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Abstract. In the case of some large statistical surveys, the set of units that

will constitute the scope of the survey must be selected. We focus on the real
case of a Census of Agriculture, where the units are farms. Surveying each

unit has a cost and brings a different portion of the whole information. In this

case, one wants to determine a subset of units producing the minimum total
cost for being surveyed and representing at least a certain portion of the total

information. Uncertainty aspects also occur, because the portion of information

corresponding to each unit is not perfectly known before surveying it. The
proposed approach is based on combinatorial optimization, and the arising

decision problems are modeled as multidimensional binary knapsack problems.
Experimental results show the effectiveness of the proposed approach.

1. Introduction. The scope of a statistical survey is the set of statistical units
that should be surveyed. In the case of many large surveys, the scope cannot be the
list of all possible units, because otherwise the cost or the complexity of the survey
would be prohibitive. On the contrary, the scope should be selected, also on the
basis of economical consideration. A typical example of this situation is the case of
a Census of Agriculture, where, differently from a more traditional censuary vision,
one needs to exclude from the survey the farms that are too small or otherwise
irrelevant to the survey itself. A main problem, in similar cases, is establishing
criteria or tracing somehow boundaries for dividing what should be included in the
survey from what should be excluded from it before surveying the units.

From a conceptual point of view, there is a very large set of statistical units
(e.g. farms, companies, etc.) that could be surveyed. Surveying each of them has
a cost and represents a different portion of the whole statistical information under
investigation (e.g., the state of the agriculture, the industrial production, etc.). Also,
some coverage levels on that whole statistical information are assigned. Hence, one

2010 Mathematics Subject Classification. Primary: 90C90, 90C06; Secondary: 05A99.

Key words and phrases. Data Mining, Knowledge Management, Discrete Optimization.
Work developed during a biennial research collaboration between Italian National Statistic

Office (Istat) and University of Roma “Sapienza” on the data processing of the 2010 Census of
Italian Agriculture.

1

http://dx.doi.org/10.3934/xx.xx.xx.xx


2 RENATO BRUNI, GIANPIERO BIANCHI AND ALESSANDRA REALE

would like to choose only a subset of the whole set of units. This subset should
have the minimum total cost for being surveyed but should represent a portion of
the whole information large enough for respecting the above coverage levels.

An important additional difficulty is that the portion of information carried by
each unit is not perfectly known before surveying it. This often happens because
the units may have been last surveyed only during a previous Census, typically held
several years before, and their characteristics may have changed in the meanwhile.
We therefore need to establish reliable criteria for deciding whether to include or not
a unit in the survey on the basis of the (possibly outdated) available data describing
the unit.

This problem is often called Scope Selection, or statistical Universe Selection, see
e.g. [9, 10], and evidently contains a Combinatorial Optimization structure, with the
optimal solution being one of the feasible subsets of the ground set of all the units.
Defining a scope has connections with the general statistical task of Population
Definition, see e.g. [13, 22]. The problem of the selection of statistical units is also
studied in [11], where the authors consider the measurement of the lowest night
temperature and select with an efficient heuristic the subset of units that allows
the best linear prediction of the temperature in the excluded units. That procedure
can also be used for other types of measures, but there are a number of structural
differences between the problem in [11] and our case. Indeed, in that work, strong
correlation hypothesis should hold on the values of the measure under prediction
(a covariance matrix constant in time should be obtainable), and the decision of
including or excluding each unit is based on one single type of measures. On the
contrary, in our case, each statistical unit is described by a set of different values that
are generally not correlated to those of other units, and the decision of including or
excluding each unit must consider all the different values simultaneously. On the
other hand, other optimization models arising from the treatment of agricultural
data are described in [3, 4, 19], or in [7, 8] for population data. The problem
of selecting units from a list can also be viewed as a particular case of the very
important problem of quota sampling, for which several approaches and techniques
of purposive sampling have been proposed, see also [16, 18, 23]. After the selection
of a set of units, if uncertainty occurs in the data, one should also evaluate the
risk of undercoverage [2]. While similar problems of statistical units selection have
been solved in practice by means of a variety of ad hoc techniques, whose features
typically depend on the specific application but which in any case heavily rely on
the contribution of experts of the field, we propose a more general approach based
on the use of a binary linear model solved by means of Combinatorial Optimization
techniques. This innovative approach to the problem overcomes the particularity of
ad hoc approaches, and moreover allows to take advantage of effective algorithms
already developed in that field.

