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Anisotropic swelling of thin gel sheets
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We describe the anisotropic swelling within the Flory–Rehner thermodynamic model through an extension of the elastic com-
ponent of the free–energy, which takes into account the oriented hampering of the swelling–induced deformations due to the
presence of stiffer fibers. We also characterize the homogeneous free–swelling solutions of the corresponding anisotropic stress–
diffusion problem, and discuss an asymptotic approximation of the key equations, which allows to explicitly derive the anisotropic
solution of the problem. We propose a proof–of–concept of our model, realizing thin bilayered gel sheets with layers having dif-
ferent anisotropic structures. In particular, for seedpod–like sheets, we observe and quantitatively measure the helicoid versus
ribbon transition determined by the aspect ratio of the composite sheet.

1 Introduction

Soft active materials have been largely employed to realize
actuators where deformations and displacements are triggered
through a wide range of external stimuli such as electric field,
pH, temperature, solvent absorption.1–4 The effectiveness of
these actuators critically depends on the capability of achiev-
ing prescribed changes in shape and size. In particular, in
gel–based actuators, the shape and the size of the structures
are related to the spatial distribution of solvent inside the gel
and to the magnitude of the solvent uptake. Currently, sev-
eral approaches to the shape control of swellable materials
are being pursued, which involve materials in the form of
thin non–homogeneous sheets realized through a controlled
assembly of gels which separately admit a different swelling
degree.5–8 It has been shown that these non–homogeneous
structures can deliver homogeneous free-swelling processes
which can be isotropic5 as well as anisotropic,6 depending on
the architecture of the assembly. Photo–patterned multi–strips
thin films belong to this last class: they undergo anisotropic
expansion under free–swelling conditions, when the size of
the strips goes below a critical threshold. The films act as
a composite material containing stiffer low–swelling strips
and softer high–swelling strips; swelling–induced deforma-
tions are smaller in the direction parallel to the interfaces than
along the orthogonal direction.6

Starting from these observations, we describe the
anisotropic swelling within the Flory–Rehner thermodynamic

† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See DOI:
10.1039/b000000x/
aSapienza Università di Roma, via Eudossiana 18, Roma, Italy. Fax: +39
064884852; Tel: +39 06 44585242; E-mail: paola.nardinocchi@uniroma1.it
bUniversità Roma Tre, via della Vasca Navale 84, Roma, Italy.

model through an extension of the elastic component of the
free–energy, which takes into account the oriented hamper-
ing of the swelling–induced deformations due to the presence
of stiffer fibers. We also characterize the homogeneous free–
swelling solutions of the corresponding anisotropic stress–
diffusion problem; we present an asymptotic approximation
of the key equations, which allows to explicitly derive the
anisotropic solution of the problem in terms of the stretch λ‖
along the fiber direction and of the stretch λ⊥ in the orthog-
onal plane. Then, we discuss a constitutive identification of
our fiber–reinforced homogeneous material defined by the ex-
tended Flory–Rehner thermodynamic model with the limit
material corresponding to the assembly of narrow softer and
stiffer strips, based on the experiments already presented in
literature.6 Precisely, a relationship between the elastic mod-
uli of the limit homogeneous material and those of the low–
swelling and high–swelling gels is determined; with this, the
analysis of systems based on assemblies of narrow strips of
softer and stiffer gels, such as the bilayer systems discussed in
the next sections, can be implemented.

Inspired by plant world, where anisotropic swelling is re-
alized in different systems through the coupling of cellulose
fibrils and highly swellable matrix9 and controlled via the ori-
entation of the fibrils within the matrix, we analyze thin bi-
layered gel sheets where the layers have different anisotropic
structures. We discuss the swelling–induced change of shape
of pinecone–like sheets and seedpod–like sheets, correspond-
ing to systems showing bending and twisting deformation
modes, respectively.10 In this last case, we observe a transition
from helicoid–like shapes to ribbon–like shapes, depending on
the aspect ratio of the bilayered sheet. This kind of behavior
has been already observed in nature with reference to differ-
ent physical situation,10–12 and different modeling have been
proposed which neglect the elastic contribution of swelling–
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induced deformations. Noteworthy, in our modeling helicoid–
like and ribbon–like shapes come from the elastic deformation
of composite sheets which, due to the anisotropic structure of
their components, undergo anisotropic swelling.

