirement, therefore leading to the following control law: 

� �1U (X) (X) X XT des�� � �R B P (25) 
where the (X)P  matrix is the solution of the “time variable state dependent Riccati equation”:

(X) (X) (X) (X) (X) (X) (X) (X) (X)�� � � �T 1 TP P A A P P B R B P Q(X) (XP(X) (X(X (26) 
to be solved iteratively by using the Taylor series method23. the solution (X)P of Eq.(22) is found
as sum of n matrices � �0 1(X), (X), ... (X)nP P P , which can be calculated by the  following  proce-
dure25:
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- to solve the algebraic Riccati equation by using the state depending matrices of the sys-
tem dynamics: 

0 0 0 0(X) (X) (X) (X) (X) (X) (X) (X) 0�� � � �T 1 TP A A P P B R B P Q (27) 
- to refine the solution by solving the associated algebraic Lyapunov equation for the first 

order solution: 
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- to solve the n-th order associated algebraic Lyapunov equation until the convergence of 
the solution: 
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The resulting SDRE control can be finally found as follows: 
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SWITCHING STRATEGIES FOR THREE SPACECRAFT FORMATIONS 

The global strategy returns as output the products ijQ  among the spacecraft charges required to 
perform the maneuvers and does not solve completely the guidance problem. A charge distribu-
tion law is necessary  to uniquely identify a charge value iq , which satisfies the product charges 

ijQ  obtained by the higher level controller, solves for the possible ambiguities on distributing the 
charges, and avoids not implementable or destabilizing cases, with the last issues arising when the 
number of the spacecraft involved is higher than two. Let us make an example by using three 
spacecraft labeled as i, j, k, and forming an equilateral triangle as depicted in Figure 5. 

Figure 5. Three spacecraft formation dimension reduction  

A simultaneous reduction of the sides of the triangle is not physically implementable. Indeed, if 
we suppose the sign of the charge of the spacecraft i as positive, the second satellite (j) will have 
a negative charge, and requires the positive sign of the third spacecraft (k) to reduce the two sides 
ending in j. However, the first and the third satellite charges ends up to have the very same sign, 
producing an increase of the distance between them. The considered controllers do not take into 
account this impossibility and provides as output a vector including three negative products. The 
problem can be solved by selecting only two of the three charge products as driving parameters 
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and by violating the remaining constraint9. Accordingly, the selected links will reduce their length 
but the remaining one will probably increase it. In order to assure a global convergence to the 
desired shape, the selection of the governing charge products must change periodically. Denoting 
as swt�  the switching period, an evaluation of cost functions at times � �0 1,2...sw swt m mt t� �� �
will be required to iterate the selection of the active constraints. Specifically, the differences be-
tween actual and desired distances among the spacecraft can be adopted as selection criteria. The 
cost functions will conveniently read as: 

� �21
2ij ij

des
ijE d d� � � �21

2jk jk
des
jkE d d� � � �21

2
des

ki ki kiE d d� � (31) 

and the link to exclude will be the one offering the minimum value of the functions in Eq.(31). 
The remaining two links will drive the charge distribution algorithm with their associated charge 
products which will be enforced (hard constraints) during the charge distribution process.  

OPTIMAL CHARGE DISTRIBUTION TO THE SPACECRAFT  

Both the previous control approaches provide as output the charge products, but they do not 
give any information about the distribution of these charges to the spacecraft. Different distribu-
tion strategies have been studied in the past, satisfying different requirements. One of the most 
common requirements is the minimization of the spacecraft charge, in order to avoid breakdowns 
with the outer space plasma. This problem can be seen as a constrained optimization one26, which 
can be analytically solved only in some simpler cases. In the following the cases of two and three 
spacecraft formation will be analyzed in detail. The two spacecraft distribution problem is dis-
cussed and solved first. However, the distribution problem becomes more complicates if the for-
mation has three or more spacecraft: a general solution is not available, and a reduced optimality 
problem, respecting only two (out of three) charge product constraints will be therefore presented. 