More precisely, by using binary variables associated with the above units, the
described selection problem is here modeled as a multidimensional binary knapsack
problem (see e.g. [21, 25]). Since those models may reach in many cases very large
dimensions, a Branch&Cut approach using a separation procedure based on covers
[1, 15, 24] has been used. A solution to the above knapsack model will be referred
to as an Optimal Selection. However, due to the above described uncertainty as-
pects, not just one but a sequence of Optimal Selection problems must be solved
for selecting the Scope in practice. Indeed, in order to develop inclusion criteria
based on thresholds, we need to evaluate some safety margins with respect to the
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risk of undercoverage for different inclusion thresholds. The procedure has been
implemented in c++ and tested in cooperation with the Italian National Statistic
Office (Istat) on real data from the Italian Census of Agriculture 2010. Results
are very encouraging both from the computational and from the statistical point of
view. The main contribution of this work is therefore an innovative and effective
approach based on Combinatorial Optimization for solving a challenging large-sized
and economically important real-world problem.

The work is organized as follows. Section 2 describes the basic model proposed
for the selection of an optimal subset of statistical units and techniques to improve
this formulation and solve the overall model by means of a Branch&Cut approach.
Section 3 explains how the solution of the Optimal Selection problem under different
conditions leads to the determination of the inclusion criteria based on thresholds.
Finally, in Section 4, we provide extensive results on real-world data from the Italian
Census of Agriculture.

2. Solving the Optimal Selection Problem. The model proposed for the above
problem will be hereinafter explained by referring to the specific case of a Census
of Agriculture. This is probably the most important case, because it has a great
economic relevance and a very large dimension. Moreover, in the case of EU coun-
tries, gathered information must be published and provided to the EU level, where
it constitutes a basis for assigning financial resources, for planning production, and
for several other economical European policies. However, the proposed model is
not intrinsically limited to that case, but can be used for similar cases of Scope
Selection problems.

In a Census of Agriculture, there is a very large list U = {u1, . . . , un} of all the
existing statistical units that could be surveyed. Each unit ui represents a farm,
which is described by the areas used for every cultivation (plus other data not
relevant for this work). Units have therefore the following structure:

ui = {ai1, . . . , aim, aiT} for i = 1, . . . , n

where aij is the area that farm i uses for cultivation j, with i = 1, . . . , n and
j = 1, . . . ,m, and aiT is the total area of farm i used for cultivations, technically
called Utilized agricultural Area (UA). Unfortunately, at least for the majority of
the cases, the data in the list U are those that were surveyed during the last census,
often held several years before, or were obtained by other possible sources that may
still be outdated. Hence, the available data may very well be different from the
current farm situation. In particular, the single cultivation areas aij may easily
have changed, while total cultivation area aiT of the farm is more stable.

For every cultivation j that we are interested in, including some types of livestock,
a certain coverage level qj ≥ 0 and ≤ 1 is required, with j = 1, . . . ,m. Value
qj represents the minimum portion of the total area of cultivation j that must be
surveyed: if this total area is

∑n
i=1 aij , we need to survey at least an area qj

∑n
i=1 aij

of cultivation j (e.g. survey at least 0.8 of the total cultivation of oranges, at least
0.5 of the total cultivation of apples, etc.). A required coverage level qT for the
total cultivation areas is also given. For the case of EU countries, coverage levels
are generally assigned by European regulations, e.g. [9]. The set of coverage levels
is denoted by

{q1, . . . , qm, qT}
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Surveying unit ui has a cost wi (that can be evaluated either in terms of expense, or
complexity added to the whole survey, or other) and produce, for each cultivation
j, an amount of statistical information that, in absence of further elements, is
estimated being equal to the available value of the cultivation area aij . By defining
the cost of a set of units to be the sum of their individual costs wi, we want to choose
a subset S ⊆ U of units producing the minimum total cost for being surveyed and
simultaneously respecting all the above defined m + 1 coverage levels. Hence, the
problem cannot be decomposed in subproblems addressing a single cultivation type
at a time. In order to represent whether to include or not a unit, we introduce a
set of binary decision variables {xi}, with i = 1, . . . , n, such that

xi =

{
1 if unit ui is excluded from the scope;
0 if unit ui is included in the scope.

