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Abstract The properties of the transport of heavy inertial particles in a uniformly
sheared turbulent flow have been investigated by combining experimental and
numerical data at particle Stokes number St ≈ 0.3 ÷ 0.5 respectively. As in isotropic
turbulence, particles are observed to avoid zones of intense enstrophy and to cluster
in strain-dominated regions, resulting in highly intermittent spatial distributions.
Moreover, the anisotropy of the mean flow is found to imprint a clear preferential
orientation of the particle clusters in the direction of the maximum mean strain.
These features are observed both in the numerics and in the experiments, and have
been consistently quantified by a number of complementary statistical tools, such as
the Voronoï tessellations and the pair correlation function. The latter quantity has
been generalized in the form of the Angular Distribution Function and has allowed
to evaluate the anisotropy content of the particle field at each scale. The behavior of
this observable exhibits the same trend in the two datasets and suggests that, owing to
increased inertia, the particle distribution starts to recover isotropy at scales smaller
than the carrier velocity field. A proper rescaling of the two datasets in terms of their
respective values of the shear scale allows to account for differences in the Reynolds
number of experiments and numerics in the range of scales dominated by the mean
shear.
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1 Introduction

The interaction between turbulence and a dispersed phase has been studied for a long
time, being of interest for a large number of natural phenomena and technical appli-
cations as diverse as the formation of raindrops in clouds, transport of air bubbles in
the oceans or injection processes in combustion engines. The most striking feature
of this interaction consists in the phenomenon of preferential accumulation. Because
of the different inertia between the two phases, particles do not sample the fluid
domain uniformly under the action of turbulent fluctuations. In fact, a large number
of numerical and experimental studies have shown that small heavy particles are
ejected from high-vorticity zones and accumulate in regions of high strain. Lighter-
than-fluid particles display the opposite tendency and migrate towards high-vorticity
regions (see e.g. the recent Reference [1] which summarizes the relevant work in
this area). The non-uniformities which arise in the instantaneous concentration field
of both heavy and light particles are of interest per se, since they affect important
quantities such as the rate of inter-particle collisions or the velocity of coalescence
for bubbles. Also, large peaks of the concentration can be created locally through
the mechanism of inertial clustering even at very dilute particles loading, possibly
resulting in significant feedback on the carrier field with a profound modification of
the turbulence structure even at the largest scales (see e.g. [2] for the case of bubbles
dispersed in a boundary layer and [3] for particle laden shear flows).

In this paper, we focus on the interaction between heavy point-like particles
and homogeneously sheared turbulence. This prototypical flow is characterized by
homogeneous turbulent fluctuations superimposed on a linear mean velocity profile.
It is therefore of great importance, since it retains the most relevant feature of a large
number of flows of interest for applications, namely, the mean shear. At the same
time, however, it does not involve additional complicacies such as those associated
with the presence of solid boundaries or spatial inhomogeneities.

We wish to gain insight into the structure and the statistical properties of inertial
particle transport in these conditions by combining experimental and numerical data
analyzed with a number of statistical tools. In fact, on the one hand the use of
numerics gives access to deeper information. On the other hand the interpretation
of the numerical results requires some caution, since severe approximations are
used when modeling the dispersed phase as an ensemble of point-like particles [1].
Hence, the combined use of experimental and numerical data is advisable for a better
understanding of the relevant physical aspects.

2 Experimental and Numerical Datasets

As anticipated in the introduction, our investigation relies on two complementary
datasets. Actually, when dealing with a complicated experiment such as the present
particle-laden homogeneous shear flow, the combined exploitation of experimental
and numerical configurations can provide new elements for a better understanding
and validation of the results. For instance, as illustrated in Section 3.3 at the end of
the paper, one can use DNS data to identify the downstream location of the measure-
ment domain where the dispersed phase has reached a spatially homogeneous state
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Fig. 1 Sketch of the
experimental setup

and particles have almost lost memory of the large scale inhomogeneities which are
unavoidably introduced by the seeding device.