Two spacecraft optimal charge distribution 

Given the charge product ijQ  between two spacecraft, the condition of minimum charge dis-
tribution can be obtained analytically by minimizing the following cost index: 

2 21 1
2 2i jV q q� � (32) 

subject to the product charge constraint obtained from the controller: 
0ij i jQ q q� � (33) 

By introducing the Lagrange multiplier ij� , it is possible to write the following Hamiltonian func-
tion: 

2 21 1
2 2 ij iji j jiH q q Q q q� � �� � � �! " (34) 

The necessary condition for assuring the optimal choice of the charges can be written as follows: 

0 0 0j j i j
j

i ij ij ij i
i ij

H H Hq q q q Q q q
q q

� �
�

) ) )
� � � � � � � � �

) ) ) (35) 

This system of equations can be solved analytically by evaluating ij� from the first equation 
and substituting it, together with the third equation, into the second one, as: 

� �� �2 2 0iji
ij j ij ii j

j i
i

Qq q q Q q Q
q q

� � � � � � (36) 
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Concerning the solution of Eq.(36), the driving parameter is the product ijQ  which can assume 
either positive or negative values. In both the cases the rightmost relation in Eq. (36) has two real 
and two imaginary roots. Real values are clearly the only suitable ones for the spacecraft charges, 
leading to two possible sets: 

) ( ) ( )

) ( ) ( )

ij
i ij ij ij ij ij

ij

ij
i ij ij ij ij ij

ij

j

j

Q
a q Q q sign Q Q sign Q

Q

Q
b q Q q sign Q Q sign Q

Q

�

�

� � � �

� � � � � � �
(37) 

where ijQ  represents the absolute value of ijQ  and ( )ijsign Q  assumes as output 1� if 0ijQ �

and 1�  if 0ijQ � . The indetermination between the two sets is due to the selection of which sat-

ellite must be charged positively or negatively when an attractive force is required � �0ijQ � , or 
whether both satellites must have positive or negative charges when a repulsive force is needed 
� �0ijQ � . The charge distribution function must select once for all one of the options once and 
then maintain this choice, to avoid the jumps that produce chattering and to limit the power re-
quired to perform the maneuver.  

Three spacecraft optimal charge distribution  

Let us consider a formation of three spacecraft, which will be labeled as i, j, k. As in the two 
spacecraft case, we look for the minimum charge distribution respecting two of the three con-
straints imposed by the controller.  
The following cost function must be minimized:  

2 2 21 1 1
2 2 2i j kV q q q� � � (38) 

together with two constraints on the charges. Without loss of generality we select the following 
two constraints:     

0ij i jQ q q� � ; 0jjk kQ q q� � ;       (39) 
Such a choice imposes constraints on the virtual links joining the i-th with the j-th spacecraft and 
the j-th with the k-th spacecraft: it is the appropriate choice if the cost function kiE  is the mini-
mum among the ones in Eq.(31), i.e. if the i-th and k-th spacecraft are the closest ones. 
By introducing the Lagrange multipliers ij�  and jk� , it is possible to add the constraints to 
Eq.(38), obtaining the following Hamiltonian function: 

2 2 21 1 1
2 2 2 ij iji j k j k k kj ji jH q q q Q q q Q q q� �� � � �� � � � � � �! " ! " (40) 

The necessary conditions for the optimality lead to the following system of equations: 

0

0

0

i ij
i

ij jk

jk

j

j i k
j

k j
k

H q q
q
H q q q
q
H q q
q

�

� �

�

)
� � �

)
)

� � � �
)

)
� � �

)

0

0

jij i
ij

j kk
jk

j

H Q q q

H Q q q

�

�

)
� � �

)

)
� � �

)

(41) 
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After some algebra, the solution of the system of equation in Eq.(41) leads to the following rela-
tions: 

i
ij

j

q
q

� � k
jk

j

q
q

� � j
i

j

iQ
q

q
� k

k
j

jQ
q

q
�           

2 2 2
j i kq q q� �

(42) 

that provide the following two real solutions, suitable for implementation: 
2 2

2 2 2 2

2 2

2 2 2 2

)

)

j ij jk i k

ij jk ij jk

j ij jk i k

ij jk i

ij jk

ij j

j j

k

k

Q Q
a q Q Q q q

Q Q Q Q

Q Q
b q Q Q q q

Q Q Q Q

� � � �
� �

� � � � � � �
� �

(43) 

As in the previous case, there is an indetermination about the sign of the charge to be associated 
on the j-th spacecraft. The other two cases, which take into account the other two combinations of 
the constraints, can be obtained by following the same procedure.   

NUMERICAL RESULTS 

Several numerical simulations have been performed in order to evaluate the effectiveness of the 
proposed control and charging strategies. The case of a formation of satellites in a GEO orbit 
( 42000Rr km� ) is the selected scenario, because the Debye length in this orbit (which is 
generally included in the range 100 1000dm m�� � , set to 100d m� �  in the tests) allows the 
success of formation acquisition and maintenance maneuvers with relatively low efforts in term 
of charge magnitudes.  

