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a b s t r a c t

The mechanical behavior of soft matter is characterized by large shape changes, often accompanied by
small changes of elastic energy; non-linear elasticity, with large, inhomogeneous, and anisotropic
distortions, that may evolve in time, proved to be an effective modeling tool for many of such soft
materials. Here, we deal with the definition of an appropriate strain measure, called the elastic metric,
upon which the elastic energy density can be defined. Moreover, we discuss two key issues about
distortions: one deals with the notion of compatible distortions, that is, distortion fields yielding a global
configuration without any change of the elastic energy; the other concerns the symmetries of the
material responses. We also present few selected examples of non-linear, anisotropic, elastic response
where distortions play a key role.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Both the modelling and the fabrication of three-dimensional elastic
structures whose shapes can result from a given imposed pattern of
growth or swelling are issues largely investigated in the recent years,
and continue to represent challenges for physicists and experimental-
ists [1–7]. Another topic strictly related concerns the chances of getting
the desired shapes without changing the elastic energy of the body;
and it has received less attention thus far, even if its implications in the
design of smart elastic structures are noteworthy.

Here, we have in mind the large, in general non-isotropic,
shape changes which can be realized in elastic matter as a conseq-
uence of many different actuation mechanisms. The mechanical
framework to describe these continuous large shape transformations
of elastic materials is the theory of non-linear, inhomogeneous,
anisotropic elasticity with distortions. The notion of distortion has
been introduced more than 60 years ago to describe the emergence
of plastic response in solids [8–11], and since then received very
much attention in materials science, see [12] and the extensive
references therein. The same notion has been proposed to model
finite growth in soft matter [13], and more recently [14], the theory
has been augmented with an additional balance law for the accretive
forces, independent of the standard force balance, ruling the time
evolution of distortions; applications of that can be found in [15,16].

A lot of physical applications of the finite elasticity with distor-
tions may be found in the recent scientific literature on soft matter
concerning isotropic–nematic transitions in gels [2], growth of elastic
tissues [5], swelling or shrinkage of hydrogels [17], voltage-induced
deformations in ionic polymer–metal composites [18], growth of
plants [19], muscle activation [20]. Also, general investigations on
stability issues related to volumetric growth in soft materials,
particularly important when rapid changes of shape due to instability
phenomena are involved, have been recently carried out in [21–24].

Here, we subsume the key ideas presented so far in the realm
of both plasticity and growth, using a same unifying language.
We review constitutive issues; we discuss the geometrical impli-
cations of finite elasticity with distortions, following [25–29,16],
and tackle the problem of compatibility, discussing the existence
and the possible representation of compatible distortions, realiz-
able without any change of the elastic energy [30]. We present two
examples of material response, one isotropic, the other one
transversely isotropic, to highlight the important fact that distor-
tions sharing the same metric can be distinguished by anisotropic
material response. In the end, through a simple yet not trivial
example, we discuss the role of the orthogonal component of the
distortion fields, typically not largely considered.

2. Kinematics

Let us fix a few basic notions and notations; any further details
are given in Appendix. For us E is the three-dimensional Euclidean
ambient space, and the vector space VE is the corresponding
translation space of E. We denote with Lin¼ VE⊗VE ¼Sym⊕Skw
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the space of double tensors on VE (linear maps of VE into itself) and
with LIN¼ Lin⊗Lin the space of fourth-order tensors on Lin.

The two-layer kinematics which is behind the theory of finite
elasticity with distortions is basically reviewed from [14]; in
particular, a detailed discussion on the elastic metric which
naturally appears within that format is here given.

2.1. Placement

Given a body manifold B, we define placement of the body a
smooth embedding of B onto E, described by the field

p : B-E ð2:1Þ

y↦x¼ pðyÞ ¼ yþ uðyÞ; ð2:2Þ
associating to any material point y∈B, its position x¼ pðyÞ∈E in
space. The vector-valued field u is the displacement field, and the
set pðBÞ describes an actual configuration of B. The tangent space
TyðBÞ to B at y is called body element at y; given a point y and a
placement p, the corresponding gradient F, cofactor Fn, and
Jacobian determinant J, defined as

F≔∇p¼ Iþ ∇u; Fn≔JF−⊤; J≔detðFÞ; ð2:3Þ
perform key geometrical functions on the body element at y.
Precisely, given a;b; c∈TyðBÞ and built the hierarchy of (infinitesi-
mally) small one-, two-, and three-dimensional parallelepipedal
cells corresponding to

(i) a line element, gauged by the vector a,
(ii) an area element (facet) ða;bÞ, gauged by its Gibbs representa-

tive a� b,
(iii) a volume element ða;b; cÞ, gauged by its (oriented) volume

a� b � c,

the images of the line, area, and volume element under the action
of p are gauged respectively by

(i) FðyÞa;
(ii) FnðyÞða� bÞ ¼ ðFðyÞaÞ � ðFðyÞbÞ;
(iii) JðyÞða� b � cÞ ¼ ðFðyÞaÞ � ðFðyÞbÞ � ðFðyÞcÞ;

and are attached to x¼ pðyÞ.

2.2. Distortions

Distortions are described by a smooth tensor-valued field

Fo : B-Lin; ð2:4Þ

with positive Jacobian determinant Jo≔det Fo40; they act on the
body element at y, as F and its products do. However, while the
notion of deformation gradient only involves kinematics, distor-
tions have a two-fold nature: a kinematical nature, as they add
further information on the kinematics of TyðBÞ which is indepen-
dent on the placement of y (precisely, we have 9 further degrees of
freedom); a dynamical nature, as they describe a relaxed state, i.e. a
zero-stress, of the body element. We quote verbatim from [14]:
“Fo cannot even be conceived without the standard notion of stress
and some constitutive information on it.” Thus, the use of the term
“relaxed state”, that here anticipates the specification of any free
energy, calls attention to the fact the distortions do not alter the
value of the free-energy density of body elements.

