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We describe the anisotropic swelling within the Flory—Rehner thermodynamic model through an extension of the elastic com-
ponent of the free—energy, which takes into account the oriented hampering of the swelling—induced deformations due to the
presence of stiffer fibers. We also characterize the homogeneous free—swelling solutions of the corresponding anisotropic stress—
diffusion problem, and discuss an asymptotic approximation of the key equations, which allows to explicitly derive the anisotropic
solution of the problem. We propose a proof—of—concept of our model, realizing thin bilayered gel sheets with layers having dif-
ferent anisotropic structures. In particular, for seedpod-like sheets, we observe and quantitatively measure the helicoid versus
ribbon transition determined by the aspect ratio of the composite sheet.

1 Introduction

Soft active materials have been largely employed to realize
actuators where deformations and displacements are triggered
through a wide range of external stimuli such as electric field,
pH, temperature, solvent absorption. '™ The effectiveness of
these actuators critically depends on the capability of achiev-
ing prescribed changes in shape and size. In particular, in
gel-based actuators, the shape and the size of the structures
are related to the spatial distribution of solvent inside the gel
and to the magnitude of the solvent uptake. Currently, sev-
eral approaches to the shape control of swellable materials
are being pursued, which involve materials in the form of
thin non-homogeneous sheets realized through a controlled
assembly of gels which separately admit a different swelling
degree.”® Tt has been shown that these non-homogeneous
structures can deliver homogeneous free-swelling processes
which can be isotropic? as well as anisotropic,® depending on
the architecture of the assembly. Photo—patterned multi—strips
thin films belong to this last class: they undergo anisotropic
expansion under free—swelling conditions, when the size of
the strips goes below a critical threshold. The films act as
a composite material containing stiffer low—swelling strips
and softer high—swelling strips; swelling—induced deforma-
tions are smaller in the direction parallel to the interfaces than
along the orthogonal direction. ®

Starting from these observations, we describe the
anisotropic swelling within the Flory—Rehner thermodynamic

1 Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See DOI:
10.1039/b000000x/

“Sapienza Universita di Roma, via Eudossiana 18, Roma, Italy. Fax: +39
064884852; Tel: +39 06 44585242; E-mail: paola.nardinocchi @uniromal.it
bUniversita Roma Tre, via della Vasca Navale 84, Roma, Italy.

model through an extension of the elastic component of the
free—energy, which takes into account the oriented hamper-
ing of the swelling—induced deformations due to the presence
of stiffer fibers. We also characterize the homogeneous free—
swelling solutions of the corresponding anisotropic stress—
diffusion problem; we present an asymptotic approximation
of the key equations, which allows to explicitly derive the
anisotropic solution of the problem in terms of the stretch 4
along the fiber direction and of the stretch A, in the orthog-
onal plane. Then, we discuss a constitutive identification of
our fiber-reinforced homogeneous material defined by the ex-
tended Flory—Rehner thermodynamic model with the limit
material corresponding to the assembly of narrow softer and
stiffer strips, based on the experiments already presented in
literature. ® Precisely, a relationship between the elastic mod-
uli of the limit homogeneous material and those of the low—
swelling and high—swelling gels is determined; with this, the
analysis of systems based on assemblies of narrow strips of
softer and stiffer gels, such as the bilayer systems discussed in
the next sections, can be implemented.

Inspired by plant world, where anisotropic swelling is re-
alized in different systems through the coupling of cellulose
fibrils and highly swellable matrix® and controlled via the ori-
entation of the fibrils within the matrix, we analyze thin bi-
layered gel sheets where the layers have different anisotropic
structures. We discuss the swelling—induced change of shape
of pinecone—like sheets and seedpod-like sheets, correspond-
ing to systems showing bending and twisting deformation
modes, respectively. 10 1 this last case, we observe a transition
from helicoid-like shapes to ribbon—like shapes, depending on
the aspect ratio of the bilayered sheet. This kind of behavior
has been already observed in nature with reference to differ-
ent physical situation, >-1? and different modeling have been
proposed which neglect the elastic contribution of swelling—
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induced deformations. Noteworthy, in our modeling helicoid—
like and ribbon-like shapes come from the elastic deformation
of composite sheets which, due to the anisotropic structure of
their components, undergo anisotropic swelling.