2 The extended Flory–Rehner model

The Flory–Rehner model13,14 for stress diffusion in gels is
based on a representation form of the free energy φ(Fd ,cd),
which depends on the deformation gradient Fd from the initial
dry configuration of the polymer gel, and on the molar solvent
concentration cd per unit dry volume. Precisely, it accounts
additively for the elastic energy of the polymer network and
for the polymer–solvent mixing energy:

φ(Fd ,cd) =
1

2
G(Fd ·Fd −3)+

RT

Ω
h(cd) , (2.1)

with

h(cd) = Ωcd ln
(

Ωcd

1+Ωcd

)

+χ(T )
Ωcd

1+Ωcd
, (2.2)

being G the shear modulus of the dry polymer, T the tempera-
ture, Ω the solvent molar volume, R the universal gas constant,
and χ a dimensionless parameter, possibly depending on tem-
perature, which represents the dis–affinity between the poly-
mer and solvent, whose physical interpretation at the micro-
scopic level relies on the lattice theory for polymer solutions
which relates χ to the free-energy excess due to the mixing
of solvent and polymer.∗ Key features of φ are the follow-
ings: (i) φ is a density per unit volume of the dry polymer;
(ii) the elastic contribution hampers swelling; (iii) the mixing
contribution favors swelling. The molecular incompressibility
hypothesis of both the polymer and the solvent implies that
detFd = 1+Ωcd , that is, changes in volume are only due to
solvent absorption. The isotropic structure of φ determines
locally isotropic swelling processes. In particular, under free
conditions (unconstrained gels) swelling processes only in-
volve a change in size, if homogeneous gels are considered.

We imagine to put reinforcements (fibers) into swellable
polymer gels, and create a composite whose shape changes
can be programmed adjusting fibers orientation. To describe
the equilibrium shapes of these gels, we propose a revised ver-
sion of the Flory–Rehner free energy, which accounts for the
anisotropic elasticity of the polymer network due to the stiff
fibers that hamper swelling along their direction:

φ ani(Fd ,cd) = φ(Fd ,cd)+
1

2
Gγ (Fd e ·Fd e−1)2 , (2.3)

∗The polymer–solvent dimensionless mixing energy is often represented
through its density h/(1 + Ωcd) per unit current volume of the polymer–
solvent system (see Ref. 15).

with γ a stiffening parameter and the unit vector field e as the
fiber direction. The idea of describing the effects of elastic
anisotropic response by adding energetic contributions based
on some invariants of deformations, as the second summand
in (2.3), was introduced in the early ′90s16 to describe the me-
chanical behavior of anisotropic material, and the mechani-
cal meaning of the parameter γ has been largely investigated
through deformation tests17. Thenceforth, it has been largely
adopted in the Literature dealing with biological anisotropic
materials, together with more complex constitutive models,
always based on the so–called structural models of the elas-
tic energy18. The constitutive equations delivering both the
reference stress S (aka first Piola–Kirchhoff stress) and the
chemical potential µ come from thermodynamic issues and
prescribe that

S = GFd +2Gγ (Fd e ·Fd e−1)Fd e⊗ e− pF!
d , (2.4)

µ = RT
(

ln
Ωcd

1+Ωcd
+

1

1+Ωcd
+

χ

(1+Ωcd)2

)

+Ω p ,

where F!
d = (detFd)F

−T
d and the indeterminate pressure field

p can be interpreted as the reaction associated to the volumet-
ric constraint.19

The unconstrained fibered gel immersed in a solvent bath
of chemical potential µext attains its equilibrium conditions
when S satisfies the boundary conditions concerning the pos-
sible boundary tractions and µ is homogeneous within the gel
and equal to µext .