It is of the essence to emphasize the fact that distortions are not
required to be compatible, that is, they are not required to be the
gradient of any diffeomorphism from B; as a consequence, a zero-
stress state may not be realizable, not even locally. If such is the
case, any actual configuration of the body will be accompanied by
a change of its free energy (see Fig. 1).

We discuss the transformations of a body element due to the
pair ðF;FoÞ starting from a unit material fiber ðy; eÞ∈B � VE at y
(jej ¼ ffiffiffiffiffiffiffiffiffi

e � ep ¼ 1), and considering (see Fig. 2)

ðy; eoÞ ¼ ðy; FoðyÞeÞ; the distorted fiber at y;
ðx; fÞ ¼ ðx; FðyÞeÞ; the actual fiber at x¼ pðyÞ: ð2:5Þ

The last line prompts the introduction of the notion of elastic
deformation Fe as the difference between the distortion Fo and the
visible deformation F in the sense of the multiplicative composi-
tion:

Fe ¼ FF−1o ; ð2:6Þ
whose introduction dates back to [9,10]. The elastic deformation Fe
maps distorted fibers eo onto their actual state f; as Fo, also Fe is
not, in general, the gradient of any field. The notion of fiber leads
naturally into the notion of stretch [31]. Firstly, we define the
change in length of a fiber as the length of its image under a
deformation, minus its original length, divided by its length,
i.e. given the fiber e and the deformation F, we get

change in length of e under F¼ jFej−jej
jej ¼ jFej

jej −1;

then, denote the ratio jFej=jej as the stretch of the fiber e under F.
At the same point y∈B, there are different stretches of different
fibers, and we have

λðeÞ ¼ jfj
jej ¼ Fe ¼ ðF⊤F � e⊗eÞ1=2; stretch of e under F;

������
λoðeÞ ¼

jeoj
jej ¼ Foe ¼ ðF⊤oFo � e⊗eÞ1=2; stretch of e under Fo;

������

Fig. 1. To envision the notion of distortions, consider a stack of volume elements
attached to three neighboring body points yi, i¼ 1;2;3 (left); then, cut and distort
each body element by a smooth field Fo . The new body elements are now in a
relaxed state, but in general, they cannot be glued together. To realize an actual
configuration (right), a further strain is necessary.

Fig. 2. This triangular diagram is based on the exploitation of the unit fiber e at y
into its material ðy; eÞ and distorted image ðy; eoÞ; the corresponding actual image
ðx; fÞ of the same fiber realizes the third vertex of the triangle.
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λeðeoÞ ¼
jfj
jeoj

¼ jFej
jFoej

¼ λðeÞλoðeÞ−1; elastic stretch of eo: ð2:7Þ

The elastic stretch defined in (2.7)3 measures the stretching of f
with respect to eo; the formula λeðeoÞ ¼ λðeÞλ−1o ðeÞ is a difference
between the two stretches λ and λo in the sense of the multi-
plicative composition, exactly as (2.6) is.

2.3. Strain measures

As stated in [31], the use of C¼ F⊤F as strain measure in finite
elasticity is a straightforward consequence of (2.7)1; inspired by
this, we rewrite equation (2.7)3 as follows:

λeðeoÞ ¼
jfj
jeoj

¼ jFeeoj
jeoj

¼
�
F⊤e Fe �

eo
jeoj

⊗
eo
jeoj

�1=2

ð2:8Þ

and say that Ce ¼ F⊤eFe is the local and exact strain measure to be
used in the theory of finite elasticity with distortions. Indeed, the
components of Ce in the (unit) direction eo=jeoj yields the (square
of the) actual length of a fiber which, once distorted, has that
direction. In the end, we have the following different metric
tensors to be used as (left Cauchy–Green) strain measures:

Co ¼ F⊤oFo; metric induced by the distortion Fo;

C¼ F⊤F; metric induced by the placement F;

Ce ¼ F⊤e Fe elastic metric: ð2:9Þ
Due to the requirements made upon p and Fo, all the three tensor
fields in (2.9) are positive definite; it means that the body
manifold B is naturally equipped with four different metric
tensors. The trivial metric I on B corresponding to the trivial
embedding pðyÞ ¼ y of B into E, which implies that F¼ I, and the
actual metric C induced by the placement p, are standard in the
finite elasticity theory; Co is the intrinsic metric1 of B induced by
the distortions Fo. In general, Co is not Euclidean, that is, flat
Riemannian, but Riemannian in the general sense, a feature strictly
related to the fact that the field Fo is not required to be compatible;
as a consequence, the body manifold B, endowed with such a
metric, cannot be embedded in the 3D Euclidean space.

In the end, the elastic metric Ce gauges the elastic strain from
the strain C and the distortion Fo of body elements; in particular,
we can rewrite (2.9)3 as follows:

Ce ¼ F−⊤o CF−1o ; ð2:10Þ
we can define additional strain measures, as the Green–Saint
Venant strain Ee

Ee ¼ 1
2ðCe−IÞ: ð2:11Þ

It is worth noting that the strain Ee can be rewritten as

Ee ¼ F−⊤o ðE−EoÞF−1o ¼ F−⊤o
1
2ðC−CoÞF−1o ; ð2:12Þ

being E¼ 1
2 ðC−IÞ, Eo ¼ 1

2 ðCo−IÞ. Different proposal may be made to
measure the elastic strain, as example 1

2 ðC−CoÞ, see [32]. Therein, C
is called the actual metric, and Co the reference, or target, metric
(see also [3]); their difference, which is not a metric tensor, not
being positive-definite, is called the deviation of the actual metric
from the reference metric. It is easy to verify that the Green–Saint
Venant strain Ee and this last strain measure 1

2 ðC−CoÞ satisfy (see
Appendix)

Eeeo � eo ¼ 1
2ðC−CoÞe � e: ð2:13Þ

3. Constitutive issue

There are two main constitutive assumptions behind the theory
of finite elasticity with distortions, which are discussed in the next
two subsections. The first deals with the frame-indifference
requirements, which have to be re-formulated to account for the
presence of the additional kinematical descriptor Fo; the second
involves the representation of the free-energy density when
distortions are present.

