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A Force-Based Beam FE for the Pushover Analysis of Masonry 
Buildings 
Daniela Addessi, Domenico Liberatore and Renato Masiani 

Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza Università di Roma, 

Via Eudossiana, 18, 00184 Rome, Italy. 

Abstract 

A simplified approach for analyzing the nonlinear response of masonry buildings, based on the 

equivalent frame modeling procedure and on the nonlinear equivalent static analyses, is 

presented. A nonlinear beam finite element is formulated in the framework of a force-based 

approach, where the stress fields are expanded along the beam local axis, and introduced in a 

global displacement-based finite element code. In order to model the nonlinear constitutive 

response of the masonry material, the lumped hinge approach is adopted and both flexural and 

shear plastic hinges are located at the two end nodes of the beam. A classical elastic-plastic 

constitutive relationship describes the nonlinear response of the hinges, the evolution of the 

plastic variables being governed by the Kuhn-Tucker and consistency conditions. An efficient 

element state determination procedure is implemented, which condenses the local deformation 

residual into the global residual vector, thus avoiding to perform the inner loops needed for 

computing the element nonlinear response. The comparison with some relevant experimental and 

real full-scale masonry walls is presented, obtaining a very good agreement with the available 

results, both in terms of global pushover curves and damage distributions. 
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curves. 

1 Introduction 

The formulation of efficient and accurate numerical models for the structural assessment of 

masonry buildings is a significant and topical challenge, both related to the preservation of the 

architectural heritage and historical buildings and to the rational design of new structures. 

Several approaches have been proposed in literature for modeling masonry structures, with 

particular reference to the historical buildings. The most sophisticated modeling procedures 

analyze the masonry structural components by using 2D and 3D finite element (FE) formulations 

and employing constitutive laws capable to model the complex nonlinear mechanisms 

characterizing masonry mechanical response, such as damage, cohesion, friction plasticity, 

crushing, among other aspects. Depending on the scale of detail at which masonry is analyzed, 

they may be classified into micromechanical models (Gambarotta and Lagomarsino 1997 part i), 

macroscopic phenomenological models (Gambarotta and Lagomarsino 1997 part ii, Lourenço 

1998, Addessi et al. 2002) and multi-scale procedures (Trovalusci and Masiani 2005, Massart et 

al. 2007, De Bellis and Addessi 2011, Addessi and Sacco 2012, Pau and Trovalusci 2012). The 

main drawback of such sophisticated models is related to the large modeling and computational 

requirements and to the need of identifying a large number of material parameters, representing 

generally a hard task. All these reasons make them not very used for practical purposes. Thus, 

some of the most refined proposed models, such as the micromechanical and multi-scale 
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modeling techniques, have been applied up to now to the study of single structural components, 

such as a single panel. 

Other interesting approaches, mainly oriented to design purposes, are the simplified procedures 

based on the use of 2D macro-elements for modeling each pier and spandrel with a single FE, 

where a properly constitutive law is defined (Braga and Liberatore 1990). A simplified two 

degrees of freedom macro-element has been formulated in Gambarotta and Lagomarsino (1996) 

for describing both the overtuning and the hysteretic shear response of masonry panels under 

dynamic loading conditions. A generalization of this formulation has been presented in Brencich 

and Lagomarsino (1998), who proposed a macro-element characterized by eight displacement 

degrees of freedom, six related to the end nodes and two representing internal variables. In 

particular, a damage-friction model has been employed and both the overtuning and shear 

mechanisms have been modeled. 

Alternatively, equivalent frame models have been proposed by a number of authors, which have 

been extensively used for practical analysis of common unreinforced masonry structures 

(Magenes and Della Fontana 1998, Roca et al. 2005, Penelis 2006, Chen et al. 2008, Belmouden 

and Lestuzzi 2009, Grande et al. 2011). In particular, for the study of building systems composed 

of load bearing walls, a frame equivalent model made of beam FEs is adopted, where each wall 

with opening is decomposed into an assemblage of piers and spandrels, properly connected by 

means of rigid elements. 

Concerning the formulation of the beam FE, the classical displacement-based approach is 

undoubtedly the more widely used; it assumes compatible displacement and strain fields along 
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the element, using polynomial interpolation functions, which satisfy the requested continuity 

conditions. On the other hand, in presence of nonlinear constitutive behavior, where non smooth 

and localized distributions of deformations in the structural element are expected, a fine and non 

uniform discretization is needed to satisfactorily describe the mechanical behavior, both in terms 

of global force-displacement curves and of local stress and strain variations. Moreover, in the 

case of the Timoshenko beam theory, the displacement-based FEs are affected by the well-

known shear locking problems. Starting from an alternative point of view, in various works 

(Spacone et al. 1996, Petrangeli and Ciampi 1997, Neuenhofer and Filippou 1998, Taylor et al. 