3 Anisotropic free–swelling solutions

We start by looking for homogeneous anisotropic swelling for
a fibered parallelepiped by setting

Fd = λ‖ e⊗ e+λ⊥ Ǐ , and cd =
1

Ω
(λ‖λ 2

⊥−1) , (3.5)

with λ‖ and λ⊥ the swelling ratio along the fiber direction and

in the orthogonal plane, respectively, J = λ‖ λ 2
⊥ the swelling

ratio, and Ǐ = I− e⊗ e. With this, equations (2.4) deliver

S‖ = Se · e = Gλ‖+2Gγ (λ 2
‖ −1)λ‖ − pλ 2

⊥ , (3.6)

S⊥ = S · Ǐ = Gλ⊥− pλ‖ λ⊥ , (3.7)

for the stress component along the fiber direction and in the
orthogonal plane, respectively, and

µ = RT
(

ln
λ‖ λ 2

⊥−1

λ‖ λ 2
⊥

+
1

λ‖ λ 2
⊥
+

χ

(λ‖,λ
2
⊥)

2

)

+Ω p , (3.8)

2 | 1–9
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1.5

2

2.5

λ⊥

λ
‖

Fig. 1 On the plane (λ‖,λ⊥) we report the isoline S⊥ = 0 (solid,

red) and the isolines S‖ = 0 (dashed, blue) for different values of γ .

For a given γ , anisotropic free swelling is determined by the

intersection point of the isolines S⊥ = 0 and S‖ = 0. The plot shows

four of such points, corresponding to γ = 0,0.1,1,10 (triangle,

square, circle, diamond); the elastic modulus is G = 1 MPa.

for the chemical potential. Homogeneous solutions (λ‖,λ⊥, p)
of the problem satisfy the following three equations

S‖ = Šp(λ‖,λ⊥, p) = σ‖ , (3.9)

S⊥ = Št(λ‖,λ⊥, p) = σ⊥ , (3.10)

µ = µ̌(λ‖,λ⊥, p) = µext , (3.11)

where σ‖ and σ⊥ are the boundary tractions on the faces of
unit normal e, and on the other faces of the parallelepiped,
respectively.

Once p is solved from equation (3.11) and inserted into
equations (3.9) and (3.10), solutions (λ‖,λ⊥) can be repre-
sented in the λ‖ −λ⊥ plane as the intersection points of the σ‖
and σ⊥ stress isolines. In particular, for σ‖ = σ⊥ = 0, free
swelling anisotropic solutions are recovered and shown in Fig-
ure 1. Therein, we fix G = 1 MPa, Ω = 6 · 10−5 m3/ mol,
χ = 0.2, T = 293 K, and R = 8.31 J/ mol K; moreover, we
set µext = 0, and note that the stress component S⊥ does not
depend on the stiffening parameter γ (see the solid red line)
whereas the isolines S‖ = 0 change with γ (see the dashed
blue lines). We show the anisotropic solutions corresponding
to four different values of γ , identified by triangle, square, cir-
cle, diamond for γ = 0,0.1,1,10, respectively. In particular,
for γ = 0, the free–swelling isotropic solution is recovered,
that is, λ‖ = λ⊥; by increasing γ , that is, the stiffness of the
fibers, the swelling ratio λ‖ decreases whereas the swelling
ratio λ⊥ increases, thus yielding an anisotropic deformation.

20 40 60 80 100
1

1.5

2

2.5

3

γ

λ
‖

(d
as

h
ed

),
λ
⊥

(s
ol

id
)

Fig. 2 Anisotropic enhancement: the anisotropic swelling increases

with the parameter γ , and this effect is more pronounced for low

values of the shear modulus G. Both λ‖ and λ⊥ approach very fast

to their asymptotic values: λ‖ → 1 for any G, while the asymptotic

value of λ⊥ depends on G. The plot shows λ⊥ (solid), and λ‖
(dashed) versus γ for G = 1 MPa (circles), and G = 0.1 MPa

(squares). The constant dashed-lines represent the isotropic

solutions.