3.1. Frame indifference

The requirement that the material response be invariant under
a change of observer stands among the main axioms of mechanics.
Following [14], it is assumed that a change of observer defined by
Q∈Rot, being Rot the group of proper orthogonal transforma-
tions of VE, transforms the pair ðF; FoÞ as follows:

ðF;FoÞ↦ðQF; FoÞ: ð3:1Þ
It follows from (3.1), that a change of observer transforms the
elastic deformation Fe as Fe↦QFe and the metrics as

C¼ F⊤F ↦ F⊤Q⊤QF¼ C;

Co ¼ F⊤o Fo ↦ F⊤oFo ¼ Co;

Ce ¼ F−⊤o CF−1o ↦ Ce: ð3:2Þ
Likewise, given (2.11), Ee↦Ee. It follows that any free-energy
density having as argument the elastic metric Ce, or the strain
measure Ee, is frame invariant, that is, attains the same value
under any change of observer; invariance of the energy, in turns,
implies invariance and symmetry of the (elastic part of the) actual
stress [33].

3.2. Hyperelastic response

It is assumed that the free-energy density ψo per unit relaxed
volume dVo ¼ Jo dV , being dV the volume element on B, is a single-
valued scalar function of the elastic deformation Fe

ψoðyÞ ¼ ψoðFeðyÞÞ: ð3:3Þ
Given ψo, and granted for (2.6), the strain energy density per unit
reference volume ψ can be represented as a function of F¼ FeFo,
defined by

ψðyÞ ¼ JoðyÞψoðFeðyÞÞ: ð3:4Þ
The standard tools of continuum mechanics deliver the following
stress measures (see Fig. 3):

Soe ¼
∂ψo

∂Fe
; energetic stress per unit relaxed volume;

Se ¼ SoeFn

o; reference stress ða:k:a: Piola–Kirchhoff stressÞ i:e:
the pull back of Soe;

Te ¼ SeðFnÞ−1; actual stress ða:k:a: Cauchy stressÞ i:e: the push

forward of Se: ð3:5Þ
The subscripts “e” point to the fact that we are only dealing with
the energetic component of the stress; possible internal constraint
would involve extra stress-components.

Granted for (3.3), we introduce the frame invariant free-energy
density ϕo as

ϕoðyÞ ¼ ϕoðCeðyÞÞ ¼ ψoðFeðyÞÞ: ð3:6Þ
In terms of ϕo, the energetic stress Soe per unit relaxed volume
admits the following representation:

Soe ¼ 2Fe
∂ϕo

∂Ce
¼ Fe

∂ϕo

∂Ee
: ð3:7Þ

1 We borrow this name from [27]; therein, the notion of distortions, dubbed
local configurations, is described with K¼ F−1o , while the intrinsic metric is given in
terms of the inverse of the left Cauchy–Green strain B−1 ¼K−⊤K−1, to be identified
with our Co .
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The derivative of the energy with respect to Ee is usually called
second Piola–Kirchhoff stress

∂ϕo

∂Ee
¼ F−1e Soe: ð3:8Þ

The stress Te is then given by

Te ¼ 1
J
SeF⊤ ¼ 1

J
SoeFn

oF
⊤ ¼ 1

J
Fe

∂ϕo

∂Ee
Fn

oF
⊤ ¼ 1

Je
Fe

∂ϕo

∂Ee
F⊤e : ð3:9Þ

4. Compatibility

A key issue in the theory of elastic materials with large
distortions is the existence of relaxed configurations correspond-
ing to an assigned field Fo. These are special solutions of the elastic
problem as they correspond to a minimum of energy and to zero
stress [25,26].

4.1. Compatible distortions

Given a smooth, positive-definite symmetric tensor field G on a
simply connected domain B, the necessary and sufficient condition
for G to be a metric tensor of a realizable configuration, i.e. for the
existence of a placement p : B-E such that

∇p⊤∇p¼G ð4:1Þ
is that the associated Riemann curvature tensor R¼RðGÞ be null.
If it is the case, G is an Euclidean metric tensor, and the placement p
satisfying (4.1) is unique, up to a global isometry [28]. Based on these
results, we define a smooth distortion field Fo as compatible, if there
exist a placement pc such that

∇p⊤c ∇pc ¼ Co; with Co ¼ F⊤oFo: ð4:2Þ
In this case, Co is an Euclidean metric tensor, and an unique
configuration pcðBÞ is realizable, provided pc satisfies any possible
boundary condition; more important, as shown in the next, pcðBÞ is
relaxed, i.e. stress free.2 The multiplicative decomposition of ∇pc and

Fo into symmetric and orthogonal components through the polar
decomposition theorem reveals that

∇pc ¼ RcUc and Fo ¼ RoUo: ð4:3Þ
Hence, the vanishing of the Riemann curvature associated to Co

grants for the existence of an unique placement pc such that only the
symmetric (positive definite) components of ∇pc and Fo are equals

RðCoÞ ¼ 0 ⇔ ð∇p⊤∇pcÞ1=2 ¼Uc ¼Uo ¼ ðFToFoÞ1=2: ð4:4Þ
Thus, the compatibility of Fo has two straightforward consequences,
below highlighted (see Fig. 4).