The experimental dataset has been obtained in a laboratory, where a homoge-
neous shear flow was generated in the central part of a recirculating water channel
following the technique described in [4]. In this case, the uniform velocity gradient
S = ∂U/∂y is established downstream of a suitably designed curved screen of uni-
form solidity, which is placed immediately after the contraction of the water channel,
see the sketch in Fig . 1. The main characteristics of the experiment are listed in
Table 1. The relevant flow parameters (measured in absence of particles by means of
a two-component back-scatter LDV system) are the Reynolds number based on the
Taylor micro-scale, Reλ ≈ 540, and the shear parameter S∗ (see [5]) representative
of the intensity of the mean velocity gradient, which is defined as: S∗ = Su′2/ε ≈ 4.5.
The ratio between the so-called shear scale LS = √

ε/S3 and the Kolmogorov scale
is Ls/η � 350, and provides an indication of the extent of turbulent scales (below
LS) where the velocity field is characterized by an isotropy-recovering dynamics.
The experiment has been conducted with spherical glass of density ρp = 2600 kg/m3

at very low volumetric concentration (Cv ≈ 10−6). A snapshot of the glass beads
is given in Fig. 2, where the histogram of particle sizes is also reported. It appears
that the distribution of particle diameters is approximately normal, with a mean

Fig. 2 Left panel: a snapshot of the glass beads acquired with a microscope (50X magnification).
Right panel: the pdf of particle diameters (dashed line) as compared to a Gaussian fit (solid line)
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Table 1 The main parameters defining carrier turbulence and solid phase in both the experimental
and the numerical datasets

Reλ S∗ η LS St �rp Np δ

DNS 100 7 0.02 (∗) 35 η 0.5 ∼10 η O(103) 2η

EXP 540 4.5 200 μm 350 η 0.28 ∼12 η O(103) (2 ÷ 3)η

In order to characterize homogeneously sheared turbulence, two parameters (e.g., the Reynolds
number Reλ and the shear parameter S∗) are required. The Reynolds number is based on Taylor
micro-scale and turbulent intensity (Reλ = u′λ/ν) while the shear parameter is defined as S∗ =
(L/LS)2/3, where η denotes the Kolmogorov scale and LS is the so-called shear scale LS = √

ε/S3.
The particle Stokes number is defined as usual as St = τp/τη , with τp = ρpd2/18μ f and τη = √

ν f /ε.
Finally, �rp indicates the mean particle distance evaluated on two dimensional slices of thickness
δ, Np is the mean number of particles per slice and δ indicates the slice thickness. (∗) denotes
computational units

value dp ≈ 0.25 mm (i.e., particles are comparable in size with the Kolmogorov scale
η, dp/η ≈ 1.2) and with a pretty tight standard deviation σd ≈ 25 μm. The particle
Stokes number St, i.e. the ratio of the particle relaxation time to the dissipative
timescale, is therefore St ≈ 0.3. The instantaneous concentration field has been
measured in a longitudinal plane by imaging with a 2848 px × 4288 px CCD
camera the positions of particles illuminated by a continuous laser sheet. The size
of the measurement domain is approximately 150 × 100 mm2 (with sub-millimetric
thickness). The dataset to be discussed in the following consists of 5000 uncorrelated
images acquired at a sampling frequency of 2 Hz. Note that the measurement
location has been selected at sufficiently large downstream distances from the curved
grid so that spurious effects related to the seeding mechanism are ruled out. This
aspect has been carefully addressed in order to isolate inertial clustering features
from the inhomogeneities introduced by the seeding procedure (see Ref. [6] as
well as Section 3.3 for more details). The second dataset is obtained by Direct
Numerical Simulations, in which the one-way coupling between solid particles has
been implemented using the point-particle approach [7, 8]. The turbulent parameters
are in this case given by Reλ ≈ 100 and S∗ ≈ 7 (see Table 1), while the ratio of the
shear– to the Kolmogorov scale is equal to Ls/η � 35. The Navier-Stokes equations
are integrated in a 4π × 2π × 2π periodic box with a resolution of 256 × 256 × 128
Fourier modes, corresponding to 384 × 384 × 192 collocation points in physical space
due to the 3/2 dealiasing rule. The Kolmogorov scale corresponds to η = 0.02. The
dispersed phase consists of N = 3 × 105 point-like spherical particles with Stokes
number St = 0.5, which are initialized with random and homogeneous positions and
velocities which are matching that of the local fluid. The only force considered in
the numerical simulation is the Stokes drag and the particles evolve according to the
equations ẋp

i = v
p
i ; v̇

p
i = τ−1

p

[
ui(xp, t) − v

p
i (t)

]
where ui(xp, t) is the instantaneous

fluid velocity evaluated at the particle position xp
i (t) and τp = ρpd2

p/(18νρ f ) is the
Stokes relaxation time. The fluid velocity at the particle position is evaluated by a
tri-linear interpolation of the fluid velocity at the closest grid points.