2003, Addessi and Ciampi 2006) it has been demonstrated that beam elements are more suitably 

defined by adopting a force-based (FB) formulation, which directly interpolates the stress fields 

along the element. Such approach, although it requires a more complex procedure for the 

element state determination, is easily introduced in a global displacement-based formulation 

(Addessi and Ciampi 2006) and results computationally more efficient, especially in presence of 

constitutive nonlinearity; this implies also the possibility of using coarse meshes for the 

structural discretization. In fact, since the FB elements assume exact interpolating polynomials 

for the stress fields, the numerical solution is only affected by the error related to the adopted 

approximated integration rule, while it is quite independent on the discretization. Based on 

similar considerations, a variational consistent mixed formulation for a shear deformable beam 

element, derived from the Hu-Washizu principle, has been proposed by Taylor et al. (2003). 

In this paper, a new beam finite element for the analysis of the nonlinear response of masonry 

buildings, modeled on the basis of the equivalent frame approach, is proposed. As demonstrated 

in the literature (Magenes 2006), linear elastic analyses, both static and dynamic, are not capable 
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to satisfactorily reproduce the structural response of masonry buildings. Although the most 

accurate methodology should be based on the nonlinear dynamic analysis, it is worthwhile noting 

that it requires very high computational costs and the identification of the mechanical parameters 

governing the cyclic constitutive laws, which often is very hard and uncertain. In many cases a 

static nonlinear analysis can realistically describe the main aspects of the global and local 

responses of the buildings, better than a linear dynamic one. 

Concerning the pushover analysis, in Galasco et al. (2004) an effective procedure has been 

adopted for transforming the problem of pushing a structure, maintaining constant ratios between 

the applied forces, into an equivalent incremental static analysis with one degree of freedom 

displacement response control. Subsequently, in Galasco et al. (2006) a new displacement-based 

algorithm for the adaptive pushover analysis of masonry structures has been proposed, where the 

load pattern is derived, step-by-step, by the actual deformed shape evaluated during the pushover 

analysis. Moreover, Anthoine (2006) presented a simple displacement control method able to 

follow the monotonic pushover curves also along the softening branches, based on an appropriate 

definition of the displacement variable to be used for controlling the loading process. 

In this paper, the static nonlinear analysis methodology is employed. In particular, a FB 

formulation is adopted, characterized by numerical efficiency and convergence properties better 

than the classical displacement-based formulation (Spacone et al. 1996, Addessi and Ciampi 

2006) and allowing to avoid the shear locking problems. In order to describe the onset of 

plasticity mechanisms and localized crack bands in critical regions of the masonry, a 2-node FE 

with lumped plastic hinges located at the ends is adopted, which, although less accurate than a 
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model with a spread nonlinear constitutive behavior, allows to capture the relevant aspects of the 

nonlinear masonry structural response with a very low computational burden. Therefore, such 

simple FE formulation enables to satisfactorily describe also the static nonlinear response of the 

masonry under loading conditions simulating seismic actions, resulting at the same time very 

efficient from the computational point of view and easy to be used by designers. The beam FE, 

formulated on the basis of the Timoshenko theory under the hypothesis of small displacements 

and deformations, consists of a central element, whose constitutive behavior is linear elastic, and 

two hinges arranged in series at the ends, characterized by a nonlinear constitutive law both 

regarding the bending and the shear behavior. The Italian seismic code (NTC 2008) is employed 

for determining the yielding moments of the flexural hinges and the yielding force of the shear 

hinge, as well as the displacement ultimate thresholds. As concerns the computational aspects, a 

nonlinear solution algorithm based on a consistent element state determination procedure and on 

a predictor-corrector hinge state determination method is adopted. The proposed force-based 

element is implemented in the FE code FEAP (Taylor 2011). In Section 2, the FB formulation of 

the beam FE with end lumped hinges is presented and the constitutive relationships, adopted for 

modeling the nonlinear response of the flexural and shear hinges, are introduced; in Section 3 the 

solution algorithm is illustrated; finally, in Section 4 two numerical applications on full-scale 

masonry structures are presented, by comparing the numerical results obtained by using the 

proposed FE with the experimental ones and with the results numerically evaluated by adopting 

different FE models. 
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2 Beam finite element formulation 

The formulation of the 2D beam element, here used, assumes Timoshenko theory and 

geometrically linear behavior. The element forces and displacements are expressed in the local 

reference system by the following vectors (Fig. 1(b)): 

  (1) 

where Q1 and Q2 are the bending moments at the end nodes 1 and 2, and Q3 is the axial force. 