It is worth noting that, in the framework of the Flory-Rehner
theory, the chemical potential µext of the solvent bath, together
with the elastic properties of the material G and γ , determine
the free swelling state at equilibrium, and thus, the value of
the swelling ratio J; in particular, the lower the shear modulus
G, the higher the swelling ratio J. The effect of the material
parameter γ is that of hampering the strain along fibers direc-
tion; thus, for γ →∞ the material becomes infinitely stiff along
that direction, and λ‖ → 1, for any G. Concurrently, the whole
swelling is realised through an expansion in the plane orthogo-
nal to the fibers direction, and λ⊥ →

√
J. Figure 2 shows how

the anisotropic swelling increases with the parameter γ , and
how this effect is more pronounced for low values of the shear
modulus G: λ‖ (dashed), and λ⊥ (solid) are plotted against γ
for G = 1 MPa (circles), and G = 0.1 MPa (squares).

Following the asymptotic approximation already presented
in Ref. 8, equations (3.6)–(3.8) and (3.9)–(3.11) may be rear-
ranged to give

GΩ

RT
)
(1

2
−χ

)λ‖

J2
=
(1

2
−χ

)

λ−5
‖ (1+2γ (λ 2

‖ −1))−2 ,

(3.12)
up to O(λ−2

‖ λ−6
⊥ ), when σ‖ = σ⊥ = µext = 0, and GΩ/RT *

1. The equation is highly nonlinear in λ‖, and cannot be solved
explicitly; however, the asymptotic behavior of the ratios λ‖
and λ⊥ when γ → ∞ may be derived. As J = λ‖ λ 2

⊥ > 0, we

1–9 | 3
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Fig. 3 Asympotic values of λ⊥ versus shear modulus G (red, solid),

compared with its explicit estimate λ⊥ = α G−1/4 (blue, dashed).

conclude that λ‖ > 0. Therefore, there must exist a lower
bound for λ‖ as γ increases, that is dλ‖/dγ = 0 as γ → ∞.
Then, deriving equation (3.12) with respect to γ and setting
dλ‖/dγ = 0 yields λ‖ → 1. Moreover, as J = λ‖λ 2

⊥, we con-

clude λ⊥ →
√

J. Finally, when λ‖ = 1, equation (3.12) yields

lim
γ→∞

λ⊥ = α G−1/4 , α =
( (1/2−χ)RT

Ω

)1/4
. (3.13)

The comparison between this asymptotic estimate and the nu-
merical solution is shown in Figure 3: the agreement is excel-
lent as long as GΩ/RT * 1.

3.1 The limit material

Recently, it was discussed the swelling of photo–crosslinkable
hydrogel sheets, patterned with alternating parallel strips of
material with high and low equilibrium extents of swelling;
these sheets are manufactured through a programmed varia-
tion of the degree of crosslinking, realized by changing the
dose of UV light. It was shown that those photo–patterned
sheets deform by rolling around the axis perpendicular to the
interface between high– and low– swelling regions; in par-
ticular, when the strip width falls below a critical size propor-
tional to the film thickness, the patterned sheets instead remain
flat, undergoing anisotropic swelling.6 In this limit, the mate-
rial can be homogenized and described by our revised Flory–
Rehner free energy assuming the director field e parallel to the
longitudinal axis of the strips.

We discuss through a simple three–steps constitutive iden-
tification model, based on the work presented in Ref. 6,
the relationship between the elastic constants (G,γ) of the

Gh/Gl

λh/λl λ‖, λ⊥

G, γa

b c

d

Flory
anisotropic

Flory
isotropic

experiment

inference

1

2

3

Fig. 4 Inference of the relation Gh/Gl → (G, γ). The path from (a)

to (d) is the following: given the ratio Gh/Gl , the Flory model for

isotropic gels yields the ratio λh/λl ; the experiment in Ref. 6 yields

the map λh/λl → (λ‖,λ⊥); finally, the extended Flory model for

anisotropic gels furnishes the final step (λ‖,λ⊥) → (G, γ).