Now, cost minimization can be expressed by maximizing the total cost of the units
that we do not survey (i.e. the saving). Respecting the coverage levels, on the
other hand, can be expressed by imposing that the area that is excluded cannot
be more than the maximum area we are allowed to exclude. This latter condition
should be imposed both for each cultivation and for the total area. The described
Optimal Selection problem can be modeled as the following multidimentional binary
knapsack problem. 

max

n∑
i=1

wixi

s.t.

n∑
i=1

ai1 xi ≤ (1− q1)

n∑
i=1

ai1

. . .
n∑

i=1

aim xi ≤ (1− qm)

n∑
i=1

aim

n∑
i=1

aiTxi ≤ (1− qT)

n∑
i=1

aiT

xi ∈ {0, 1}

(1)

Multidimentional binary knapsack is a well-known combinatorial optimization prob-
lem [21]; in its optimization version it is NP-hard. Note that a complementary choice
for the meaning of the xi variables (1 if unit ui is included in the scope, 0 other-
wise), that may appear more straightforward, would have led to a multidimensional
packing problem [21], that has the same complexity level. However, the proposed
modeling choice will have less variables at 1, with consequent computational advan-
tages.

Model (1) has a number of variables equal to the number n of units in list U and
a number of constraints equal to the number of coverage levels m + 1, so it may
reach in practical cases a very large dimension. Therefore, solving such an integer
linear program by means of a simple Branch&Bound approach can be excessively
time consuming (see e.g. [12]), and we use a Branch&Cut approach based on the
generation of covering inequalities, as follows. Given a single knapsack constraint∑n

i=1 aij xi ≤ ej from (1), a set C ⊆ {1, . . . , n} is a cover if
∑

i∈C aij > ej .
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Given a cover C, we can write the following covering inequality expressing that not
all variables xi , for i ∈ C, can be simultaneously one:∑

i∈C

xi ≤ |C| − 1 (2)

Covering inequalities of the above type are valid for a problem containing the knap-
sack constraint

∑n
i=1 aij xi ≤ ej ([1, 15, 24]). Therefore, an inequality of type (2)

can be added to model (1) for improving the formulation given by its linear relax-
ation. In the case of the described Census, the meaning of the above inequality
is that we simply cannot exclude from the survey a set C of units having a total
area that is too large. It is evidently impracticable to generate all inequalities in
the form (2), since their number can be too large. Therfore, we generate covering
inequalities within a Branch&Cut scheme (see e.g. [21]). This requires to solve
recursively the so called separation problem, that is, given a point x̄ ∈ Rn and a
polytope K, either to prove that x̄ ∈ K or find an inequality, called cut or cutting
plane, that is valid for K but cuts x̄ away from K.

Denote by c the incidence vector of the generic subset C of {1, . . . , n}, i.e. the
binary n-vector whose i-th element is 1 if i ∈ C, 0 otherwise. By recalling that
aij ∈ R and ≥ 0, set C is a cover for the j-th knapsack constraint of problem (1) if
and only if its incidence vector c satisfies the following condition

n∑
i=1

aijci > (1− qj)
n∑

i=1

aij

that, by introducing ε > 0 equal to the minimum possible difference in the aij
values, can be rewritten as

n∑
i=1

aijci ≥ [(1− qj)
n∑

i=1

aij ] + ε (3)

Among all possible covers, we want a cover C such that the components of x̄ corre-
sponding to elements of C sum to a value > |C| − 1, that means x̄ can be cut away
by the cutting plane generated by C. Cover C represents in practice a set of units
that cannot be simultaneously excluded from the survey, but are actually excluded
in solution x̄. The condition of cutting away x̄ can be expressed as follows:∑

i∈C

x̄i > |C| − 1⇒
n∑

i=1

x̄ici >

n∑
i=1

ci − 1⇒

⇒
n∑

i=1

(x̄i − 1)ci > −1⇒
n∑

i=1

(1− x̄i)ci < 1

(4)