� The elastic deformation Fe is a rotation

RðCoÞ ¼ 0 ⇒ Fe ¼∇pcF
−1
o ¼ RcUcU�1

o R⊤
o ¼ RcR⊤

o∈Rot; ð4:5Þ
thus, the elastic metric is the identity and the elastic stress is
identically null

Fe ¼ RcR⊤
o∈Rot ⇒ Ce ¼ F⊤e Fe ¼ I ⇒

∂ψoðIÞ
∂Fe

¼ 0: ð4:6Þ

� The set of all the compatible distortions sharing a same metric
Co constitutes an equivalence class [14,27]: if Fo is compatible,
then, for any Q∈Rot, also QFo is compatible, as both yield the
same intrinsic metric Co.

In the end, given a compatible distortion field Fo, only its
symmetric component Uo determines the unique placement pc
satisfying (4.2) [34]. Nevertheless, both its components have a
fundamental role: the stretch Uo provides the unique relaxed
configuration, whereas the rotation Ro determines its material
response. The equation RðCoÞ ¼ 0 yields a tool to characterize a
compatible fields Fo. We do not write explicitly the formula
relating a metric tensor to its Riemann curvature; this formula,
that can be easily found on many differential geometry books (see
[28,35] and references therein), does not add any further compre-
hension to our discussions. We only note here that the Riemann
curvature R has six strict components in a three-dimensional
space: the equation RðCoÞ ¼ 0 consists of a system of six partial
differential equations, involving the six strict components of Uo.
We note that although the six equations are linearly independent,
they are not differentially independent, being constrained by the
three Bianchis identities. This fact agree with the heuristic con-
sideration that the six differential conditions identify, in the
manifold of the six unknown scalar fields, a sub-manifold para-
metrized only by the three components of the placement pc [36].

5. Material response

As largely discussed in the previous sections, the local state of a
body element at y∈B is knownwhen the pair ðFðyÞ; FoðyÞÞ of tensors
describing its visible and relaxed state, respectively, is given.
At any point, given the energy function ϕo depending on Ce, the
equivalence class of local states to which there correspond the
same value of the energy defines the material symmetries of the
local response at that point. Precisely, fixed a point y∈B and
considered a transformation of the local state ðF;FoÞ such that

ðF; FoÞ↦ðF̂; F̂oÞ; ð5:1Þ
it holds Fe ¼ FF−1o and F̂e ¼ F̂F̂

−1
o ; then, if

ϕoðCeÞ ¼ ϕoðĈeÞ with Ce ¼ FTeFe and Ĉe ¼ F̂
⊤
e F̂e; ð5:2Þ

the transformation defined by the map (5.1) is called a material
symmetry of the body element. We first discuss the material
symmetry with reference to the local state ðF; IÞ, corresponding to

Fig. 3. Each energy density and stress measure are placed in the triangular
diagram; hence, the stress measures related through pull back and push forward
operations are highlighted.

Fig. 4. Given a compatible distortion Fo ¼RoUo , a unique relaxed configuration
pcðBÞ is realized. The fiber fc at xc ¼ pcðyÞ is the image of e at y under ∇pc; however,
it can be also viewed as the image of eo at y under the rotation RcðyÞR⊤

oðyÞ. A further
deformation ~F from pcðBÞ yields an elastic deformation Fe ¼ FF−1o which depends on
Ro , too: Fe ¼ ~F Rc R⊤

o .

2 In the following, we shall mention the uniqueness of pc without the further
specification “up to a global isometry”
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a trivially relaxed body element (Fo ¼ I); hence, given Q∈Orth,
being Orth the group of orthogonal transformations of VE,
consider the transformation

ðF; IÞ↦ðFQ ; IÞ; ð5:3Þ
to whom it corresponds Fe ¼ F and F̂e ¼ FQ . Moreover, being Fo≡I,
it holds Ce ¼ C and Ĉe ¼Q ⊤CQ . With this, we define the group of
material symmetry Gðy;IÞ of ϕo, relative to the body element at y
relaxed by Fo ¼ I, as the group of orthogonal tensors Q such that

ϕoðCÞ ¼ ϕoðQ⊤CQ Þ; ∀C∈Symþ: ð5:4Þ
When we consider a body element y relaxed by a generic Fo,
natural questions arise about the corresponding group Gðy;FoÞ of
material symmetry relative to the body element at y relaxed by Fo.
The next two subsections present a first discussion on this subject.

5.1. Symmetry-preserving distortions

An approach largely followed in literature [3,4,20,14,27,37–39]
is based on the assumption that all the symmetries of a local state
ðF; IÞ are preserved once the body element has been relaxed by
Fo≠I, or, equivalently, Gðy;FoÞ ¼ Gðy;IÞ. From the point of view of the
transformations (5.1), this assumption implies that the action of a
material symmetry Q on the local state ðF; FoÞ is such that

ðF; FoÞ↦ðFQ ;Q⊤FoQ Þ; ð5:5Þ
with this, it holds Fe ¼ FF−1o and F̂e ¼ FeQ . As Ĉe ¼Q ⊤CeQ , the
material symmetry group Gðy;FoÞ is defined as the set of Q∈Orth

such that

ϕoðCeÞ ¼ ϕoðQ⊤CeQ Þ; ∀ Ce∈Symþ; ð5:6Þ
i.e. comparing Eqs. (5.5) and (5.6), what turns out is that the
function ϕo has the same symmetries when evaluated with respect
to a trivially relaxed state or not.