3 Results

Typical snapshots of the particle field extracted from the DNS dataset are shown
in Fig. 3, where the position of particles belonging to thin slices parallel to the
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Fig. 3 A typical instantaneous particle distribution extracted from the DNS data superimposed on
the vorticity field (high vorticity values correspond to red levels). Left panel: cross-stream plane.
Right panel: longitudinal plane

coordinate planes are depicted. The left panel (which refers to a cross-sectional
plane) clearly shows that particles avoid zones of intense enstrophy and concentrate
in fluid regions of large strain. Zones of large enstrophy correspond to the cores of
the large-scale vortices which dominate the dynamics of sheared turbulence. These
vortices are known to preferentially align along the direction of maximum mean
strain i.e, they are inclined at an average angle of 45◦ with respect to the stream-
wise direction. The signature of these structures is clearly visible in the right panel of
Fig. 3, which reports a cut of the computational domain along a longitudinal plane.
Consistently with the centrifuging mechanism, particles are observed to aggregate
into thin filamentary patches located on the periphery of the large-scale structures.
Note that the filamentary structure in which particles aggregate is also apparent in
the fields extracted from the experimental dataset, as illustrated in the left panel of
Fig. 5, where a typical instantaneous field in the measurement domain is reported
together with its companion Voronoï tessellation (which is going to be discussed in
the following Section).

From a more quantitative point of view, the correlation between particle concen-
tration peaks and regions of low enstrophy (ω2) can be examined in DNS data by
recording the value of the enstrophy field at each particle position for several time
configurations, and by successively measuring the number of particles associated to
each enstrophy level. The plot shown in the left panel of Fig. 4 reports the results
concerning two different classes of particles dispersed by the same velocity field
(the Stokes numbers are respectively equal to 0.1 and 0.5). Particles with higher
inertia exhibit comparatively larger concentration in the range of low-enstrophy
values, i.e. a larger tendency to concentrate in regions of low enstrophy. This result
is corroborated by the plot reported in the right panel of Fig. 4, which compares the
probability density function of the enstrophy sampled at particles positions with the
pdf of the same quantity measured over the whole fluid domain.

In order to gain further insight into the dispersed phase distribution, a number
of appropriate methods are available in the literature. A recent review of these
techniques can be found e.g. in Ref. [9]. Among the possible approaches, we choose
here two complementary tools, namely the Voronoï decomposition and the analysis
based on the Angular Distribution Function. The first approach is particularly useful
for extracting the geometrical properties of the particle field, for instance to identify
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Fig. 4 Left panel: the comparison of the mean particle concentration of inertial particles (respec-
tively with St = 0.1 and St = 0.5) found at different enstrophy levels of the carrier fluid. Right panel:
the comparison between the pdf of the enstrophy measured respectively over the whole fluid domain
(solid line) and sampled at particle positions only (symbols)

clusters and voids. The second technique is more suitable to identify at each scale the
effects induced by the large-scale anisotropy on the particle distribution.