Putting together condition (3) and (4) we have the following optimization problem
encoding our separation procedure for the j-th knapsack constraint of problem (1).

min

n∑
i=1

(1− x̄i)ci

s.t.

n∑
i=1

aijci ≥ [(1− qj)
n∑

i=1

aij ] + ε

ci ∈ {0, 1}

(5)

When model (5) is solved to optimality, we obtain vector c? and the corresponding
objective value v? =

∑n
i=1(1− x̄i)c?i . If v? is < 1, there exists a covering inequality
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that is valid for K but cuts away x̄ from K, and c? is the incidence vector of the
cover C? generating that cover inequality. On the contrary, if v? is ≥ 1, we cannot
obtain from the j-th knapsack constraint a covering inequalities cutting away x̄.
In this latter case, we must try to obtain it from another one of the knapsack
constraints of (1). If such a covering inequality cannot be obtained after all the
knapsack constraints have been tested, it does not exist. Therefore, solving several
problems in the form (5) may be needed. Although (5) is a binary problem with n
variables, it can be solved quite easily, since any feasible solution ĉ of of (5) such
that the corresponding objective value v̂ is < 1, even if sub-optimal, is the incidence
vector of a cover Ĉ whose cover inequality cuts away x̄ from K. Therefore, we may
accept those kind of solutions, and search them with the following procedure. Recall
that every variable ci has a cost given by (1 − x̄i) and a value aij . We denote by
RHS the right-hand side of the only constraint in (5).

Greedy Algorithm for the solution of problem (5)

Input An instance of separation problem (5), defined by the cost n-vector (1 − x̄),
the values n-vector aj and a value RHS.

Output A binary feasible (and possibly optimal) solution ĉ to (5)

1 Order by increasing cost/value ratio the indices of the binary variables.
2 Following the above greedy order, put ĉi = 1 until the left-had side of the

constraint becomes ≥ RHS (i.e. we have a feasible solution), and ĉh = 0 for
all the rest of the indices. If the value of this solution is v̂ < 1, there exists a
covering inequality that is valid for K but cuts away x̄ from K, and ĉ is the
incidence vector of the cover generating it.

The above heuristic solution could be evaluated by using the lower bound given
by the solution r? of the linear relaxation of problem (5): we put ri = 1 until the
left-had side of the constraint remains ≤ RHS (i.e. we have a maximal infeasible
solution), then r(i+1) = (RHS−LHS)/a(i+1)j , and finally rh = 0 for all the rest of
the indices. If the objective value corresponding to r? is v?r ≥ 1, the value v? of the
integer solution of (5) is ≥ v?r , so we know that the j-th knapsack constraint cannot
provide a covering inequalities cutting away x̄. On the contrary, when v?r < 1 but
v̂ ≥ 1, a covering inequalities cutting away x̄ may exist, but was not found by
the procedure. Nonetheless, we try to obtain it from another one of the knapsack
constraints of (1), and if none of them can provide it, we simply branch following the
mentioned Branch&Cut scheme. This technique guarantees to reach the optimal
binary solution of model (1).

3. Determining Reliable Inclusion Criteria. Since data are uncertain, an op-
timal solution x? of model (1) cannot guarantee providing a set of units really
respecting the required coverage levels. Indeed, as a trivial example, if the real
cultivation areas of some of the selected farms have become smaller than what de-
scribed by the available data aij , the risk of undercoverage (i.e. failing the required
coverage levels qj) is present. Hence,we need to distinguish between:

• solving the Optimal Selection problem, that is solving to optimality model (1);
• solving the Scope Selection problem, that is finding the set of units that we

use as scope in practice.
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For solving the Scope Selection problem, we need to determine a priori inclusion
criteria for selecting the set of units respecting the coverage levels. A priori means
here criteria that, for each unit ui, could be checked before surveying ui. A basic and
mostly adopted criterion is using thresholds. Given a threshold value tj , for each
unit ui one could determine whether to survey it or not: we survey ui if aij ≥ tj , we
do not survey it otherwise. Since in the analyzed case the total utilized area (UA)
is the more reliable among the available informations, it was preferred to establish
a threshold t only on that value.