2 The extended Flory—Rehner model

The Flory—Rehner model '*!# for stress diffusion in gels is
based on a representation form of the free energy ¢ (Fy,cq),
which depends on the deformation gradient F; from the initial
dry configuration of the polymer gel, and on the molar solvent
concentration ¢y per unit dry volume. Precisely, it accounts
additively for the elastic energy of the polymer network and
for the polymer—solvent mixing energy:

1 RT
O(Fyq,cq) = EG(Fd'Fd—3)+*h(Cd)7 2.1

Q
with
ch .Q.Cd
h(cq) :chln<l+96d) e @)

being G the shear modulus of the dry polymer, T the tempera-
ture, Q the solvent molar volume, R the universal gas constant,
and y a dimensionless parameter, possibly depending on tem-
perature, which represents the dis—affinity between the poly-
mer and solvent, whose physical interpretation at the micro-
scopic level relies on the lattice theory for polymer solutions
which relates ¥ to the free-energy excess due to the mixing
of solvent and polymer.” Key features of ¢ are the follow-
ings: (i) ¢ is a density per unit volume of the dry polymer;
(ii) the elastic contribution hampers swelling; (iii) the mixing
contribution favors swelling. The molecular incompressibility
hypothesis of both the polymer and the solvent implies that
detF; = 1+ Qcy, that is, changes in volume are only due to
solvent absorption. The isotropic structure of ¢ determines
locally isotropic swelling processes. In particular, under free
conditions (unconstrained gels) swelling processes only in-
volve a change in size, if homogeneous gels are considered.

We imagine to put reinforcements (fibers) into swellable
polymer gels, and create a composite whose shape changes
can be programmed adjusting fibers orientation. To describe
the equilibrium shapes of these gels, we propose a revised ver-
sion of the Flory—Rehner free energy, which accounts for the
anisotropic elasticity of the polymer network due to the stiff
fibers that hamper swelling along their direction:

; 1
0" (Fy,ca) = 0(Farca) + 3Gy (Fae-Fae—1)%,  (23)

+ The polymer—solvent dimensionless mixing energy is often represented
through its density i/(1 + Qc,4) per unit current volume of the polymer—
solvent system (see Ref. 15).

with 7 a stiffening parameter and the unit vector field e as the
fiber direction. The idea of describing the effects of elastic
anisotropic response by adding energetic contributions based
on some invariants of deformations, as the second summand
in (2.3), was introduced in the early '90s ' to describe the me-
chanical behavior of anisotropic material, and the mechani-
cal meaning of the parameter y has been largely investigated
through deformation tests'”. Thenceforth, it has been largely
adopted in the Literature dealing with biological anisotropic
materials, together with more complex constitutive models,
always based on the so—called structural models of the elas-
tic energy '8. The constitutive equations delivering both the
reference stress S (aka first Piola—Kirchhoff stress) and the
chemical potential  come from thermodynamic issues and
prescribe that

S =GF,+2Gy(F e-Fye—1)F exe—pFi,  (2.4)

Qcy 1 X )
Q
1+.QCd + 1+Q.Cd (1+ch)2 + P

1= RT <1n

where F = (detF,)F,” and the indeterminate pressure field
p can be interpreted as the reaction associated to the volumet-
ric constraint. ¥

The unconstrained fibered gel immersed in a solvent bath
of chemical potential L, attains its equilibrium conditions
when S satisfies the boundary conditions concerning the pos-
sible boundary tractions and u is homogeneous within the gel
and equal to U,y.