3.1 Voronoï analysis

The Voronoï analysis is a technique recently introduced to identify the geometrical
properties of particle clusters in isotropic turbulence [10]. For a given set of particles,
the Voronoï diagram consists in a space decomposition which associates a cell to
each particle center (say, P) in such a way that all points within the cell are closer to
P than to any other particle. For two-dimensional cases such as those considered
here, the cell associated to P is a polygon which is built with the perpendicular
bisectors method, i.e., by first detecting the n nearest neighbors Q of the particle
P and by successively bisecting each segment QP with a line perpendicular to

Fig. 5 Left panel: portion of a typical raw image (of size 2340 px × 1800 px) acquired by the CCD
camera, showing the instantaneous positions of the dispersed particles. Right panel: the associated
Voronoï diagram
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Fig. 6 Left panel: the PDF of the Voronoï areas computed for the experimental dataset (blue line).
Right panel: the PDF of the Voronoï areas for the numerical data set (red line). In both panels the
black line indicates the PDF of a purely random process at identical mean concentration 1/A0

it. The cell associated to P is given by the region which is enclosed by such n
perpendicular bisecting segments. A representative Voronoï tessellation performed
on instantaneous 2-D particle fields obtained from the experimental investigation is
shown in Fig. 5 (right panel). From the earlier discussion, it follows the important
property that the areas of the cells associated to the tessellation are inversely pro-
portional to the local particle concentration, so that the description of the clustering
process can be equivalently obtained in terms of statistics of such areas. A possible
procedure consists in computing the Probability Distribution Function (PDF) of the
cell areas A, and comparing it with the distribution pertaining to a purely random
process, where an equal amount of particles is distributed over the same region in a
fully uncorrelated way. In two dimensions (d = 2), the statistics of a purely random
process is accurately reproduced by the expression proposed in Ref. [11] in terms of
a gamma function, namely the PDF of the normalized Voronoï areas A/A0 can be
modeled as:

PDF
(

A
A0

)
= ((3d + 1)/2)(3d+1)/2

�((3d + 1)/2)

(
A
A0

)(3d+1)/2

exp
(

−3d + 1
2

(
A
A0

))
, (1)

where A0 is given by A0 = 1/C0 and C0 is the average particle concentration. The
PDF of the normalized Voronoï areas A of the two datasets is displayed in Fig. 6
together with the reference distributions corresponding to random processes at
identical concentration C0.

The comparison of the curves in Figs. 6 and 7 (left column) confirms that the
particle distribution for the actual turbulent flow is much more intermittent than
expected on a purely random basis, i. e., both very small and very large values of the
Voronoï areas occur more frequently. Figures 6 and 7 also show that the behavior
is qualitatively similar for both the experimental and the numerical datasets, as
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Fig. 7 Left panels: the ratio of the PDF of normalized areas to the PDF of a Poissonian process
at identical mean concentration. Right panels: visualization of clustering regions (dark regions) and
voids (light regions) obtained from the area connection process. Experimental and numerical data
are reported in the top and bottom panels, respectively

confirmed by the good agreement of the standard deviations of the two PDF’s,
which are respectively equal to σexp = 0.79 ± 0.05 and σDNS = 0.83 ± 0.04. The error
bar of the experimental result accounts for the statistical dispersion as well as for
uncertainties related with the particle identification. The error bar of the numerical
result, on the contrary, mostly reflects the variation in the value of σ which is
observed when the thickness δ/η of the two-dimensional cut is changed between
δ/η = 1 and δ/η = 4, i.e. in a range of thickness comparable with the experimental
situation (the value of σ decreases monotonically when δ is reduced, see Ref. [12] for
a thorough discussion of the possible sources of uncertainty affecting its estimate).

To further characterize the statistics of the particle distribution in shear turbu-
lence, it is of value to assess the log-normality of the pdf of Voronoi areas, as this
trend has been consistently observed in experimental and numerical simulations of
isotropic turbulence [10]. Indeed, such behavior has been confirmed by the analysis
of the compressibility features of particle patches by using the alternative approach
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Fig. 8 The comparison between the pdf of the logarithm of normalized Voronoï areas with the
corresponding fit based on a Gaussian law. Left panel: experimental dataset. Right panel: DNS
dataset

of the Full Lagrangian Method in simulations where particles are transported by
homogeneous and isotropic turbulence [13] or by random flows [14]. The test of
log-normality is provided in Fig. 8, where the PDF’s of the normalized Voronoï
areas measured in the experiment and in the numerics are compared with the
corresponding Gaussian fits (left and right panel, respectively). At small scales,
where the homogeneous shear flow behaves essentially as isotropic turbulence, the
data are reasonably well described by a log-normal distribution, in agreement with
previous results, see e.g. [10, 13]. Departures from log-normality are mostly observed
at the large scales, i.e., when the observation scale is comparable with the shear scale
(A ≥ L2

S). This result is not unexpected, and is likely to be ascribed to the different
properties of the large-scale structures which are typical of shear-driven turbulence.
Note in any case that the deviations from the log-normal behavior are relatively small
and confined to large values of Ã, legitimating the use of σ as a global measure of the
departure from the purely random behavior (as done in isotropic turbulence [12]).