The coverage levels, initially required by EU [9] and assigned for the whole Na-
tion, were modified and slightly increased so as to determine more specific coverage
levels assigned for each Region. Those new levels were determined by experts of
the field according to specific features of the different regions, whose description
goes beyond the aim of this work. The final established regional coverage levels, for
Citrus plantations, Fruit trees cultivation, Olive cultivations, Arable land, Vineyard
cultivation and UA, are reported in Table 1. A‘-’ denotes that the value is irrelevant
because that cultivation is not used in that region.

Table 1. Regional coverage levels

Region Citrus Fruit Olive Arable land Vineyard UA
Piemonte - 98.5 90.7 99.5 98.7 99.2
Valle d’Aosta - 81.1 - 84.0 83.9 98.6
Lombardia 96.3 93.2 88.3 99.7 - 99.4
Trentino Alto Adige - 99.3 66.1 95.8 97.8 98.8
Veneto - 97.4 95.4 99.3 98.7 98.3
Friuli-Venezia Giulia - 98.0 88.8 98.5 99.1 98.4
Liguria 68.4 84.8 89.5 92.6 82.0 92.7
Emilia-Romagna - 98.7 91.6 99.6 99.5 99.4
Toscana 68.4 95.0 97.5 99.1 98.4 98.3
Umbria - 94.8 96.9 98.8 97.1 98.5
Marche 80.3 94.2 94.3 99.1 98.6 98.8
Lazio 68.3 97.4 92.8 98.5 94.6 97.0
Abruzzo 85.1 94.6 96.0 98.2 99.1 98.5
Molise - 96.3 96.2 99.1 97.2 98.7
Campania 82.4 97.2 95.3 96.8 94.5 96.7
Puglia 98.6 97.4 97.6 98.7 99.4 98.4
Basilicata 96.5 96.3 95.6 98.9 95.7 98.6
Calabria 98.0 97.6 97.1 96.3 95.0 97.3
Sicilia 97.4 97.0 94.6 97.8 99.2 97.6
Sardegna 93.6 93.9 95.8 99.4 97.4 99.3

In order to satisfy the above regional coverage levels, one may in general consider
different options. A first one could be solving the regionals Optimal Selection prob-
lems, in order to determine, for each region, a selected set of units U?. After this,
use U? to determine the value aiT of UA corresponding to the smallest included
farm of the region, then compute how reliable that value is, possibly modify it for
having a safety margin, and use it as inclusion threshold (at the regional level).
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Another alternative would be fixing, according to some predetermined decision,
a number of threshold values on the total utilized area (UA), and solve the regional
Optimal Selection problems for each of them. Given a threshold t, denote by Ut the
set {ui ∈ U : aiT ≥ t} and by U?

t the result of the Optimal Selection on Ut (the set
of units ui ∈ Ut having xi = 0). Define Rt = Ut − U?

t the set of units that satisfy
threshold t but are not in the solution of the Optimal Selection (i.e. the set of units
ui ∈ Ut having xi = 1). Sets Ut and Rt can now be used for computing statistical
indicators that evaluate the safety margin with respect to the risk of undercoverage
obtained by using t as inclusion threshold. After this, the threshold value t? that,
among the predetermined ones, corresponds to the best compromise between risk
estimation and list reduction for the region, is selected and adopted as inclusion
criterion (again at the regional level). The solution to the Scope Selection problem
would therefore be Ut? This last option was preferred in the analyzed case, because
it could provide more robustness in the procedure, in the sense of making it more
stable and less prone to the changes that may have occurred in the data.

We also remark that a third alternative approach could be based on the com-
putation, for each unit ui, of some upper bound UBij and lower bound LBij of
the amount of information (i.e., the currently used cultivation area) that unit ui
brings for cultivation j. When

∑n
i=1 UBij ≤ (1 − qj)

∑n
i=1 LBij , we could reason-

ably expect that the coverage level qj is respected. Determining upper and lower
bounds for the probability of an event logically related to a set of other events is
a well-known problem in Statistics and Probability theory for which a number of
techniques have been proposed (see, e.g., the seminal work [14], and the recent [6]).
However, this option was not selected because of the heavy assumptions required
for those computations.