3 Anisotropic free-swelling solutions

We start by looking for homogeneous anisotropic swelling for
a fibered parallelepiped by setting

Fy=Aexe+A I, and cd:é(luli—l), (3.5)

with )LH and A, the swelling ratio along the fiber direction and
in the orthogonal plane, respectively, J = 7L|| Ai the swelling
ratio, and I = I — e @ e. With this, equations (2.4) deliver

S” =Se-e= Gl” +2G’)/(A,HZ - 1)2,“ —pli, (3.6)
S, =81=GA —pAA,, (3.7)

for the stress component along the fiber direction and in the
orthogonal plane, respectively, and

MAZ—1 1
[ —+ S+ Xz
MAT AT (A,A7)

y:RT(ln 2)+Qp, (3.8)
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Fig. 1 0On the plane (A, ) we report the isoline S| = 0 (solid,
red) and the isolines S | = 0 (dashed, blue) for different values of y.
For a given 7, anisotropic free swelling is determined by the
intersection point of the isolines §; = 0 and S| = 0. The plot shows
four of such points, corresponding to y = 0,0.1, 1,10 (triangle,
square, circle, diamond); the elastic modulus is G = 1 MPa.

for the chemical potential. Homogeneous solutions (4,4, p)
of the problem satisfy the following three equations

SH = Sp(/lu»)mp) =0, 3.9)
S = SVI(A'HJUJP) =0, (3.10)
= ﬂ(l\\a;{’iap):ﬂext; 3.11)

where o) and o, are the boundary tractions on the faces of
unit normal e, and on the other faces of the parallelepiped,
respectively.

Once p is solved from equation (3.11) and inserted into
equations (3.9) and (3.10), solutions (4,4, ) can be repre-
sented in the A — A, plane as the intersection points of the o]
and o stress isolines. In particular, for o =0, = 0, free
swelling anisotropic solutions are recovered and shown in Fig-
ure 1. Therein, we fix G=1MPa, Q= 6- 107 m3/ mol,
x =02, T =293 K, and R = 8.31 J/ mol K; moreover, we
set Uy = 0, and note that the stress component S| does not
depend on the stiffening parameter 7y (see the solid red line)
whereas the isolines S| = 0 change with ¥ (see the dashed
blue lines). We show the anisotropic solutions corresponding
to four different values of 7, identified by triangle, square, cir-
cle, diamond for Y= 0,0.1, 1, 10, respectively. In particular,
for y = 0, the free—swelling isotropic solution is recovered,
that is, 7L|| = A, ; by increasing 7, that is, the stiffness of the
fibers, the swelling ratio AH decreases whereas the swelling
ratio A, increases, thus yielding an anisotropic deformation.

Al (dashed), Ay (solid)

20 40 60 80 100

Fig. 2 Anisotropic enhancement: the anisotropic swelling increases
with the parameter ¥, and this effect is more pronounced for low
values of the shear modulus G. Both /IH and A, approach very fast
to their asymptotic values: QLH — 1 for any G, while the asymptotic
value of A, depends on G. The plot shows A (solid), and 4
(dashed) versus 7y for G = 1 MPa (circles), and G = 0.1 MPa
(squares). The constant dashed-lines represent the isotropic
solutions.

It is worth noting that, in the framework of the Flory-Rehner
theory, the chemical potential U, of the solvent bath, together
with the elastic properties of the material G and ¥, determine
the free swelling state at equilibrium, and thus, the value of
the swelling ratio J; in particular, the lower the shear modulus
G, the higher the swelling ratio J. The effect of the material
parameter Y is that of hampering the strain along fibers direc-
tion; thus, for ¥ — oo the material becomes infinitely stiff along
that direction, and )‘H — 1, for any G. Concurrently, the whole
swelling is realised through an expansion in the plane orthogo-
nal to the fibers direction, and A, — AR Figure 2 shows how
the anisotropic swelling increases with the parameter Y, and
how this effect is more pronounced for low values of the shear
modulus G: A (dashed), and A, (solid) are plotted against ¥
for G = 1 MPa (circles), and G = 0.1 MPa (squares).

Following the asymptotic approximation already presented
in Ref. 8, equations (3.6)—(3.8) and (3.9)—(3.11) may be rear-
ranged to give

GQ 1 A 1
7= (1) 7= (- x)arar2vai -0,
(3.12)
up to 0(7LH*27LI6), when 0| = 61 = Uext = 0, and GQ/RT <
1. The equation is highly nonlinear in /'LH , and cannot be solved
explicitly; however, the asymptotic behavior of the ratios 4
and A, when y — e may be derived. AsJ =} A% >0, we