anisotropic material presented in the previous section and the
elastic moduli of the materials in the high– and low– swelling
regions (Figure 4 shows a cartoon of the three–steps proce-
dure: 1,2,3.). The first step (1) consists in assuming that the
high and low swelling gel materials, when swollen separately,
follow the standard Flory–Rehner model; λh and λl are the
swelling ratios, respectively. Hence, the ratio of the corre-
sponding shear moduli is determined as

Gh

Gl
)
(λh

λl

)−5
. (3.14)

The second step (2) consists in using the relationships experi-
mentally determined in Ref. 6 between the ratio λh/λl and the
anisotropic swelling ratios λ‖ and λ⊥ (see figure (9)B in Ref.
6). The third step (3) consists in assembling our equations
(3.9)–(3.11) to get

λ 2
⊥ = (1+2γ(λ 2

‖ −1))λ 2
‖ , (3.15)

GΩ
1

λ‖
= −RT

(

ln
λ‖ λ 2

⊥−1

λ‖ λ 2
⊥

+
1

λ‖ λ 2
⊥
+

χ

(λ‖ λ 2
⊥)

2

)

,

where we assumed σ‖ = σ⊥ = 0, and in deriving the pair
(G,γ) corresponding to the pair (λ‖,λ⊥). The three steps al-
low to identify a relationship between the ratio Gh/Gl and the
pair (G,γ), are shown in Figure 5. Given the elastic moduli
of the softer and stiffer strips, the pair (G,γ) of the homo-
geneous fibered material corresponding to the assembly with
very narrow strips can be determined. We observe that for
Gh/Gl = 1, that is for a homogeneous (and isotropic) mate-
rial, we get γ = 0 and G ) 2.9 MPa, in a good agreement with

4 | 1–9
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Fig. 5 Shear modulus G (circle, blue) and stiffening parameter γ
(triangle, red) of the homogeneous limit material versus the ratio

Gh/Gl of the shear moduli of the high–swelling and low–swelling

gels.

the value G = Gl ) 2.98 MPa determined from the asymptotic
approximation prescribed by the Flory model when λ 2

l = 2.1
as in Ref. 6.

4 Bilayered anisotropic systems

In plant world, anisotropic swelling is realized through the
coupling of cellulose fibrils and highly swellable matrix9 and
controlled via the orientation of the fibrils within the matrix,
so realizing different deformation modes. In Ref. 10, plant
cell walls architecture is divided into two categories according
to bending or twisting deformation modes of the correspond-
ing seed dispersal units, described as follows. The pinecone
scale is an elongated, bilayer structure, comprised roughly of a
lower section with strong reinforcement consisting of stiff cel-
lulose microfibrils perpendicular to the long axis of the scale,
and an upper section with reinforcement along the long axis of
the scale, see cartoon in Figure 6(a). Upon drying, these cell
walls show an anisotropic shrinkage with minor deformation
in the axial direction on the upper side and in the direction or-
thogonal to the cell axis on the lower side; the combined action
on the two layers leads to a bending of the scale, which opens
the cone.9,20 Likewise, orchid tree seedpods present the in-
ner layer of the pod valve made of fiber cells oriented roughly
at 45◦ to the pod axis and the outer layer made of elongated
cells oriented perpendicularly to the inner fiber cells. When
drying, the seedpod of orchid tree opens with its two halves
twisting helically away from each other.10 Inspired by these
natural systems, we discuss the deformation modes of thin bi-

layered and swellable structures, when fibers are differently
oriented in the two homogeneous fibered layers. Different
three–dimensional configurations can be realized, depending
on the orientation of the stiffer fibers in the two layers of the
structure; here, we only present and discuss the transition from
flat to curved shapes suffered by pinecone–like and seedpod–
like sheets under free swelling conditions.

Given a bilayer sheet, we fix a cartesian orthonormal basis
(e1,e2,e3) such that the unit vector e1 spans the longitudinal
axis of the sheet and e3 identifies the unit normal m to the mid
surface of the sheet; the corresponding coordinate system is
denoted as (x1,x2,x3). The thicknesses of the top and bottom
layers are ht and hb, respectively; w, L, and h = ht +hb are the
width, the length, and the total thickness of the sheet.