Similarly, q1 and q2 are the nodal deformational rotations and q3 is the axial elongation. Both Q 

and q are related to the six component vectors P and p (Fig. 1(a)), containing the nodal forces 

and displacements expressed in the global reference system, by applying the operators R, which 

projects P and p in the local reference system, and B, which eliminates the displacement 

components defining the rigid modes. The following relations hold: 

  (2) 

where: 

   

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

 a
t 0

2:
56

 2
9 

O
ct

ob
er

 2
01

3 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
8 

being α the angle between the local and global axes, x and X, and L denoting the element length 

(Fig. 1(a)). The section stress and deformation vectors are defined as: 

  (3) 

where N(x) is the axial force, T(x) the shear force and M(x) the bending moment, while ε(x) is the 

axial deformation along the reference axis x, δ(x) the shear deformation and χ(x) the curvature. 

Since the beam FE is composed of a series of three elements, for the definition of the relations 

governing equilibrium inside the element, and only regarding the bending components, it is 

necessary to distinguish between the moments at the end nodes of the central element, indicated 

with Q1e and Q2e, and the ones defined at the hinges, indicated with Q1h and Q2h. Obviously, a 

similar subdivision is not necessary for the axial force component Q3, since the plastic hinges are 

defined only for the flexural and shear behavior. Therefore, the following equilibrium relations 

hold: 

  (4) 

with i=1, 2. 

As regards the central element, the force-based formulation, here adopted, is based on the 

polynomial interpolation of the element section stress field: 

  (5) 
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where the vector Qe collects the stress components Q1e, Q2e and Q3 and the equilibrium matrix 

b(xe) is expressed as: 

   

being Le the length of the central element and xe the local axial coordinate with the origin located 

at the first node of the central element. When distributed loads along the element are neglected, 

constant axial and shear forces and linear variation of the bending moment along the element 

describe exactly the stress fields in the element, which satisfy equilibrium. 

Similarly, for deriving the relationships governing the kinematic, it is necessary to define the 

rotational degrees of freedom at the end nodes of the inner element and the rotations of the 

plastic hinges. The first are denoted with qie, the second with qih. As a result of series 

arrangement of the element and hinges, the following relation can be written: 

  (6) 

Furthermore, since at each end i both a bending and shear plastic hinge is located, the rotation qih 

is expressed as the sum of two contributions as: 

  (7) 

where qihb represents the rotation of the bending hinges, while qihs is the rotational contribution 

of the shear plastic hinges. The displacement degrees of freedom at the end nodes of the central 
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element, , can be evaluated on the basis of the section deformations d(xe), by 

exploiting the following integral relation: 

  (8) 

Vectors S(xe) and d(xe) are related by means of a generalized constitutive law, which may 

involve the section stiffness matrix ks(xe), or, in a force-based approach, the section flexibility 

matrix fs(xe), relating the increment of the deformation vector, , to the increment of the 

stress vector, . In the case of isotropic linear elastic behavior and constant geometrical and 

mechanical cross-section parameters along the beam axis xe, it results: 

   

where E and G are the Young's modulus and the shear elasticity modulus, respectively, and A, 

A*, I are the area, shear area and moment of inertia of the beam cross-section. By applying the 

principle of the virtual work, the relation between the nodal displacement degrees of freedom qe 

and the nodal forces Qe is derived in the form: 

  (9) 

being governed by the element flexibility matrix Fe, defined as: 
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  (10) 

As concerns the plastic hinge constitutive behavior, an elastic-plastic law is adopted and the 

incremental constitutive relationships may be written for the flexural hinges in the form: 

  (11) 

and for the shear hinges as: 

  (12) 

Since a constant interpolation has been adopted for the shear component along the element, a 

single shear plastic hinge can be considered. Note that, in order to determine the shear 

deformation governing the constitutive response of the shear hinge, the increment of the rotation 

in Eq. 12 is multiplied by a length parameter lc associated to the hinge. The quantities Fihb and 

Fihs= Fhs are the tangent flexibility coefficients of the flexural and shear hinges, respectively. By 

introducing the constitutive relationships Eqs. 9, 11 and 12 into the kinematic Eqs. 6, 7 and 8, the 

flexibility matrix of the element composed by the series of the central elastic element and the end 

plastic hinges is determined as: 
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  (13) 

Since the global solution procedure is based on the displacement method, matrix F has to be 

inverted to obtain the stiffness matrix K and the element internal forces Q have to be determined. 