This journal is © The Royal Society of Chemistry [year]
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Fig. 3 Asympotic values of A, versus shear modulus G (red, solid),
compared with its explicit estimate A| = « G~'/4 (blue, dashed).

conclude that AH > 0. Therefore, there must exist a lower
bound for A as y increases, that is dA|/dy =0 as y — .
Then, deriving equation (3.12) with respect to y and setting
d?LH/d}/: 0 yields )LH — 1. Moreover, as J = AMJZ_, we con-
clude A, — +/J. Finally, when l” =1, equation (3.12) yields

a:((l/Z—x)RT

1/4
5 ) NCRE)

limA, = aG /4,
Yoo
The comparison between this asymptotic estimate and the nu-
merical solution is shown in Figure 3: the agreement is excel-
lent as long as GQ/RT < 1.

3.1 The limit material

Recently, it was discussed the swelling of photo—crosslinkable
hydrogel sheets, patterned with alternating parallel strips of
material with high and low equilibrium extents of swelling;
these sheets are manufactured through a programmed varia-
tion of the degree of crosslinking, realized by changing the
dose of UV light. It was shown that those photo—patterned
sheets deform by rolling around the axis perpendicular to the
interface between high— and low— swelling regions; in par-
ticular, when the strip width falls below a critical size propor-
tional to the film thickness, the patterned sheets instead remain
flat, undergoing anisotropic swelling.® In this limit, the mate-
rial can be homogenized and described by our revised Flory—
Rehner free energy assuming the director field e parallel to the
longitudinal axis of the strips.

We discuss through a simple three—steps constitutive iden-
tification model, based on the work presented in Ref. 6,
the relationship between the elastic constants (G,y) of the

experiment
A/ b > ¢ A AL
2
Flory 1 3¢ Flory
isotropic T anisotropic
Gy, / Gy a > d G, v
inference

Fig. 4 Inference of the relation G,/G; — (G, y). The path from (a)
to (d) is the following: given the ratio Gy, /Gy, the Flory model for
isotropic gels yields the ratio A;,/A;; the experiment in Ref. 6 yields
the map A, /4; — (Ay,AL); finally, the extended Flory model for
anisotropic gels furnishes the final step (4,4,) — (G, 7).

anisotropic material presented in the previous section and the
elastic moduli of the materials in the high— and low— swelling
regions (Figure 4 shows a cartoon of the three—steps proce-
dure: 1,2,3.). The first step (1) consists in assuming that the
high and low swelling gel materials, when swollen separately,
follow the standard Flory—Rehner model; A, and A; are the
swelling ratios, respectively. Hence, the ratio of the corre-
sponding shear moduli is determined as

o (3

G =\, (3.14)

The second step (2) consists in using the relationships experi-
mentally determined in Ref. 6 between the ratio A;,/A; and the
anisotropic swelling ratios A and A, (see figure (9)p in Ref.
6). The third step (3) consists in assembling our equations
(3.9)—(3.11) to get

AT = (14297 —1)Af, (3.15)
! MAT-T 1 X

GQ— = —RT(In + + :
A ( T S A ,13)2)

where we assumed o) = 0, = 0, and in deriving the pair
(G, 7) corresponding to the pair (4,4, ). The three steps al-
low to identify a relationship between the ratio G, /G and the
pair (G,7), are shown in Figure 5. Given the elastic moduli
of the softer and stiffer strips, the pair (G,¥) of the homo-
geneous fibered material corresponding to the assembly with
very narrow strips can be determined. We observe that for
G;/G; = 1, that is for a homogeneous (and isotropic) mate-
rial, we get y =0 and G ~ 2.9 MPa, in a good agreement with

4| Journal Name, 2010, [vol]1-9
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Fig. 5 Shear modulus G (circle, blue) and stiffening parameter y
(triangle, red) of the homogeneous limit material versus the ratio
G,/ G of the shear moduli of the high—-swelling and low—swelling
gels.

the value G = G; >~ 2.98 MPa determined from the asymptotic
approximation prescribed by the Flory model when ),lz =21
as in Ref. 6.