5.2. Symmetry-varying distortions

A different approach is possible, based on the assumption that
any transformation of the local state does not affect the relaxed
state, i.e. the transformation (5.1) takes the form

ðF; FoÞ↦ðFQ ; FoÞ; ð5:7Þ
with this, it holds Fe ¼ FF−1o and F̂e ¼ FeQ̂ . Hence, as

Ĉe ¼ Q̂
⊤
Ce Q̂ ; Q̂ ¼ FoQF−1o ; ð5:8Þ

the group of material symmetry Ĝ ðy;FoÞ of ϕo at y is defined as the
group of linear transformations Q̂ ¼ Fo Q F−1o , with Q∈Gðy;IÞ, such
that

ϕoðCeÞ ¼ ϕoðQ̂
⊤
CeQ̂ Þ; ∀ Ce∈Symþ: ð5:9Þ

From here, a special representation problem should be solved,
whose solution depends on Fo. It is beyond the aims of this paper.
We only note that spherical distortions such as Fo ¼ gI do not vary
the symmetry of the material response relative to ðy; IÞ, whichever
be Gðy;IÞ; moreover, if Gðy;IÞ ¼Rot and Fo∈Rot, then the material
symmetry is still unchanged.

6. Discussion

We discuss a few examples of elastic constitutive prescriptions
based upon the assumption of symmetry-preserving distortions,
for which (5.4) holds, and close the section with an example
dealing with the response of relaxed configurations realized
through compatible distortions. We consider two well-known
material responses: isotropic and transversely isotropic.

6.1. Isotropic material response

The material response is isotropic when Gðy;IÞ ¼ Gðy;FoÞ ¼Rot;
the representation theorem for scalar-valued isotropic functions
[40] dictates that the elastic energy ϕo is a function of the three
principal invariants ðI1; I2; I3Þ of Ce

I1ðCeÞ ¼ Ce � I; I2ðCeÞ ¼ 1
2½ðCe � IÞ2−C2

e � I�; I3ðCeÞ ¼ detðCeÞ: ð6:1Þ
Being Ce ¼ F−To CF−1o , it holds

I1ðCeÞ ¼ C � C−1
o ; I2ðCeÞ ¼

1
2
½ðC � C−1

o Þ2−CoC � CCo�; I3ðCeÞ ¼
 

J
Jo

!2

¼ J2e ;

ð6:2Þ
hence, the orthogonal component Ro of Fo does not affect the
isotropic material response, that is, isotropic materials do not
distinguish within the equivalence class of the distortions sharing
the same intrinsic metric Co. Indeed, for any Q∈Rot, given the
elastic metric Ce ¼ FTeFe with Fe ¼ FF−1o , the elastic metric corre-
sponding to FðQFoÞ−1 is QCeQ

T : Ce and QCeQ
T share the same three

principal invariants. A well-known example is the NH energy,
defined for elastically incompressible materials as

ϕoNH ¼ 1
2 μðCe � I−3Þ ¼ 1

2μðC � C−1
o −3Þ; Je ¼ 1: ð6:3Þ

6.2. Transversely isotropic material response

The material response is transversely isotropic with respect to
the direction a when Gðy;IÞ ¼ Gðy;FoÞ ¼ fRotðaÞ;RefðaÞg, where
RotðaÞ is the subgroup of Rot whose elements are the rotations
of axis a, and RefðaÞ ¼ I−2a=jaj⊗a=jaj are the reflections in any
plane containing a; in such a case, ϕo is a function of five invariants
of Ce, namely, the three listed in (6.2), plus two additional ones
[41]

I4ðCe; aÞ ¼ Cea � a; I5ðCe;aÞ ¼ Cea � Cea: ð6:4Þ
The request (5.6) can be easily verified checking that: for any
Q∈RotðaÞ,
I4ðQ⊤CeQ ; aÞ ¼Q⊤CeQa � a¼ CeQa �Qa¼ Cea � a¼ I4ðCe; aÞ; ð6:5Þ
and I5ðQ ⊤CeQ ; aÞ ¼ I5ðCe; aÞ. Importantly, a transversely isotropic
response does depend on Ro as, with reference to the I4-example,

I4ðCe; aÞ ¼ Cea � a¼U−1
o C U−1

o � R⊤
o ða⊗aÞRo; ð6:6Þ

hence, distortions sharing the same metric Co can be distinguished
by the material response. A well known example of transversely
isotropic response is obtained by adding two anisotropic terms to
a Neo-Hookean energy [42]. A second example, which will be
discussed in the following, is the Kirchhoff–Saint Venant (KSV)
material response, effective when displacements are large but
strains are small. The KSV strain energy is a positive-definite
quadratic form of the Green–Saint Venant strain Ee, based on a
symmetric, positive-definite, fourth-order tensor C, called the
elasticity tensor

ψoKSV ðEeÞ ¼ 1
2CEe � Ee: ð6:7Þ

Such an energy yields a linear relation between the second Piola–
Kirchhoff stress and strain measure Ee

∂ϕo

∂Ee
¼CEe: ð6:8Þ

From (3.5) and (3.7), it follows:

Soe ¼
∂ψo

∂Fe
¼ Fe

∂ψo

∂Ee
¼ FeCEe; Se ¼ SoeFn

o ¼ FeðCEeÞFn

o: ð6:9Þ

The material symmetries of the KSV energy are expressed in terms
of the properties of the elasticity tensor: Q∈Orth is a material
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symmetry for ψoKSV ðEeÞ if and only if

CðQEeQ
⊤Þ ¼Q ðCEeÞQ⊤; ð6:10Þ

the response is isotropic or transversely isotropic if (6.10) holds
with Q∈Rot or Q∈fRotðaÞ;RefðaÞg, respectively. The KSV elastic
energy (6.7) can also be represented as a quadratic form of the
strain measure ðC−CoÞ=2, by using the fourth-order tensor3 ~C,
conjugate of C with respect to F−1o ⊠F−1o
~C ¼ ðF−1o ⊠F−1o ÞCðF−⊤o ⊠F−⊤o Þ: ð6:11Þ
It holds

CEe � Ee ¼ ~CðC−CoÞ=2 � ðC−CoÞ=2: ð6:12Þ
When the material response is isotropic (yet it does not distin-
guish between distortions sharing the same intrinsic metric), the
representation form of the elasticity tensor is