The considered formation is composed by satellites having equal mass � �500im kg� . The 
charge distribution is assumed to be uniform, under the hypothesis that the spacecraft can be con-
sidered  spherically-shaped with a radius 1iR m� . The charging capability of each satellite is lim-
ited by the maximum allowable currents ( 1si A���  and 1si A��� � ) and by the charge saturation 
limits ( 50sq C���  and 50s Cq �� � � ), corresponding to a spacecraft capacitance approximately 
equal to 0.1iC pF� . Only electrostatic actions among the spacecraft are taken into account, and 
therefore not all the degrees of freedom of the system are controlled, leaving to further analysis 
the possibility to integrate this control methodology with other kind of propulsion. 

The analysis involves the cases of two and three satellites formations and, starting from an ini-
tial inter-spacecraft distance 0

ijd , aims to the following mission goals: 

- formation acquisition: to reach a desired distance des
ijd  between the spacecraft in a given 

maneuver time acqT .

- formation maintenance: to maintain the desired distance des
ijd  between the spacecraft for 

an additional  time period mntT .

Two spacecraft formation case 

Initial positions and velocities with respect to the LVLH reference frame  are 
0

1 [48.5,8.5,8.7]d m�0d 0 [48 5 , 0
2 [ 48.5, 8.5, 8.7]d m� � � �0d 0 [ 48 5[ 48 5 , 0

1 [0,0,0] /V m s�0 [0 0 0V 0 [0 0 0  and 0
2 [0,0,0] /V m s�0 [0 0 0V 0 [0 0 0 , cor-

responding to an initial distance 0
12 100d m� , and the goal of the mission is to achieve a relative 
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distance of 12 50desd m�  in 12acqT h�  (half GEO orbit period) and to maintain this distance along 
an additional 12mntT h� . The Lyapunov based control in Eq.(22) is adopted first, with the gains  

6
12 3.0 10pk �� �  and 2

12 3.0 10dk �� � , which have been selected by a trial-and-error process (an op-
timized procedure for gain selection is exposed in 20). The path of the trajectories followed by the 
two spacecraft are represented in Figure 6, together with the distance vector joining them. Start-
ing from their initial positions, the spacecraft approach each other by rapidly reducing their mutu-
al distance till the desired value is reached, and then maintain the desired configuration until the 
end of the maneuver, as reported in Figure 7. It is clear that the virtual link between them begins 
to oscillate around the radial direction (as a rigid body under the gravity gradient actions). This 
special motion is due to the choice of particular initial condition and controller gains, which leads 
the system to remain near the stable position of the gravity gradient field. 

The values of the charges needed to perform this maneuver are reported in Figure 8. It is 
worth to notice that the most demanding phase in terms of the spacecraft charge magnitudes is the 
acquisition, when the spacecraft have to be charged up to their saturation limits.  Once the inter-
spacecraft distance goal is almost achieved, the charges reduce to about 20 C� . The maintenance 
phase still needs a residual level of charges applied to the spacecraft (about 10 C� ), because an 
electrostatic force will be needed to keep this  configuration otherwise unattainable in free dy-
namics.  

The required power, computed by means of Eq.(5), is surprising low: the largest needs in 
terms of power consumption are associated with the first hour of the maneuver  when the space-
craft will charge in few minutes up to their saturation limits, to rapidly discharge themselves later 
as soon as the distance is remarkably reduced. On the other hand, for the formation maintenance 
phase the needs in power are very low, as shown in the bottom plot of Figure 9, and related to the 
charge modulation already visible in Figure 8:  only 23.5 J energy are required to perform the 
entire maneuver. 