2.1 Plastic hinges constitutive behavior 

2.1.1 Flexural hinges 

An elastic-plastic constitutive model with kinematic hardening is adopted for both the flexural 

and shear hinges. In particular, in the case of the flexural hinges, the moment-rotation 

relationship is written in incremental form as: 

  (14) 

where Mi is the moment at the flexural hinges located at the first (i=1) and last (i=2) node of the 

FE, respectively, evaluated by solving the elastic-plastic constitutive relations; qip is the plastic 

rotation of the hinge; Kihb is the tangent elastic-plastic stiffness coefficient. The evolution law of 

the plastic rotation is expressed for the hinge at node i as: 
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  (15) 

where the second and third rows of Eqs. 15 contain the Kuhn-Tucker loading-unloading 

conditions and the consistency condition, respectively. In particular, λib represents the inelastic 

multiplier and Fib is the plastic loading-unloading limit function, which is expressed as: 

  (16) 

with Myi denoting the yield moment and γi representing the kinematic hardening variable, whose 

evolution is governed by: 

  (17) 

being Hi the kinematic hardening coefficient. 

Aiming to employ the proposed beam FE for the seismic analysis of masonry buildings modeled 

as equivalent frames, where each wall with opening is decomposed into an assemblage of piers 

and spandrels properly connected by means of rigid elements, the evaluation of the ultimate 

moment Myi can be made according to standard seismic codes. In particular, in this paper the 

Italian seismic code (NTC 2008) is employed and the adopted formulae are reported in Appendix 

A. 
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2.1.2 Shear hinge 

The incremental constitutive law of the shear hinge is expressed in terms of the shear 

deformation, s, and the shear force, T, as: 

  (18) 

with sp denoting the plastic shear deformation and Khs the tangent stiffness coefficient. Similarly 

to the flexural hinges, the evolution process of the plastic variable sp is governed by the Kuhn-

Tucker inequalities and by the consistency condition, which appear as: 

  (19) 

where λs is the inelastic multiplier and the plastic limit function Fs is defined similarly to the case 

of the flexural hinges, that is: 

  (20) 

The evolution of the kinematic hardening variable γ is governed by: 

  (21) 

with H denoting the kinematic hardening coefficient. Concerning the evaluation of the shear 

yield threshold Ty, the Italian seismic code is followed (see Appendix A). 
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2.2 Rigid offsets introduction 

When the equivalent frame modeling procedure is used for describing the seismic response of 

masonry walls, subdivided into piers and spandrels modeled as beam FEs, it is required to 

properly reproduce the regions of the masonry walls where piers and spandrels interact. To this 

end, rigid offsets are introduced in the FE formulation. In particular, the presence of rigid offsets 

parallel and orthogonal to the element axis x are considered, as illustrated in Fig. 2. By denoting 

with  the nodal force vector at the end nodes of the rigid offsets, the following relation is 

derived: 

  (22) 

with: 

   

where: 

   

and  
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and 0 denotes the 3x3 null matrix; lxi and lyi represent the rigid offset lengths at the end i of the 

FE, parallel and orthogonal to the beam axis, respectively. 

By exploiting the virtual work equivalence, the transformation rule for the nodal displacement 

degrees of freedom is deduced as: 

  (23) 

3 Solution algorithm 

The numerical solution of the global incremental non-linear equilibrium equations, governing the 

response of the 2D frame model, follows a classical step-by-step method for the time integration 

and a standard iterative Newton-Raphson algorithm. The FB formulated FE and the developed 

solution algorithm are implemented in the general-purpose FE analysis program FEAP (Taylor 

2011), which is used to perform all the numerical analyses. The assembling procedure of the 

global stiffness matrix and of the residual vector is performed by FEAP, which requires, at the 

element level, the computation of the element stiffness matrix  and the structural 

reaction force vector . The methodology developed for the element state determination is 

schematically illustrated in Table 1. Note that, in the case of the presented FB approach, the 

element state determination procedure is more complex than for the classical displacement-based 
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formulation and it is presented in some detail, following a procedure similar to the ones proposed 

in Petrangeli and Ciampi (1997), Neuenhofer and Filippou (1998), Addessi and Ciampi (2006). 