4 Bilayered anisotropic systems

In plant world, anisotropic swelling is realized through the
coupling of cellulose fibrils and highly swellable matrix® and
controlled via the orientation of the fibrils within the matrix,
so realizing different deformation modes. In Ref. 10, plant
cell walls architecture is divided into two categories according
to bending or twisting deformation modes of the correspond-
ing seed dispersal units, described as follows. The pinecone
scale is an elongated, bilayer structure, comprised roughly of a
lower section with strong reinforcement consisting of stiff cel-
lulose microfibrils perpendicular to the long axis of the scale,
and an upper section with reinforcement along the long axis of
the scale, see cartoon in Figure 6(a). Upon drying, these cell
walls show an anisotropic shrinkage with minor deformation
in the axial direction on the upper side and in the direction or-
thogonal to the cell axis on the lower side; the combined action
on the two layers leads to a bending of the scale, which opens
the cone.”?" Likewise, orchid tree seedpods present the in-
ner layer of the pod valve made of fiber cells oriented roughly
at 45° to the pod axis and the outer layer made of elongated
cells oriented perpendicularly to the inner fiber cells. When
drying, the seedpod of orchid tree opens with its two halves
twisting helically away from each other.'° Inspired by these
natural systems, we discuss the deformation modes of thin bi-

layered and swellable structures, when fibers are differently
oriented in the two homogeneous fibered layers. Different
three—dimensional configurations can be realized, depending
on the orientation of the stiffer fibers in the two layers of the
structure; here, we only present and discuss the transition from
flat to curved shapes suffered by pinecone-like and seedpod—
like sheets under free swelling conditions.

Given a bilayer sheet, we fix a cartesian orthonormal basis
(e1,ez,e3) such that the unit vector e; spans the longitudinal
axis of the sheet and e3 identifies the unit normal m to the mid
surface of the sheet; the corresponding coordinate system is
denoted as (x,x2,x3). The thicknesses of the top and bottom
layers are h; and hy, respectively; w, L, and h = h; + hy, are the
width, the length, and the total thickness of the sheet.

4.1 Pinecone-like sheets

The anisotropic structure of the two layers in pinecone-like
thin sheets is shown in Figure 6 (panel a, top). Stiffer fibers
are aligned to the longitudinal axis of the sheet in the top
layer whereas are orthogonal to the sheet mid surface in the
bottom layer, that is, e = e; and e = e3 in the top and bot-
tom layers, respectively. As it is well known, the ratios &, /hy
and G,/G}, of thicknesses and shear moduli are key parame-
ters for the mechanical behavior of the composite sheet.?!-??
In a swelling—induced bending, also the longitudinal swelling
ratio mismatch A, — A, has a decisive role in determining
the amount of bending, being A, and A,, the longitudinal
swelling ratio that the top and bottom layers would have sep-
arately, determined in this case by®

7Lm = AH and )Lob = )LL . (4.16)
We assume G; = G, = G and §%; = 7y, = 7, that is, the two
layers only differ one from the other due to the orientation
of the fibers. Moreover, we assume that the swelling ratio
orthogonal to the sheet longitudinal axis do not contribute to
bending. With this, and with reference to the structural model
presented and discussed in Ref. 8, we set

A(x3) = Ap(1+x3A,K) (4.17)

for the longitudinal stretch suffered by the composite sheet
during a bending with uniform axis stretch A, and axis curva-
ture x; and

op(3) = 3G(A(x3) /AL — 1),

(4.18)
for the longitudinal stresses on the top and bottom layers, re-
spectively. In absence of any forces and torques, the total lon-
gitudinal force and the total torque on the sheet have to be

G,()C3) = 3G(l(X';)/AH — 1)7

This journal is © The Royal Society of Chemistry [year]
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Fig. 6 Bending modes: (a) schematic of the fiber orientation (pinecone-like, top; plane crossed bilayer, bottom); (b) dimensionless radius of
curvature versus f§ at ey = 0: from finite element simulations for pinecone-like sheets (circles) and for plane crossed bilayers (triangles); the
outcomes of the 1D analytical model (solid line) are the same for both the fiber orientation considered; (c) deformed shapes of the
pinecone-like sheets got from finite element simulation for § = 0.43 and 3 = 4: the color code describes the longitudinal stretch.