Figure 6. Path of trajectories of the two spacecraft librating formation   

Figure 7 Inter-spacecraft distance for the two spacecraft librating formation 
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Figure 8. Spacecraft charges for the two spacecraft librating formation 

Figure 9. Required power for two spacecraft librating formation 

The specific configuration obtained is one among several possibilities for a two spacecraft 
formation. In fact, different gains of the controller will generate a different behavior, even starting 
from the same set of initial conditions and targeting the very same mission requirements. The tra-
jectories corresponding to the gains 6

12 5.0 10pk �� �  and 2
12 1.0 10dk �� �  are represented in Figure 10 

with the two spacecraft that, after a sudden approach, begin to rotate with respect the center of 
mass of the entire system. The relevant behavior of the charges is shown in Figure 11, where it is 
possible to notice that after the saturation phase (which produces an attractive force) the second 
satellite changes the sign of its charge to create a repulsive action. The steady state is reached be-
fore the required 12acqT h�  and the charges are slightly modulated to counteract the variable in-
ertial actions. The effects of the centrifugal actions are also present in Figure 12, where the dis-
tance between the two spacecraft approaches rapidly the desired value without actually reaching 
it. The steady state error can be explained as the controller is not designed to tackle centrifugal 
actions. The same rotating behavior can be obtained as an example by the SDRE control, with the 
following gain matrices (see Eq.(24)): � �12 12diag [ , ]p dk k�Q  and 12

uk�R , with 8
12 10pk �� ,

6
12 10dk �� , 1

12
210uk �� (plots not reported). The energy required amounts to 29.7 J  for the SDRE 

case and 14.7 J for the Lyapunov based control (values referred to each single spacecraft). 
In order to reduce the steady state error it is possible to add to the controller an integral term, 

as done in the Eq.(23) with the gain 1
12

010ik �� . Such a choice is successful as shown in Figure 13, 



823

even if it does involve several changes in the sign of the charge of the second spacecraft (Figure 
14).  

Figure 10. Path of the trajectories of the two spacecraft rotating formation  

Figure 11. Charge distribution during the rotating formation case (Lyap+PD) 

Figure 12. Inter-spacecraft distance during the rotating formation case (Lyap+PD) 

Figure 13. Inter-spacecraft distance during the rotating formation case (Lyap+PID) 
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Figure 14. Charge distribution during the rotating formation case (Lyap+PID) 

Three spacecraft formation case 

The scenario consists of three spacecraft  whose initial positions and velocities with respect to 
the LVLH reference frame  are 0

1 [ 50.0, 28.9,0.0]d m� � �0d 0 [ 50 0[ 50 0 , 0
2 [50.0, 28.9,0.0]d m� �0d 0 [50 0[50 0 ,

0
3 [0.0,57.7,0.0]d m�0d 0 [0 0 5 , 0

1 [0,0,0] /V m s�0 [0 0 0V 0 [0 0 0 , 0
2 [0,0,0] /V m s�0 [0 0 0V 0 [0 0 0  and 0

3 [0,0,0] /V m s�0 [0 0 0V 0 [0 0 0 , with starting 
distances among the spacecraft 0 0 0

12 23 31 100d d d m� � � , corresponding to an equilateral triangle 
shape. The goal of the mission is to reduce these distances to 12 23 31 50des des desd d d m� � �  in half 
GEO orbit period ( 12acqT h� ) and to maintain them during an additional time interval 

12mntT h� . As previously discussed, it is impossible to simultaneously reduce the lengths of all 
the links. A suitable control strategy is represented in Figure 4: this scheme takes into account the 
solutions given by the global controllers (Lyapunov or SDRE) and selects to chase, by means of 
the evaluation of the error functions in Eq.(31), only two out of the three products of charges. The 
periodic switch among these constraints ensures the convergence. The switching time interval 

swt�  becomes the key parameter, to be selected in order to trade-off between two opposite goals: 

swt�  cannot be too small in order to limit the chattering phenomena, nor too large in order to 
avoid that the uncontrolled virtual link of the formation remains uncorrected during the next 
switch phase. In particular the effects of three different switching periods 
( 1min,10min,30minswt� � ) are analyzed. 

  In Figure 15 the evolution of the formation for the 30minswt� � case is represented, with the 
corresponding trends of the cost functions (Eq.(31)) reported in Figure 16. A pseudo-steady trend 
will be achieved after about 6 hours (see Figure 17), approaching the desired value of the inter-
satellite distances  with a remaining, limited chatter due to the continuous switching. The inver-
sions in charges’ sign are easily noticeable in Figure 18, together with the saturation bounds’ ef-
fects. Figure 19, where spikes of 1 A�* appear periodically at every switch, plots the relevant cur-
rents. As a result, also the required power has an impulsive envelope, as shown in Figure 20. 
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Figure 15. Paths of the trajectories for the three spacecraft maneuver ( 30minswt� � )

Figure 16. Cost functions of the switching strategy 

Figure 17. Distances among the spacecraft during the acquisition maneuver 
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Figure 18. Charges during the acquisition maneuver of three spacecraft formation 

Figure 19. Ion/electron fluxes during the acquisition maneuver. 