In the following, '∆' denotes the increment of the quantities in the time step ∆t and the superscript 

'k' the value of the variables at the current Newton-Raphson iteration. After evaluating the 

current increment of the element forces ∆Qk on the basis of the increment of the element 

displacements ∆qk and the element flexibility matrix at the previous iteration Fk-1, the current 

increment of the rotations, , and shear deformation, , for the flexural and shear hinges, 

respectively, are evaluated. Then, the flexural hinge rotations, , and the shear hinge 

deformation, , are updated and the constitutive relationships are solved. Therefore, the new 

hinge flexibilities,  and , and the hinge moments and shear,  and , are calculated. 

On the basis of the current hinge flexibility coefficients and the flexibility matrix of the central 

element, Fe, the current flexibility matrix of the overall element, Fk, is updated and, finally, by its 

inversion, the new element stiffness Kk is computed. As for the element structural reaction forces 

Qk, the deformation residuals at the hinges,  and , are first determined, based on the 

difference between the equilibrated forces  and the values obtained by the 

constitutive laws,  and . Such hinge deformation residuals are transformed into the 

element deformation residual, , by summing the contributions of the flexural and shear hinges 

at each node. By pre-multiplying  by the element stiffness , a residual on the element 

structural reaction forces is calculated, which is used to compute the updated Qk. Finally, in 

order to take into account the presence of the rigid offsets and the rotation from the local 
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reference system to the global one, the transformations in Eqs. 2 and 22 are performed. Both the 

updated  and  are passed to the global code FEAP for the assembling and solution 

procedures; as the Newton-Raphson global iterations go on, also the local deformation residual 

 tends to reduce to zero and the global iteration loops at each time step are repeated until a 

norm of the solution is less than some tolerance. In particular, an energy convergence test is 

performed at the global level, according to the classical methodology implemented in FEAP, and 

the inner product of the global displacement vector and the global residual vector at the current 

iteration, normalized with respect to the corresponding value at the first iteration, is compared 

with an energy tolerance, here assumed equal to 1E-9.  Note that, since a consistent element state 

determination procedure is adopted, at the element level no iterations are needed and the 

computed element deformation residual, , is condensed into the residual on the element 

structural reaction forces and passed back at the global level. The solution of the elastic-plastic 

constitutive law for the hinges follows a predictor-corrector technique. 

4 Numerical Applications 

In the following, two examples are presented concerning an experimental prototype and a real 

full-scale masonry building and the numerical results are compared with the experimental ones 

and with other numerical FE models. 
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4.1 Pavia's test 

The first example concerns the analysis of a two-storey unreinforced masonry wall, which is a 

part of a full-scale building prototype, tested at the Pavia University. In this application the door 

wall D (Fig. 3(a)), which has been extensively studied in literature (Gambarotta and 

Lagomarsino 1997 part ii, Magenes and Della Fontana 1998, Grande et al. 2011), is analyzed. 

Two uniformly distributed vertical loads, whose values are p1=14.1 kN/m and p2=13.8 kN/m, 

respectively, are applied at the floor levels. Then, the structural model is subjected to increasing 

lateral forces, which are applied at the floor levels, keeping a 1:1 ratio between the forces at the 

first and second floor. The mechanical parameters adopted for the piers and the spandrels are 

selected in line with the Italian seismic code (NTC 2008), referring to the values prescribed for a 

good masonry, and are reported in Table 2. The wall thickness is equal to 0.25 m. The piers and 

the spandrels are modeled by the proposed beam FE, assuming for the cross-section dimensions 

the wall thickness and the pier length or the wall thickness and the spandrel height, respectively. 

In order to reproduce the rigid plane constraint due to the presence of stiff steel beams at each 

floor, the horizontal displacements of the nodes at the floors are linked to be equal. The FE 

model adopted for performing the numerical analyses is shown in Fig. 3(b), where the rigid 

offsets defined in each FE are indicated by the thick lines, whose length has been evaluated by 

exploiting the formula proposed by Dolce (1991) for the piers and considering the clear length as 

the flexible region of the spandrels. The parameter lc associated to the shear hinge is assumed 

equal to 0.01L, being L the FE length. The distributed vertical loads p1 and p2 are applied at the 

floor nodes as concentrated vertical forces. As concerns the lateral horizontal forces, F, they are 
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applied with a 1:1 ratio at the floor levels, by means of a system of stiff trusses and beams. A 

horizontal displacement is applied to the node where the two stiff beams are connected (Fig. 

3(b)), allowing to transfer two equal forces at the floor levels and to perform a displacement-

controlled analysis. 