C¼ μIs þ λI⊗I; ð6:13Þ
with μ and λ the Lamé moduli, and Is the forth-order tensor
projecting Lin onto Sym; thus, the isotropic KSV energy writes as

ψoKSV ¼ μjEej2 þ λðTrðEeÞÞ2: ð6:14Þ
The isotropic KSV response is largely applied in literature [3,1],
typically, by representing the energy as a quadratic form of the
strain ðC−CoÞ=2; in such a case, (6.15) with (6.13) yields

~C ¼ μðC−1
0 ⊠C−1

o Þs þ λC−1
o ⊗C−1

o : ð6:15Þ
Let us now consider a response transversely isotropic with respect
to the direction a; given the orthonormal basis fei; i¼ 1;2;3g
of VE, with e3 ¼ a, we can build upon it an appropriate orthonormal
basis of Sym to represent the elasticity tensor C [31]: fCi; i¼ 1;4;
Dα; α¼ 1;2g with

ffiffiffi
2

p
Cα ¼ eα⊗e3 þ e3⊗eα,

ffiffiffi
2

p
C3 ¼ e1⊗e2 þ e2⊗e1,ffiffiffi

2
p

C4 ¼ e1⊗e1−e2⊗e2Þ, and D1 ¼ e3⊗e3,
ffiffiffi
2

p
D2 ¼ e1⊗e1 þ e2⊗e2Þ.

The transversely isotropic elasticity tensor is represented in terms
of five material moduli γ1; γ2, and δ1; δ2; δ3 as follows:

C¼ γ1ðC1⊗C1 þ C2⊗C2Þ þ γ2ðC3⊗C3 þ C4⊗C4Þ þD;

with D¼ δ1ðD1⊗D1Þ þ δ2ðD1⊗D2 þ D2⊗D1Þ þ δ3ðD2⊗D2Þ:
ð6:16Þ

The transverse isotropic KSV energy writes as

ψoKSV ¼ γ1ðE2e13 þ E2e23Þ þ γ2E
2
e12 þ

1
2
δ1E

2
e33 þ

1ffiffiffi
2

p δ2Ee33ðEe11 þ Ee22Þ

þ1
2
ðδ3 þ γ2ÞðE2e11 þ E2e22Þ þ ðδ3−γ2ÞEe11Ee22; ð6:17Þ

with Eeij ¼ Eeei � ej. As done for the isotropic response, we can
compute the fourth-order tensor ~C conjugate of (6.16); in such a
case, each of the summands of C is transformed as follows:

Ci⊗Ci↦F−1o CiF
−⊤
o ⊗F−1o CiF

−⊤
o ; Di⊗Di↦F−1o DiF

−⊤
o ⊗D−1

o DiF
−⊤
o ; ð6:18Þ

6.3. Finite bending of a block

We discuss the finite bending of a rectangular parallelepiped,
which is initially bended and relaxed, and then elastically stretched.
Given the orthonormal frame of E, fo∈E; ei∈VE; jei � ej ¼ δij; i¼ 1;2;3g,
let us identify the body B with the region

B¼ fE∋y¼ oþ yiei; y1∈ð−w=2;w=2Þ; y2∈ð−l=2; l=2Þ; y3∈ð−h=2;h=2Þg:
ð6:19Þ

Then, we consider a special distortion field FoðyÞ ¼ Roðy2ÞUoðy3Þ with

Roðy2Þ ¼ cosðαoðy2ÞÞI þ sinðαoðy2ÞÞW þ e1⊗e1;

Uoðy3Þ ¼ λðy3ÞI þ e1⊗e1; ð6:20Þ

being I ¼ I−e1⊗e1, and W ¼ e3∧e2.4 Let us note that this special
distortion is plane, i.e. Foe1 ¼ e1, and yields a transversely isotropic
intrinsic metric Co, parameterized by a single scalar field

CoðyÞ ¼ λ2ðy3ÞI þ e1⊗e1: ð6:21Þ
We use the compatibility condition RðCoÞ ¼ 0 to characterize a
class of functions y3↦λðy3Þ, delivering a compatible metric. Being
the distortion plane, the only non-vanishing component of the
Riemann curvature is the sectional curvature with respect to the
plane of unit normal e1, which identifies the Gaussian curvature
KðI Co IÞ of the plane metric I Co I ¼ λ2I. Hence, we look for
solutions of the equation

RðCoÞ ¼ KðICoIÞ ¼ 0: ð6:22Þ
The Brioschi's formula [28] gives a representation of KðICoIÞwhich,
used into the equation (6.22), yields the following ODE for the
function λ:

λ′ðy3Þ2−λðy3Þλ″ðy3Þ
λðy3Þ4

¼ 0; ð6:23Þ

whose solution is

λðy3Þ ¼ a expðby3Þ; ð6:24Þ
with a; b arbitrary constants. It is easy to verify that the unique
placement pc which realizes the distortion field (6.20), made
compatible by (6.24), is

pcðyÞ ¼ y1e1 þ
1
a
λðy3Þðsinðby2Þe2 þ cosðby2Þe3Þ: ð6:25Þ

Then, we can use the polar decomposition of ∇pc ¼ RcUc , where
Uc ¼Uo, to compute the orthogonal part Rc≠Ro

Rcðy2Þ ¼ cos αcðy2ÞI þ sin αcðy2ÞW
þ e1⊗e1; αcðy2Þ ¼−by2: ð6:26Þ

In Fig. 5 we sketch the proposed example. At left, we draw a cross-
section of B in the plane ðe2; e3Þ, with a superimposed Cartesian
grid; at the bottomwe show a cut view of the same grid, deformed
by the distortion field (6.20) (depicted here with Ro ¼ I for the
sake of simplicity): it represents as the body elements would like
to stay once relaxed by the selected distortion field, i.e. as they
would stay once cut away one from each other.