We now describe the statistical indicators that were built by experts of the field
for evaluating the safety margin from the risk of undercoverage corresponding to
each threshold t. A basic index number is the percentage of farms taken in addition
to U?

t when using threshold t, denoted by β(t) and computed as follows.

β(t) = 100
|Rt|
|Ut|

The larger the value of β(t), the more threshold t is able to provide a set Ut that is
bigger than the minimum set respecting the coverage levels, and consequently the
more secure is the selection by using threshold t.

Another index number, for each cultivation j, is the percentage of cultivation
area taken as safety margin when using threshold t, denoted by γj(t) and computed
as follows.

γj(t) = 100

∑
ui∈Rt

aij∑
ui∈Ut

aij

Again, the larger the value of γj(t), the more threshold t is able to provide an area∑
ui∈Ut

aij that is bigger than the minimum area respecting the coverage levels,
and consequently the more secure is the selection by using threshold t. Clearly, the
higher the values of t, the smaller the above safety margins become, but the larger
the savings in the survey are. Therefore, we need to chose the higher t still having
acceptable values for the above indicators, so as to obtain the maximum savings
with negligible risk.
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Given a set of farms Ut, define Sj(Ut) = {ui ∈ Ut : aij > 0} to be the subset
of farms in Ut having cultivation j. Denote now by µ{Sj(Ut)} the average area
of cultivation j over set Sj(Ut). A third indicator, for each cultivation j, is the
average number of units in Rt that are needed to obtain a portion of information
that is equivalent to the portion of information given by an average unit of U?

t , or,
in other words, the average number of units in Rt needed to replace a unit in U?

t

(for example in case the latter one does not exist anymore). That will be denoted
by ωj(t) and computed as follows.

ωj(t) =
µ{Sj(U

?
t )}

µ{Sj(Ut)− Sj(U?
t )}

The ω(t) is clearly ≥ 1, and the smaller the values, the more robust is the choice
of threshold t. Some values of β, γ and ω for the considered real-world case are
reported in the following Table 4.

4. Experimental Results. The described procedure has been implemented in
C++ and tested for the treatment of data from the Italian Census of Agricul-
ture 2010 (VI Censimento Generale dell’Agricoltura 2010). The experiments were
conducted on a 16 cores server having 128Gb of RAM under Linux Operating Sys-
tem. The linear relaxations of (1) are solved by means of the open source solver
Clp (Coin-or linear programming, available from https://projects.coin-or.org/Clp),
which is a very good implementation of primal and dual simplex and barrier meth-
ods, written in C++ by a research group headed by Dr. John J. Forrest, from
the IBM Watson Research Center, within a joint project among IBM, Maximal
and Schneider called COIN-OR (COmputational INfrastructure for Operations Re-
search, http://www.coin-or.org/index.html). This solver was selected because it
appeared the most suitable open source LP solver in a previous study [5]. As de-
scribed in the previous Section, a number of predetermined threshold levels on the
total utilized area (UA) have been used. Their values were 0.0 (meaning that all
farms are included, even the smallest ones); 0.1; 0.2; 0.3; 0.4 hectares.

Table 2 reports the detail of this analysis for one sample Italian region (Marche).
Evidently, when increasing the inclusion threshold t, the cardinality of Ut decreases
consistently (less farms satisfy that threshold). On the other hand, the cardinality
of U?

t does not decrease. It generally remains the same, even if it may occasionally
slightly increase. This happens because, intuitively, when searching an optimal
solution U?

t within Ut, the smaller is Ut, the less choices we have for selecting the
minimum-cost solution satisfying the coverage levels.