In Fig. 4 the global response curve is reported, by depicting the total base shear versus the 

horizontal displacement measured at the second floor. On the top horizontal axis the drift values 

are reported, corresponding to the second floor displacement values reported on the bottom 

horizontal axis. The curve numerically obtained by using the beam FE presented above (solid 

line) is compared with the experimental one (triangle symbols) (Gambarotta and Lagomarsino 

1997 part ii) and with the curve evaluated by applying the multi-scale procedure proposed in De 

Bellis and Addessi (2011) (dashed line) and by adopting the material parameters reported in 

Gambarotta and Lagomarsino (1997 part ii). The results computed by means of the simplified 

frame model show satisfactory agreement with both the experimental curve and the numerical 

one, evaluated by using a 2D FE discretization. It is worthwhile noting that, although the dashed 

line curve, obtained by means of the multi-scale procedure, matches better the experimental 

results with respect to the curve evaluated with the proposed equivalent frame model (solid line), 

the computational costs of the multi-scale procedure are much higher. Moreover, the final value 

of the total base shear force for the two numerical models are less than 5% different. 

In Fig. 5 the distributions of the plastic hinges at three different loading steps are reported: Fig. 

5(a) corresponds to the top displacement u=3 mm and to the drift δu=0.053%, Fig. 5(b) to u=4 

mm and δu =0.070% and Fig. 5(c) to u=12 mm and δu =0.208%. The flexural hinge at the base of 
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the left pier and the two shear hinges in the spandrels at the first floor develop for u<3 mm; after 

that also the flexural hinge at the top of the left pier at the second floor appears (u=3 mm). The 

final distribution shows flexural hinges at the base and at the top of the left piers, at the base of 

the other two at the first floor and at the top at the second floor, as well as shear hinges in all the 

spandrels. The collapse load equal to 137 kN is attained, when the flexural hinges appear at the 

base of the three piers, and a difference of 10%, compared to the experimentally obtained value, 

is observed. The final step of the analysis corresponds to the formation of the local mechanism at 

the first floor characterized by the presence of the flexural hinges at the base of the three piers 

(Fig. 5(c)), then causing the numerical loss of convergence. 

Also the distribution of the flexural and shear hinges matches very well the experimental 

distribution of the damage and micro-fractures, as well as the ones obtained by means of much 

more sophisticated FE modeling approaches (Gambarotta and Lagomarsino 1997 part ii). In Fig. 

6 the distribution of the displacement at the two floors is reported at the three loading steps (a), 

(b) and (c), where a more pronounced interstorey drift is shown at the first floor. In Figs. 7 and 8 

the values of the axial and shear stresses, respectively, at the base of the three piers is shown at 

the same loading steps. The left and right piers undergo the minimum and maximum value of the 

axial stress, respectively, due to their location with respect to the horizontal imposed 

displacement. Since the flexural and shear strengths of the piers both depend on the axial force 

(see Appendix A), it results that the damaging mechanisms appear in the left pier before than in 

the middle and right ones, as it can be observed in Fig. 5. Instead, in Fig. 8 it is shown that shear 

stress values are higher in the middle pier due to its higher length, while the lowest values appear 
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in the left one. Note that, as the applied horizontal displacement increases, the axial and shear 

stress values decrease in the left piers and increase in the right one. 

4.2 Old masonry building 

The second example concerns an old masonry building located in Catania (Italy), Via Martoglio, 

analyzed by various researchers in the framework of The Catania Project (Liberatore 2000). In 

particular, the inner wall made of regular blocks shown in Fig. 9 is studied. It is five storey made 

of clay brick masonry and supported by reinforced concrete ring beams. The roof is supported by 

a timber structure. All the floors have a thickness of 0.30 m, while the last floor thickness is 0.16 

m. The analyzed wall is geometrically regular, except for the large opening at the center of the 

first floor. The wall is modeled by adopting the proposed FE for the piers and the spandrels 

connected by rigid offsets and by introducing standard linear elastic beam FEs for modeling the 

reinforced concrete ring beams located at the floors, with a cross section of dimensions 

0.30x0.24 m2. The adopted frame discretization is shown in Fig. 10, where the rigid offsets 

defined in each FE are indicated by the thick lines. The mechanical parameters adopted for the 

piers and the spandrels, derived on the basis of available experimental results and of previous 

numerical analyses on similar buildings in the framework of The Catania Project and adopted by 

all the research groups involved (Liberatore 2000) for analyzing the ‘Via Martoglio’ building, 

are reported in Table 2. The parameter lc is assumed equal to 0.01L, being L the FE length. In 

Table 3 the values of the total vertical loads applied at each floor are reported. In the last row the 

distribution of the seismic horizontal loads is also shown, where Fhj denotes the lateral seismic 

force at the level j and Fhtot the total base shear. As in the previous example, a displacement-
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controlled nonlinear static analysis is performed and the horizontal seismic loads are applied by 

means of a system of stiff trusses and beams, connected to the masonry wall equivalent frame at 

the floor levels (Fig. 10). 