4.1 Pinecone–like sheets

The anisotropic structure of the two layers in pinecone–like
thin sheets is shown in Figure 6 (panel a, top). Stiffer fibers
are aligned to the longitudinal axis of the sheet in the top
layer whereas are orthogonal to the sheet mid surface in the
bottom layer, that is, e ≡ e1 and e ≡ e3 in the top and bot-
tom layers, respectively. As it is well known, the ratios ht/hb

and Gt/Gb of thicknesses and shear moduli are key parame-
ters for the mechanical behavior of the composite sheet.21,22

In a swelling–induced bending, also the longitudinal swelling
ratio mismatch λot − λob has a decisive role in determining
the amount of bending, being λot and λob the longitudinal
swelling ratio that the top and bottom layers would have sep-
arately, determined in this case by8

λot = λ‖ and λob = λ⊥ . (4.16)

We assume Gt = Gb = G and γt = γb = γ , that is, the two
layers only differ one from the other due to the orientation
of the fibers. Moreover, we assume that the swelling ratio
orthogonal to the sheet longitudinal axis do not contribute to
bending. With this, and with reference to the structural model
presented and discussed in Ref. 8, we set

λ (x3) = Λo(1+ x3Λoκ) (4.17)

for the longitudinal stretch suffered by the composite sheet
during a bending with uniform axis stretch Λo and axis curva-
ture κ; and

σt(x3) = 3G(λ (x3)/λ‖ −1) , σb(x3) = 3G(λ (x3)/λ⊥−1) ,
(4.18)

for the longitudinal stresses on the top and bottom layers, re-
spectively. In absence of any forces and torques, the total lon-
gitudinal force and the total torque on the sheet have to be
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with κo = (1/h)(λ 2
⊥−λ 2

‖ )/(λ
2
⊥+λ 2

‖ ). Neglecting the elastic

contribution of the fibers, the (dimensionless) elastic energy
of such a shell is

E =
∫ L

0

∫ w/2

−w/2

(

(1−ν)|a−ao|2 +ν tr2(a−ao)
)

dx1,dx2

+
h2

3

∫ L

0

∫ w/2

−w/2

(

(1−ν)|b−bo|2 +ν tr2(b−bo)
)

dx1,dx2 ,

with a and b the first and second fundamental forms of the
realized surface; the first row describes the stretching contri-
bution whereas the second row the bending contribution. The
competition between stretching–dominated regime (a = ao)
and bending–dominated regimes (b = bo) determines the re-
alization of ribbon and helicoids, respectively. In Ref. 11 it
was shown that the critical aspect ratio w/h determining a
the threshold between a stretching–dominated and a bending–
dominated regime is equal to 1/

√
κoh. In Ref. 11, κo must be

measured experimentally; we can determine it analytically by
taking advantage of the 1D model for pinecones. Indeed, as
the model describe a 1D planar Kirchhoff beam without ex-
ternal forces, the natural curvature is completely realized and
it is therefore equal to κ . We therefore cut the seedpod–like
sheets at 45◦ so as to get the beam represented in Figure 6
(a, bottom). In this way, the natural curvature κo that cannot
be realized in 2D geometries, turns out to be the curvature at-
tained by the beam. Precisely, for µext/µo = 0, G = 40 kPa,
γ = 0.1, and β = 1, we got κo = 160 m−1.

We planned a set of numerical experiments, based on the
nonlinear three–dimensional stress–diffusion model proposed
in the previous section, to quantitatively investigate both the
dependence of the three–dimensional final shape of the com-
posite sheet on the aspect ratio and on the chemical potential
of the external bath. Firstly, we fixed µext = 0 J/mol, and
studied the change of shape got at equilibrium by the com-
posite sheet for different aspect ratios w/h. We evaluated the
Gaussian curvature K and the square of the mean curvature H2

over the mid surface of the sheet. We computed K = κ1κ2 and
H = (κ1 + κ2)/2, respectively, with κ1 and κ2 as the princi-
pal curvatures of the mid–surface of the sheet got by the di-

agonalization of the second fundamental form b
β
α = aβη bηα

(actually realized) of the middle surface with aβη = aβ · aη ,

aβη = (aβη)
−1 and bηα = n ·aη ,α (greek indices may be equal

to 1 or 2) and

n =
a1 ×a2

|a1 ×a2|
and aα(x1,x2) = Fd(x1,x2,0)eα . (4.26)