Figure 20. Required power for the three spacecraft acquisition maneuver 

Two other switching intervals have been considered. Figure 21 reports the trajectories during 
the acquisition maneuver corresponding to 10minswt� � . It is worth to notice that the paths are 
now smoother, as the uncontrolled side of the triangle has a shorter time to degenerate, and the 
deviations from the nominal value are therefore smaller in magnitude with respect to the previous 
case. On the other hand the acquisition maneuver (obtained with the same gains) takes a time 
longer than before (see Figure 22), requiring all the 12 hours devoted to this phase. In Figure 22 a 
remarkable reduction of the chattering is also visible and the formation maintains itself close to 
the desired configuration. These better results are paid in terms of required rapidly in charge 
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changing, leading to higher power/energy needs to perform the maneuver, as proofed by Figure 
23.

Figure 21. Paths of the trajectories for the three spacecraft maneuver ( 10minswt� � )

Figure 22. Distances among the spacecraft during the acquisition maneuver 
( 10minswt� � )

Figure 23. Charges during the acquisition maneuver ( 10minswt� � )

The best result, in terms of a smooth behavior, has been obtained with the switch interval 
1minswt �� . Relevant spacecraft trajectories are reported in Figure 24, where the edges which 

characterized the previous cases disappear. The same regular behavior is present in Figure 25, 
where the inter-spacecraft distances are plotted, and the three sides of the triangle configuration 
can be seen reducing almost simultaneously their length. This performance is paid in terms in 
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energy consumption, as reported in Table 1: the cost increases as the switching period decreases, 
due to the frequent, sudden variation in currents.  

The analysis shows how the electrostatic control can be applied with reasonable efforts in 
terms of power and energy, especially if the requirements in distances are of the order of the me-
ter. It is also clear that if the strategy easily fits strict requirements on the inter-satellite distances’ 
accuracy.  

Figure 24. Paths of the trajectories for the three spacecraft maneuver ( 1minswt �� )

Figure 25. Distances among the spacecraft during the acquisition maneuver( 1minswt �� )

Table 1 Energy consumptions 
Switching time Satellite 1 Satellite 2 Satellite 3 

30 min 685.9 J 691.6 J 707.8 J 
10 min 1801.4 J    1777.3 J     1739.9 J 
1 min 5836.0 J      5777.6 J 6091.9 J 
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CONCLUSIONS 

The electrostatic control of the spacecraft formations’ configuration, obtained by means of 
purposeful satellite surface charging, is a technique facing increasing interest, with the significant 
advantage of a quite high precision at a moderate cost. Analysis and simulations are currently 
developed to better understand the suitability of this concept. This paper presents a model that 
includes important constraints as the saturation limits on maximum allowable currents and the 
maximum values for spacecraft charging. This model is used to analyze the control strategies in 
the cases of two and three spacecraft formations in GEO. A reduced set of equation of motion is 
obtained first, to pave the way to apply and compare two global control strategies (Lyapunov-
based control and SDRE-based control). The computed control actions are provided in terms of 
spacecraft charge products, requiring an additional step to actually identify a suitable distribution 
of the charges among the spacecraft. The two spacecraft formation simulations highlighted the 
characteristics of the electrostatic control, showing that the power/energy consumption is strictly 
connected to the changes in charges required for performing the maneuvers. A surprising result of 
the Coulomb interaction study is that the magnitude of the inter-spacecraft forces is comparable 
with the one provided by micro-propulsion systems proposed for formation keeping. 

The main result of this work deals with the three spacecraft formation analysis. A preliminary 
analysis of the three spacecraft problem proofed as the partition of the charge products obtained 
as output from the controllers is far from trivial. To overcome such an issue, a switching strategy 
has been selected in order to satisfy only a subset - to be periodically exchanged - of the require-
ments. Numerical results showed the strictly dependence of the precision of the inter-spacecraft 
distance on the duration of the switching period: specifically, the smaller the switching interval, 
the more precise will be the acquisition of the targeted configuration, at the cost of higher energy 
consumption and power requirement. 

Overall, the resulting energy values, even if quite preliminary, show that electrostatic control 
could be usefully applied, especially if the requirements in distances are of the order of tens of 
meters. Advantages as the precision and the lack of plume impingement effects add important 
value and suggest further investigations. 
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