identically null:

h(B) 5
w/ Op(x3)dxs —I—w/ 0y (x3)dx; =0, (4.19)
-4 h(B)

2

h(B) 5
w/ X3 Op (203 )doxs —I—w/ x3 07(x3)dx; =0,
-3 H(B)
with B = h,/hy and h(B) = h/2— Bh/(1 + B). Equations
(4.19) deliver the following linear system of two equations in
Ao and A = KA%:

(e (D menaan

(i’+ﬁ)/\o+ <£+£)A1 —o0,

(4.20)
with A;, S;, and [; the area, the static moment and the moment
of inertia with respect to the coordinate axis spanned by e, of
the cross—section of the top layer; Ap, Sp, and I, have the anal-
ogous meaning for the bottom layer. The swelling ratios 4
and A, are known numerically for each layer once G and y are
given (see figure 2); however, when ¥ — oo we have shown that
they may be computed explicitly. Hence, the curvature of the
sheet may be easily evaluated as a function of 3, once fixed
the elastic and geometrical characteristics of the two layers.
The solid line in Figure 6 (panel b) represents the dimension-
less radius of curvature R/ hp versus B, with R =1 / K, when
G=40kPa, y=0.1,Q= 6- 107° m®/ mol, T =293 K, and
h= 1mm, w=0.4mm, L=8mm.

We also propose a set of numerical experiments, based on
the nonlinear three—dimensional stress—diffusion model pro-
posed in the previous section. We only study the equilibrium

configurations attained by the bilayered structure when it is
embedded into a solvent bath of assigned chemical potential,
through the computational model presented in Ref. 19, appro-
priately revised to take into account the anisotropic thermo-
dynamic model. We solve the numerical problem for differ-
ent values of §. The outcomes of the numerical simulations
are represented in Figure 6 (panel b) through circles, together
with the analytical results represented by the solid line, and
shows uniform curvature of the pinecone-like sheet. We also
note that in our numerical experiments we use continuous dis-
placement fields; thus, the discontinuity in the longitudinal
stress across the interface between the two layers is smeared
through a boundary layer whose size is very small with re-
spect the thickness of the sheet. In the end, Figure 6 (panel c)
shows the curved three-dimensional configurations assumed
by the composite sheet when the bottom layer is almost twice
the top layer (8 = 0.43) and when the bottom layer is very thin
B =4

It is worth noting that, for a different anisotropic structure
within the bottom layer such that e = e; (denoted as plane
crossed bilayer), see Figure 6 (panel a, bottom)), the three—
dimensional changes of shape of the composite stay almost
unchanged with respect to the pinecone situation. As ex-
pected, the radius of curvature versus 8 pattern is unmodified
by the different fiber orientation in the bottom layer whereas
the outcomes of the numerical experiments (triangles) almost
overlap the ones of pinecone—like sheets, as Figure 6 (panel b)
shows.

It means that the bending behavior observed in both the bi-
layered structure depends on the presence of stiff reinforce-
ments on the top layer along the longitudinal axis. The mis-
match between the longitudinal deformations within the two
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Helicoid

Ribbon

5 10

15 20 25 30

h =22
w/h w/

Fig. 7 Twisting modes: (a) schematics of the fiber orientation; (b) H?/x2—-w/h (squares) and K/ k2—w /h (circles) patterns at equilibrium for
Hexr = 0, at the center of the mid—surface; (c) helicoid-like and ribbon-like three—dimensional configurations corresponding to small and large

aspect ratios, respectively.

layers determines the bent configuration as the minimal en-
ergy configuration. At the end, the bent configuration allows
maximum expansion for the bottom region along the longitu-
dinal axis (which always stays in the transverse isotropy plane
for both the bilayered structures), while minimizing longitudi-
nal deformation in the top region.

4.2 Seedpod-like sheets

The anisotropic feature of seedpod-like sheets is shown in
Figure 7 (panel a). Fibers are oriented at +45° with re-
spect to the longitudinal axis e; of the sheet in the two lay-
ers: e = cos45°e; +sin45°e, and e = cos45°e; —sin45° e,
within the top and bottom layer, respectively. In this case,
what is expected is a twisting behavior; indeed, the two lay-
ers of seedpod-like sheet present reinforcements perpendicu-
lar one at each other; it means that the maximum expansion
for the two layers occur at orthogonal directions and, as none
of them comprises the longitudinal axis of the sheet, twisting
is generated.