The only way they can be glued together is represented at
middle: we have a global bending. It is worth noting that the
bending curvature of this relaxed configuration is entirely deter-
mined by Uo, and cannot depend on the local orientation of any
single piece. Thus, in general, the elastic deformation Fe is a
rotation: Fe ¼ ∇pcF

−1
o ¼ RcR⊤

o ¼ Re; in our case, is a rotation with
axis e1 and angle αe ¼ αc−αo, which admits the following repre-
sentation:

Re ¼ cosðαc−αoÞI þ sinðαc−αoÞW þ e1⊗e1: ð6:27Þ
As previously stated, this relative rotation does not determine

the global relaxed configuration described by pc, but affects its
material response. This can be experimented by superimposing a
further deformation ~F; indeed, the new elastic deformation
measured from the relaxed state determined by Fo, is

~Fe ¼ ~FRe: ð6:28Þ
We choose a plane, isochoric, and uniaxial deformation ~F

~F ¼ ~λe2⊗e2 þ ~λ
−1ðe3⊗e3Þ þ e1⊗e1; ð6:29Þ

the corresponding elastic metric ~Ce is

~Ce ¼ R⊤
e
~CRe with ~C ¼ ~λ

2
e2⊗e2 þ ~λ

−2
e3⊗e3ð Þ þ e1⊗e1: ð6:30Þ

3 See the Appendix for further details. 4 Shortly, e3∧e2 ¼ 2 skw ðe3⊗e2Þ.
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We now assume a transversely isotropic material response,
namely, the aforementioned example [42] based on the augmen-
ted Neo-Hookean energy

ϕoTIðCeÞ ¼ ϕoNHðCeÞ þ ðϕ4ðI4ðCeÞÞ þ ϕ5ðI5ðCeÞÞÞf ðλeðaÞÞ; Je ¼ 1;

ð6:31Þ
with the anisotropic contributions expressed through the quad-
ratic functions

ϕiðIiðCeÞÞ ¼ 1
2μiðIiðCeÞ−1Þ2; i¼ 4;5; ð6:32Þ

and the step function f defined as:5

f ðλeÞ ¼
0; λe≤1;
1; λe41:

(
ð6:33Þ

From (3.18) and (3.20), and being the anisotropic contribution
effective only for positive stretches along a, i.e., for λeðaÞ41, it
holds

Soe ¼ μFe þ 2Fe
∂ϕ4

∂Ce
þ 2Fe

∂ϕ5

∂Ce

� �
f ðλeðaÞÞ ¼ μFe þ ðSoe4 þ Soe5Þf ðλeðaÞÞ:

ð6:34Þ
Let the transverse isotropy axis defined by the vector field

a¼ −sin αa e2 þ cos αa e3: ð6:35Þ

Then, with ae ¼ Rea, it holds

I1 ¼ Ce � I¼ ~C � I¼ 1þ ~λ
2 þ ~λ

4

~λ
2 ; ð6:36Þ

I4 ¼ Cea � a¼ ~Cae � ae ¼
1þ ~λ

4 þ ð1−~λ
4Þ cosð2ðαa þ αeÞÞ
2~λ

2 ; ð6:37Þ

I5 ¼ Cea � Cea¼ ~Cae � ~Cae ¼
1þ ~λ

8 þ ð1−~λ
8Þ cosð2ðαa þ αeÞÞ
2~λ

4 : ð6:38Þ

It is evident from (6.36)–(6.38) that the isotropic part of the
material response is not affected by αo; on the contrary, the
anisotropic response is sensitive to an actual anisotropy direction
determined by the angle α¼ αa þ αe, between the transverse
isotropy direction assumed in the realized compatible configura-
tion and the vertical direction (see Fig. 6).

From Eqs. (3.5), (3.7), and (6.34), the Cauchy stress follows as
T¼ T1 þ T4 þ T5 with:

T1 ¼ μð ~B−1
3trð ~BÞIÞ; ð6:39Þ

T4 ¼ 2μ4ðI4−1Þð ~Fee⊗ee ~F
⊤
−1
3I4IÞ; ð6:40Þ

T5 ¼ 2μ5ðI5−1Þð ~Fð ~Cee⊗ee þ ee⊗ ~CeeÞ ~F
⊤
−2
3I5IÞ; ð6:41Þ

and ~B ¼ ~F ~F
T
.

Let us assume as transverse isotropy direction αa ¼ 0; with this,
Fig. 7 shows the plane components T22; T33; T23 of the Cauchy
stress versus λ for different values of αo, at the center of the body
B; with αoðyÞ ¼ −αoy, we obtain an actual transverse isotropic
direction ð−ðb−αoÞyÞ. For λ¼ 1, ~F ¼ I and, being the starting
configuration a relaxed configuration, it holds T¼ 0, as it is shown
in Fig. 7.

Fig. 8 shows the T22; T33; T23 patterns along the beam axis, for
λ¼ 0:8, and for different values of αo.

7. Conclusions and future directions

We discussed the notion of distortions and the definition of an
appropriate elastic metric, a strain measure upon which an elastic
energy density can be defined, focussing on two issues: the
compatibility of distortions, and the symmetries of the material
response. We also presented a simple, yet non-trivial example, on
how a distortion field, even if compatible, may affect the response
of anisotropic materials.

Fig. 5. A cross-section of the bar-like body in the plane of unit normal e1 is represented, with a superimposed Cartesian grid (left); a cut view of the same grid is shown, as
deformed by the distortion field (6.20) (corresponding to Ro ¼ I for the sake of simplicity) (middle down); the gluing together operation delivers a relaxed configuration
through a global finite bending (middle top); the configuration realized through a further deformation is superimposed on the relaxed configuration (right).