Consequently, the differences between Ut and U?
t tend to become smaller, and

the described β, γ tend to decrease. Therefore, when increasing t, there is a trade-
off between the reduction in the cost and complexity of the Census, caused by the
decreasing of |Ut|, and the rise in the risk of undercoverage, evaluated by the β and
γ index numbers. In the case of a Census, the priority is having an acceptable risk
level, so we are interested in maximizing the savings obtainable in correspondence
to acceptable values of β and γ. Acceptable values for the β and γ indicators have
been considered those respectively above 10% and 0.5%. On the contrary, values for
the ω indicator should be as small as possible. Hence, for the case of Marche region,
the best compromise is t = 0.4, corresponding to a very acceptable risk level (β and
γ are considerably above the lowest acceptable values) but producing considerable
savings: the cost of surveying 66,536 - 60,309 = 6,254 farms, that is about 10%.
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Table 2. Results of the procedure applied to the Marche Region

Thershold |Ut| |U?
t | β γvineyard ωvineyard γolive ωolive γT

0.0 66,563 50,051 24.81 3.50 6.10 7.51 3.45 1.35
0.1 65,438 50,051 23.51 3.50 6.10 7.51 3.45 1.35
0.2 64,374 50,051 22.25 3.47 5.95 7.38 3.31 1.34
0.3 62,474 50,051 19.86 3.32 5.61 6.68 3.11 1.29
0.4 60,309 50,057 17.01 3.00 5.27 5.41 3.07 1.20

Table 3 reports, for each Italian region, the number |U | of all existing statistical
units; the number |U?| of units selected from U when solving model (1) to optimal-
ity; the value of threshold t? selected among the predetermined values as the best
compromise between list reduction and risk of undercoverage; the number |Ut| of
existing statistical units that are above threshold t; the number |U?

t | of units se-
lected from Ut when solving model (1) to optimality; computational time in seconds
for the overall treatment of the region, including the solution of the five Optimal
Selection problems and the evaluation of the described indicators (Time All); com-
putational time in seconds for solving to optimality the single Optimal Selection
problem (1) corresponding to t?.

Table 3. Results of the procedure applied to all Italian Regions

Region |U | |U?| t? |Ut| |U?
t | Time All Time t?

Piemonte 120,965 78,651 0.3 103,347 78,651 605.2 116.0
Valle d’Aosta 6,595 4,050 0.4 5,441 4,051 33.5 7.6
Lombardia 74,867 56,949 0.3 69,890 56,949 374.5 73.8
Trentino Alto Adige 61,253 33,804 0.2 51,816 33,804 306.8 61.2
Veneto 191,085 118,204 0.3 176,251 118,204 955.2 186.0
Friuli-Venezia Giulia 34,963 25,455 0.3 32,953 25,455 175.6 34.1
Liguria 44,266 21,654 0.3 34,167 21,654 221.0 43.2
Emilia-Romagna 107,888 89,468 0.3 103,744 89.468 539.5 104.8
Toscana 139,872 77,823 0.3 119,788 77,823 699.0 136.8
Umbria 57,153 36,538 0.3 51,772 36,538 286.3 57.2
Marche 66,563 50,051 0.4 60,309 50,057 333.0 65.6
Lazio 214,666 123,026 0.3 189,906 123,026 1,073.3 210.6
Abruzzo 82,833 58,478 0.3 78,036 58,478 414.2 81.8
Molise 33,973 25,285 0.3 31,955 25,285 170.8 36.2
Campania 248,932 143,318 0.3 216,635 143,319 1,245.0 246.0
Puglia 352,510 229,118 0.2 348,380 229,118 1,763.0 346.6
Basilicata 81,922 58,460 0.3 76,307 58,460 410.5 82.1
Calabria 196,484 113,719 0.3 173,866 113,719 982.2 193.4
Sicilia 365,346 223,912 0.2 355,038 223,912 1,827.6 358.4
Sardegna 112,689 76,355 0.2 108,545 76,355 563.5 108.6
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Table 4 reports, for each Italian Region, the values of some of the described statis-
tical indicators corresponding to the selected threshold t?. In particular, we report

β, γvineyard, ωvineyard, γolive, ωolive, γT.

Vineyard and olive were selected because they are particularly important, being
probably the two most typical Italian cultivations, and being subject to several
EU regulations. In the real Census application several other cultivations were also
considered.