We follow Ref. 11, and start with a qualitative analysis.
We consider the top and bottom layers of thickness h;, = hy, =
h/2 anisotropically swollen with parallel and transverse free—
swelling stretches AH and A, along the fiber direction and in
the orthogonal direction, respectively. We imagine that a ho-
mogeneous swelling—induced deformation F, = A|e®e+A !
can be realized within each layer via embedding in a solvent
bath, if each layer was free from the rest of the system. Due to
the different anisotropic structure, the bottom layer swell at an
angle of 90° with respect to the top layer and the correspond-

(1) (b)

ing three—dimensional metrics g, and g, ’ would be different

and given by:
b (R0 HR2 A0 0
g = : s(AZ2+21 0 |, (4.21)
0 0 A2
and
b [FRHR) A2 0
e = : S(A2+2%) 0 ], (4.22)
0 0 A2

being ( ggl))i ;= (FIF,)e;-e; and F, the swelling-induced de-

formation of the top layer (the same arguments hold for the
bottom layer). We now imagine that the two swollen layers
are glued one on top of the other; the composite sheet is so
incompatible. Following Ref. 11, we approximate the result-
ing three—dimensional metric g, of the composite sheet by the
linear approximation g, = ( D4 ggb)) /24 x3/ h(ggl) - ggb))
and view the thin sheet as a shell with first and second natural
fundamental forms given by

1 10
ao(x1,%2) = go(x1,%,0) = E(x‘ﬁxi) (0 1) (4.23)
and
19g, 1 01
bo(x1,x2) T2 0w (x1,%2,0) *ﬂ(l\\z*}&) (1 e
(4.24)

Rescaling the lenghts by ((A,HZ +42)/2)1/2, we get the rescaled
first and second fundament form as

10 - 0
c_lo(xl,xz) = (0 1) and bo(xl,xz) = (K‘ 180) , (4.25)
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with k, = (1/h)(A% — 7L” )/ (A2 + 7LH ). Neglecting the elastic
contribution of the fibers, the (dimensionless) elastic energy
of such a shell is

w/2
/ /w/2

w/2
/ / (1=)lb— b+ Vi (b~ b,) ) dx1, dxs

V)|a— a(,| +vir? (a— a,,))dxl,dxz

with a and b the first and second fundamental forms of the
realized surface; the first row describes the stretching contri-
bution whereas the second row the bending contribution. The
competition between stretching—dominated regime (a = a,)
and bending—dominated regimes (b = b,) determines the re-
alization of ribbon and helicoids, respectively. In Ref. 11 it
was shown that the critical aspect ratio w/h determining a
the threshold between a stretching—dominated and a bending—
dominated regime is equal to 1/v/%,h. In Ref. 11, k, must be
measured experimentally; we can determine it analytically by
taking advantage of the 1D model for pinecones. Indeed, as
the model describe a 1D planar Kirchhoff beam without ex-
ternal forces, the natural curvature is completely realized and
it is therefore equal to k. We therefore cut the seedpod-like
sheets at 45° so as to get the beam represented in Figure 6
(a, bottom). In this way, the natural curvature k, that cannot
be realized in 2D geometries, turns out to be the curvature at-
tained by the beam. Precisely, for .y /i, = 0, G = 40 kPa,
y=0.1,and B =1, we got k, = 160 m~!

We planned a set of numerical experiments, based on the
nonlinear three—dimensional stress—diffusion model proposed
in the previous section, to quantitatively investigate both the
dependence of the three—dimensional final shape of the com-
posite sheet on the aspect ratio and on the chemical potential
of the external bath. Firstly, we fixed U,y = 0 J/mol, and
studied the change of shape got at equilibrium by the com-
posite sheet for different aspect ratios w/h. We evaluated the
Gaussian curvature K and the square of the mean curvature H>
over the mid surface of the sheet. We computed K = k; k» and
H = (k1 + x») /2, respectively, with k; and k» as the princi-
pal curvatures of the mid—surface of the sheet got by the di-
agonalization of the second fundamental form bg =aPby,
(actually realized) of the middle surface with ag,, = ag -ay,
aPn = (aﬁn)’1 and by = N-ay o (greek indices may be equal
to 1 or 2) and

a; X ap

n=———= and ag(x;,x2)