We found that both K and H are uniform fields for ribbons
(K = 0) whereas H = 0 and K ∝−x−4

2 for helicoids. We repre-
sented them through the dimensionless curvatures K/κ2

o (cir-
cles) and H2/κ2

o (squares) for different aspect ratios in Figure
7, where the the helicoid–ribbon transition can be appreciated.

−0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1

µext/µo

κ
1
/κ

o
,κ

2
/κ

o

Fig. 8 Dimensionless principal curvatures for helicoids (solid, red)

and ribbons (dashed, green) versus dimensionless chemical potential

of the external bath. The aspect ratios are w/h = 4 for the helicoid

and w/h = 22 for the ribbon.

The transition occurs around w/h = 15; the same figure (panel
c) shows two configurations got for w/h = 4 and w/h = 22.
It is worth noting that the mean curvature exhibits an upper
bound for very large aspect ratios, H2/κ2

o ) 1/16.

In Ref. 11, the mean curvature for very large aspect ratio
was estimated as H = (1− ν)κo/2; as the numerical experi-
ments allow us to determine the relationship between H and
µext, we determine κo as a function of µext by setting ν = 1/2
and using the fact that H = (1−ν)κo/2. When µext = 0, the
natural curvature κo is found to be equal to 160 m−1. This
value is of the same order of magnitude of the ones presented
in Ref. 11 and equal to the one we measured by means of the
beam model.

Finally, figure 8 shows the pattern of the dimensionless
principal curvatures κ1/κo and κ2/κo (evaluated in the cen-
ter of the mid–surface) for different dimensionless chemical
potentials µext/µo of the solvent bath, for w/h = 4 (helicoid,
solid red) and w/h = 22 (ribbon, dashed green). Notice how
the transition helicoid–ribbon occurs smoothly as the chem-
ical potential increases: when w/h = 22, the two principal
curvatures start to deviate from zero in a symmetric way (heli-
coid) but when µext/µo )−0.1, one of them starts decreasing
up to zero (ribbon). This smooth transition may be explained
by remembering that the critical aspect ratio w/h is equal to
1/

√
κoh that, as we have just shown, is a function of the chem-

ical potential µext .

8 | 1–9
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Conclusions

In conclusion, we described the anisotropic swelling within
the Flory–Rehner thermodynamic model through an extension
of the elastic component of the free–energy, which takes into
account the oriented hampering of the swelling–induced de-
formations due to the presence of stiffer fibers. We also char-
acterized the homogeneous free–swelling solutions of the cor-
responding anisotropic stress–diffusion problem; we present
an asymptotic approximation of the key equations which al-
lows to explicitly derive the anisotropic solution of the prob-
lem. We also proposed an identification constitutive procedure
aimed to characterize both the Young modulus and the stiffen-
ing parameter in terms of the elastic and swelling characteris-
tics of micropatterned (hard/soft) gel sheets. Actually, it stays
unsolved the question to identify those parameters in terms of
the microstructure of the sheets, through tests which should
be done before swelling, along the road map successfully fol-
lowed within the field of biological tissues with directional
microstructure17,18.

We discussed the swelling–induced change of shape of
pinecone–like strips and seedpod–like strips, corresponding
to systems showing bending and twisting deformation modes,
respectively. In this last case, we observe a transition from
helicoid–like shapes to ribbon–like shapes, depending on the
aspect ratio of the bilayered sheet. This kind of behavior has
been already observed in nature with reference to different
physical situation,10–12,23 and different modeling have been
proposed which neglect the elastic contribution of swelling–
induced deformations. Noteworthy, in our modeling helicoid–
like and ribbon–like shapes come from the elastic deformation
of composite sheet which, due to the anisotropic structure of
their components, undergo anisotropic swelling.
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