In Fig. 11 the global response curves are reported, i.e. the total base shear versus the top 

displacement measured at the last floor. The results obtained by adopting the proposed FE 

(continuous curve without symbols) are compared with the ones presented in Liberatore (2000) 

and obtained with different numerical models. In particular, the curves with the diamond and 

triangle symbols, reported by Magenes and Braggio in Liberatore (2000), refer to the equivalent 

frame FE model proposed by Magenes and Della Fontana (1998). In such model, only the shear 

mechanisms are taken into account for the spandrels; furthermore, the curve with triangles is 

obtained by considering for the piers only the formation of flexural hinges, while the curve with 

diamonds refers to the possible formation in the piers of shear hinges. Finally, the curve with 

cross symbols, reported by Liberatore and Spera in Liberatore (2000), is referred to a different 

modeling approach, based on the so-called macro-elements and considering a no-tension 

constitutive law for the masonry (Braga and Liberatore 1990). It can be observed that the curve 

computed with the proposed FE (continuous curve) approaches very closely the one with 

diamond symbols, but a little lower ultimate load is obtained, equal to 1170 kN. It has to be noted 

that the model here presented allows the formation of both flexural and shear hinges in both the 

piers and the spandrels, thus resulting more severe than the modeling assumptions on which the 

results by Magenes and Braggio are based. In Figs. 12 (a) and (b) the distribution of the hinges in 

the frame is reported at two steps, referring to the top displacement and drift values u=0.011 m 

and δu =0.056% (a), u=0.014 m and δu =0.072% (b), respectively. After the initial linear elastic 
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behavior, flexural hinges appear in some piers located at the last floor and shear hinges in the 

spandrels at the first and second floor (Fig. 12 (a)). The formation of the hinges proceeds rapidly 

and the collapse load is reached when flexural hinges appear at the base of all the piers located at 

the last floor (Fig. 12 (b)), thus causing the formation of a local mechanism. As a consequence, 

the loss of convergence at the final step stops the analysis. Therefore, such results confirm the 

ones also obtained by Liberatore and Spera in Liberatore (2000) that the last floor is a weak part 

of the wall, due to the low values of the applied vertical loads and to the absence of the 

reinforced concrete ring beams. Finally, in Fig. 13 the displacement distribution along the height 

of the wall is reported at the two steps (a) and (b), where it appears that the interstorey drift is 

more pronounced at the first three floors. 

5 Conclusions 

An equivalent frame model for the analysis of the nonlinear in-plane response of masonry walls 

under lateral forces, simulating the seismic actions, has been presented. In particular, an 

equilibrium-based FE formulation has been proposed for the beam elements modeling the 

masonry piers and spandrels. The lumped hinge approach has been adopted in order to model the 

nonlinear constitutive response of the masonry, introducing at the end sections of the beam 

elements both flexural and shear plastic hinges. The numerical applications performed on both an 

experimental masonry wall and on an old real masonry building have showed that the proposed 

simplified modeling procedure is able to satisfactorily reproduce the global pushover response 

curves and the distribution of the damage in the walls, although with a very low computational 

burden. The adoption of the force-based formulation for the beam FE has allowed to avoid the 
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shear locking problems, affecting the classical displacement-based Timoshenko beam FEs, and 

simultaneously to obtain an efficient numerical procedure, characterized by very good 

convergence properties. 

As for the numerical algorithm implemented for solving the element state determination problem 

at each loading time step, the adopted consistent iteration scheme has allowed to further reduce 

the computational costs, avoiding to perform the local iterative loops needed to determine the 

nonlinear response at the element level. 

Thus, the proposed model may be usefully employed for design purpose, representing an 

efficient and robust tool for evaluating the pushover response curves of the masonry walls with 

low computational costs. Furthermore, it may be easily extended to the 3D analysis of masonry 

building under seismic loads. Further developments will allow the adoption of a cyclic 

constitutive relationship for the flexural and shear lumped hinges, taking into account the 

progressive damaging mechanisms affecting the strength and stiffness mechanical properties of 

the masonry and making it possible to perform nonlinear dynamic analyses under the seismic 

cyclic loading conditions. 