(4.26)
|31 X ap |

= Fd(xl,xg,O)ea E
We found that both K and H are uniform fields for ribbons
(K =0) whereas H =0 and K o< —x; 4 for helicoids. We repre-
sented them through the dimensionless curvatures K/ k2 (cir-
cles) and H?/ KS (squares) for different aspect ratios in Figure
7, where the the helicoid-ribbon transition can be appreciated.

1 T T T
0.5
<
~
)
s 0
'
~
&
—0.5
-1 | | |
-0.8 —-06 -04 -0.2 0
Memt/ﬂo

Fig. 8 Dimensionless principal curvatures for helicoids (solid, red)
and ribbons (dashed, green) versus dimensionless chemical potential
of the external bath. The aspect ratios are w/h = 4 for the helicoid
and w/h = 22 for the ribbon.

The transition occurs around w/h = 15; the same figure (panel
c) shows two configurations got for w/h =4 and w/h = 22.
It is worth noting that the mean curvature exhibits an upper
bound for very large aspect ratios, H>/ k2 ~ 1/16.

In Ref. 11, the mean curvature for very large aspect ratio
was estimated as H = (1 — v)k,/2; as the numerical experi-
ments allow us to determine the relationship between H and
Uext, we determine K, as a function of f,,, by setting v =1/2
and using the fact that H = (1 — v)k, /2. When Uex = 0, the
natural curvature k,, is found to be equal to 160 m~'. This
value is of the same order of magnitude of the ones presented
in Ref. 11 and equal to the one we measured by means of the
beam model.

Finally, figure 8 shows the pattern of the dimensionless
principal curvatures k;/x, and k»/K, (evaluated in the cen-
ter of the mid—surface) for different dimensionless chemical
potentials LUex¢/ U, Of the solvent bath, for w/h = 4 (helicoid,
solid red) and w/h = 22 (ribbon, dashed green). Notice how
the transition helicoid—ribbon occurs smoothly as the chem-
ical potential increases: when w/h = 22, the two principal
curvatures start to deviate from zero in a symmetric way (heli-
coid) but when ey, /U, ~ —0.1, one of them starts decreasing
up to zero (ribbon). This smooth transition may be explained
by remembering that the critical aspect ratio w/h is equal to
1/ /%, that, as we have just shown, is a function of the chem-
ical potential Uy .
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Conclusions

In conclusion, we described the anisotropic swelling within
the Flory—Rehner thermodynamic model through an extension
of the elastic component of the free—energy, which takes into
account the oriented hampering of the swelling—induced de-
formations due to the presence of stiffer fibers. We also char-
acterized the homogeneous free—swelling solutions of the cor-
responding anisotropic stress—diffusion problem; we present
an asymptotic approximation of the key equations which al-
lows to explicitly derive the anisotropic solution of the prob-
lem. We also proposed an identification constitutive procedure
aimed to characterize both the Young modulus and the stiffen-
ing parameter in terms of the elastic and swelling characteris-
tics of micropatterned (hard/soft) gel sheets. Actually, it stays
unsolved the question to identify those parameters in terms of
the microstructure of the sheets, through tests which should
be done before swelling, along the road map successfully fol-
lowed within the field of biological tissues with directional
microstructure ! 718

We discussed the swelling—induced change of shape of
pinecone—like strips and seedpod-like strips, corresponding
to systems showing bending and twisting deformation modes,
respectively. In this last case, we observe a transition from
helicoid—like shapes to ribbon-like shapes, depending on the
aspect ratio of the bilayered sheet. This kind of behavior has
been already observed in nature with reference to different
physical situation, 11223 and different modeling have been
proposed which neglect the elastic contribution of swelling—
induced deformations. Noteworthy, in our modeling helicoid—
like and ribbon-like shapes come from the elastic deformation
of composite sheet which, due to the anisotropic structure of
their components, undergo anisotropic swelling.
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