Fig. 6. The transversely isotropic direction is represented as a double arrow, having
angle αa with the vertical direction (left); the distortion Fo ¼ RoUo would realize a
rotation of the same fiber: the angle shared with the vertical is αa−αo (middle); the
relaxed configuration which is realized determines a further rotation αe ¼ αc−αo of
this direction which in the end share the angle αa þ αe with the vertical direction
(right).

5 Typically, the step function makes the anisotropic contribution effective only
when the elastic stretch of the material fiber a is positive.
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Our work aimed at highlighting a few questions related to
compatibility issues which, even if largely discussed in Literature
in the past, have now got a new position within the limit of the
morphing of soft responsive materials. The authors are involved in
a long term research on the mathematical model of active
biological tissues, especially in the modelling of muscle, where
the question concerning the compatibility of muscle contractions
may have important biological implications; as example: does a
muscle store elastic energy when it shortens upon activation?
Thus, future points of interest deal with design of biomimetic
devices, and the theoretical framework of elasticity with distor-
tions appears now to be mature enough to improve our ability to
produce controlled motions of soft materials, by mimicking
natural muscles.
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Appendix A

Given the 3D Euclidean ambient space E, let VE be the
associated vector space, Lin¼ VE⊗VE ¼Sym⊕Skw be the space
of (second-order) tensors on VE (linear maps of VE into itself), and
LIN¼ Lin⊗Lin be the space of (fourth-order) tensors on Lin

(linear maps of Lin into itself). For a;b∈VE, we introduce the
dyadic product of a and b as the element of Lin defined by

ða⊗bÞv¼ ðb � vÞa; ∀v∈VE: ðA:1Þ
Fixed an orthonormal basis fei; i¼ 1;2;3g of VE, the corresponding
orthonormal basis of Lin is fei⊗ej; i; j¼ 1;2;3g and, for any A∈Lin,
it holds

Aij ¼A � ei⊗ej: ðA:2Þ
For A;B∈Lin, we introduce the dyadic product of A and B as the
element of LIN defined by

ðA⊗BÞ½C� ¼ ðB � CÞA; ∀C∈Lin; ðA:3Þ

with this, we build the orthonormal basis of LIN induced by the
basis of VE as fðei⊗ejÞ⊗ðek⊗elÞ; i; j; k; l¼ 1;2;3g. For any A∈LIN, it
holds

Aijhk ¼A½eh⊗ek� � ei⊗ej: ðA:4Þ

Once defined the conjugation product of the ordered pair
ðA;BÞ∈Lin� Lin as the fourth-order tensor

ðA⊠BÞ½C� ¼ ACBT ; ∀C∈Lin; ðA:5Þ

the identity I in LIN can be defined as I¼ I⊠I. It holds Iijhk ¼ δih δjk,
being δij the Kronecker symbol, whose value is 1 if i¼ j, 0 if i≠j. Two
special elements of LIN are the projectors

sym ½A� ¼ 1
2 ðA þ AT Þ and skw ½A� ¼ 1

2ðA−AT Þ: ðA:6Þ

Following [31], we denote as Is ¼ I○2sym ; it holds ðIsÞijhk ¼
δihδjk þ δikδjh.

A different and in general not orthonormal basis of VE is the
one induced by the linear transformation Fo as feoi ¼ Foei; i¼
1;2;3g; it can be easily verified that the dual basis is feio ¼ F−To ei;
i¼ 1;2;3g. It holds

eoi � eoj ¼ eoij ¼ ðCoÞij and eio � ejo ¼ eijo ¼ ðC−1
o Þij; ðA:7Þ

with ðCoÞij and ðC−1
o Þij the components of Co and C−1

o with respect to
the orthonormal basis fei; i¼ 1;2;3g. Two vectors u and v allowing
for the same (covariant) components with respect to the two
bases, i.e. u � eoi ¼ v � ei, are related through the following equation:
u¼ F−To v. Likewise, two tensors U and V with the same (covariant)
components with respect to the two bases, i.e.

U � eoi⊗eoj ¼ V � ei⊗ej; ðA:8Þ

are related through the following:

U¼ F−To VF−1o : ðA:9Þ

Finally, two fourth-order tensor U and V with the same (con-
trovariant) components with respect to the two bases, i.e.

U½eko⊗elo� � eio⊗ejo ¼V½ek⊗el� � ei⊗ej; ðA:10Þ

are related through the equation

~C ¼ ðF−1o ⊠F−1o ÞCðF−To ⊠F−To Þ: ðA:11Þ
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Fig. 7. In plane component of the Cauchy stress tensor T22; T33; T23 in the center of the beam versus the intensity ~λ of the superimposed uniaxial deformation for different
values of the preferred orientation: αo ¼ 0 (solid), αo ¼ π=6 (dashed), αo ¼ π=4 (dotted).
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Fig. 8. Patterns of T22 ; T33 ; T23 along the beam axis for ~λ ¼ 0:8, and for different values of the preferred orientation: αo ¼ 0 (solid), αo ¼ π=6 (dashed), αo ¼ π=4 (dotted).
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If U is represented in terms of its spectral representation

U¼ ∑
6

i ¼ 1
γi Ci⊗Ci; ðA:12Þ

being Ci � Cj ¼ δij and where it is understood that proper numbers
are repeated as many times as their algebraic multiplicity, then V

admits the representation

V¼ ∑
6

i ¼ 1
γi
~Ci⊗ ~Ci; ~C i ¼ F−1o CiF

−T
o ; ðA:13Þ

as can be easily verified using Eqs. (A.11) and (A.12). However,
V ~Ck≠γk ~Ck, i.e. (A.13) is not a spectral representation for V. When
fourth-order tensors such as U and V (related through Eq. (A.11))
are evaluated on second-order tensor such as U and V (related
through Eq. (A.8)), it holds

U½U� � U¼V½V� � V: ðA:14Þ
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