Table 4. Values of the indicators corresponding to the selected thresholds

Region β γvine. ωvine. γolive ωolive γT
Piemonte 23.90 4.42 7.35 10.02 3.32 1.15
Valle d’Aosta 25.55 11.01 2.62 - - 1.15
Lombardia 18.52 4.19 8.23 10.53 4.22 0.67
Trentino Alto Adige 34.76 6.59 7.37 33.88 2.43 1.71
Veneto 32.93 5.12 7.07 8.08 3.72 3.64
Friuli-Venezia Giulia 22.75 2.90 8.13 12.50 5.24 1.77
Liguria 36.62 16.25 2.94 12.24 4.09 7.18
Emilia-Romagna 13.76 3.03 5.25 9.86 2.83 0.74
Toscana 35.03 4.36 9.37 5.97 6.92 2.31
Umbria 29.43 5.26 6.02 6.29 5.44 1.98
Marche 17.02 3.00 5.27 5.41 3.07 1.20
Lazio 35.22 8.18 4.49 9.88 4.29 3.98
Abruzzo 25.06 4.19 5.35 7.20 3.82 2.16
Molise 20.87 4.42 4.27 6.47 3.30 1.52
Campania 33.84 8.47 3.45 8.34 3.94 5.22
Puglia 34.23 5.29 5.59 7.00 6.42 3.56
Basilicata 23.39 5.54 3.53 7.24 3.55 1.58
Calabria 34.59 7.79 3.98 6.83 6.38 4.53
Sicilia 36.93 5.11 7.33 9.48 5.16 3.81
Sardegna 29.66 6.48 4.64 7.96 5.08 1.09

Table 5, finally, summarizes the Italian situation. It reports, for the case of threshold
t = 0.0 (all U) and for the threshold t? reported for each region in Table 3, the total
number of farms, their total utilized area UA, the number of farms obtained for
the optimal solution, and their total UA. As showed in this last Table, when using
as inclusion criterion the t? values of Table 3, we have a reduction in the number
of farms of 206,679, corresponding to a saving of 7.97%, that is worth of note
(considering the large cost of a Census), and a reduction in the cultivation area
(Total UA) of about 50,948 hectares, corresponding to a loss of only 0.39% of the
total information, and this with a negligible risk of failing the required coverage
levels, as observable from the values of β and γ in Table 4.

From the same Table 5 we also observe that, if the cultivation data were updated
and reliable, the set U?

0 could have been surveyed directly, with a reduction in this
case of 950,506 farms, corresponding to an even larger saving of 36.63%, and a re-
duction in the cultivation area (Total UA) of about 204,848 hectares, corresponding
to a loss of only 1.55% of the total information, with the guarantee of respecting the
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coverage levels. These results were possible because of the existence, in the Italian
territory, of a large number of very small farms that however constitute only a very
small portion of the total national cultivation area. Such a set of farms would be
quite expensive to survey but would not provide an amount of information justifying
that spending, so their detection has allowed considerable savings. We moreover
stress that the computational times required to solve those large-sized problems
with the proposed procedure are extremely moderate.

Table 5. Aggregate results at the National level

Threshold |Ut| Total UA for Ut |U?
t | Total UA for U?

t

0.0 2,594,825 13,206,296.76 1,644,319 13,001,448.97
t? 2,388,146 13,155,349.09 1,644,315 13,003,198.84

5. Conclusions. We proposed an innovative approach to the Scope Selection prob-
lem based on Combinatorial Optimization. The proposed multidimensional knap-
sack model can be solved to optimality in short times by means of a Branch&Cut
algorithm based on the generation of cover inequalities. The procedure has been
implemented and tested on the real-world case of an Italian national agricultural
Census. By solving the Optimal Selection problem in different conditions, statisti-
cal indicators for the determination of reliable inclusion criteria based on thresholds
have been computed. The proposed approach allows to considerably reduce costs
and complexity of the survey while ignoring only a very small portion of the whole
information that can be surveyed. The risk of failing the required coverage levels,
i.e., the risk that such ignored portion was larger than the maximum admissible
portion that we are authorized to ignore, is negligible.
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