Appendix A 

The evaluation of the flexural strength of the piers, i.e. the ultimate moments Myi calculated at 

the end sections of the piers, can be made according to the Italian seismic standard code, 

assuming an equivalent stress-block diagram for masonry in compression. In the following the 

subscript ‘i’ is neglected. For rectangular sections it results: 
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  (24) 

where l and t are the pier length and thickness, respectively, σ0 is the mean vertical stress equal 

to N/(lt) and fc is the masonry compressive strength. 

The ultimate displacement is assumed equal to 0.8% of the height of the panel. 

As concerns the spandrels, the following expression is adopted for the ultimate moment: 

  (25) 

with Hp the minimum value between the tensile strength of the horizontal element in tension 

(ring beams or chains) and 0.4fhht, being fh the masonry compressive strength along the 

horizontal direction and h the height of the spandrel cross section. 

The shear strength of the piers, calculated according to the Italian seismic code, results: 

  (26) 

where l' is the length of the compressed zone in the panel end sections and fv is the masonry shear 

strength evaluated as: 

  (27) 
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being fv0 the masonry mean shear strength and σn the mean vertical stress acting on the 

compressed zone of the panel. The value of fv is bounded by the shear strength limit value fvLIM. 

The ultimate displacement is assumed equal to 0.4% of the height of the panel. 

In the case of old masonry, characterized by irregular fabric or weak blocks, the shear strength 

can be computed, for example, by means of the Turnsek-Cacovic formula (Turnsek and Cacovic 

1970) and it results: 

  (28) 

where ft is the tensile strength for diagonal cracking and b is defined as: 

  (29) 

As for the spandrels, the ultimate value of the shear is computed as: 

  (30) 
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List of figures 

Fig. 1: Beam FE: nodal displacements (bottom) and forces (top) in the global (a) and local (b) 
reference system. 
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Fig. 2: FE with rigid offsets. 
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Fig. 3: Pavia's test: structural model (a); FE model (b). 
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Fig. 4: Pavia's test: global response curves. 
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Fig. 5: Pavia's test: distribution of the plastic hinges at the three loading steps reported in Fig. 4, 
u=3 mm, u=4 mm, u=12 mm. 
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Fig. 6: Pavia's test: floor displacement distribution at the three loading steps reported in Fig. 4, 
u=3 mm, u=4 mm, u=12 mm. 
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Fig. 7: Pavia's test: axial stresses at the base of the piers at the three loading steps reported in Fig. 
4, u=3 mm, u=4 mm, u=12 mm. 
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Fig. 8: Pavia's test: shear stresses at the base of the piers at the three loading steps reported in 
Fig. 4, u=3 mm, u=4 mm, u=12 mm. 
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Fig. 9: Via Martoglio masonry wall: structural model. 
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Fig. 10: Via Martoglio masonry wall: FE model. 
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Fig. 11: Via Martoglio masonry wall: global response curves. 
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Fig. 12: Via Martoglio masonry wall: distribution of the plastic hinges at the steps (a) and (b) 
reported in Fig.11, u=0.011 m, u=0.014 m. 
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Fig. 13: Via Martoglio masonry wall: floor displacement distribution at the two steps reported in 
Fig.11, u=0.011 m, u=0.014 m.  
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Table 1: Element state determination procedure at the iteration 'k'. 

 

 global displacement increment 

 local displacement increment 

 local nodal force increment 

 
deformation increments at the 

hinges 

 
solution of the constitutive 

relationships of the hinges 

 current element flexibility matrix 

 
rotational residual at the flexural 

hinge i 
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rotational residual at the shear 

hinge 

 

vector of the nodal displacement 

residual 

 
updated element nodal force 

vector 

 updated element stiffness matrix 

 updated global nodal force vector 
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Table 2: Mechanical parameters. 

Pavia's test 

E (kN/m2) G (kN/m2)     

1.8E6 0.6E6     

fc (kN/m2) ft (kN/m2) fh (kN/m2) fv0 (kN/m2) Hp (kN/m2) fvLIM (kN/m2) 

2800 96.6 1400 64.4 204 2200 

Via Martoglio masonry wall 

E (kN/m2) G (kN/m2)     

1.6E6 0.3E6     

fc (kN/m2) ft (kN/m2) fh (kN/m2) fv0 (kN/m2) Hp (kN/m2) fvLIM (kN/m2) 

6000 225 3000 150 97.18 2200 
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Table 3: Via Martoglio masonry wall: applied load values. 

Floor level 1 2, 3 4 5 

Masonry dead load (kN) 504 470 365 128 

Floor load (kN) 286 353 345 53 

Total load (kN) 790 823 710 181 

Seismic load Fhj/Fhtot 0.101 0.194, 0.283 0.320 0.101 
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