The Voronoï decomposition provides important information on the range of
scales involved in the particle dispersion process, i.e. on the characteristic dimension
of the regions which may be identified as clusters and voids respectively. In fact,
the comparison of the actual PDF of Voronoï areas with its synthetic counterpart
naturally introduces two typical dimensions, which are labeled as AC and AV in
Fig. 6. Cells with areas A < AC correspond to particle-rich regions, and adjacent
cells which fulfill this conditions can be connected by means of region-growing
algorithms to form particle clusters. Conversely, adjacent Voronoï polygons with
A > AV (representing zones free from particles) can be merged to yield voids. These
structures are represented by the dark and light regions in the right panel of Fig. 7.
Further insight into the geometrical properties of the connected clustered regions
can be gained from the statistical analysis of the associated areas Acluster.

The PDF of such areas is reported in Fig. 9 for both the experimental and the
numerical case. Again, favorable agreement between the two datasets is obtained
despite the differences in the flow parameters. In particular, both PDF’s are found
to follow a power-law with an exponent close to −2 in the range of smaller areas
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Fig. 9 The PDF of clustering regions computed for both the experimental and numerical cases

where the effect of the mean shear is expected to be less important. Interestingly, this
behavior has been already observed in numerical and experimental investigations
of particle-laden isotropic turbulence [9], and reveals the important (and possibly
universal) self-similar character of the preferential accumulation at small scales.

3.2 Pair correlation function

Another technique commonly employed to quantify inertial particle clustering in
isotropic turbulence is represented by the so-called Radial Distribution Function
(RDF), which measures the probability of finding particle pairs at a given distance r
[15, 16]. In anisotropic flows, a more complete characterization of the particle field
need to be performed by retaining the spatial directionality of the statistics. This can
be done by means of the Angular Distribution Function (ADF) recently adopted in
Ref. [8] and [6] to describe the geometry of particle clusters in presence of a mean
shear. The ADF simply gauges the probability of detecting two particles at separation
r in the direction r̂ which is identified by the angle θ with respect to the stream-wise
axis. The application of the ADF to experimental data requires the implementation
of its two-dimensional surrogate, since the access to instantaneous particle positions
is restricted to thin planes containing the mean flow. The operative definition for the
two-dimensional version of the ADF reads:

g(r, θ) = 〈N(r, θ)/�S(r, θ)〉
N/A

, (2)

where N(r, θ) represents the number of particles found in a small area �S = r�r�θ

centered in the direction θ at a distance r away from the selected reference particle.
In the above definition, N/A represents the average particle concentration, while
brackets denote a suitable ensemble average. Also, the separation r parameterizes
the inter-particle distance and the angle θ labels the spatial orientation of the
particle pair. Figure 10 shows the quantity g(r, θ) computed for the numerical and
the experimental dataset along two different directions, namely, for θ = 45◦ and
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Fig. 10 The angular distribution function g(r, θ) computed along two orthogonal directions, re-
spectively equal to θ ≈ 45◦ (red symbols) and θ ≈ 315◦ (blue symbols). The right and left panels
correspond to the DNS (square symbols) and the experimental dataset (diamond), respectively

for θ = 315◦. Note that, since we are interested in the imprint of the mean shear,
the pair separation r is not rescaled as usual with the Kolmogorov length scale
η but is instead normalized by using the shear scale LS. The rescaling with LS

allows to examine particle transport in the range of scales which are affected by
anisotropic advection for both the experimental and the numerical datasets, since
LS identifies the lenghtscale above which turbulence is dominated by the mean
shear (i.e. by energy production). Turbulence at scales below LS is instead driven
by inertial energy transfer. The introduction of the shear scale is then the proper way
to compare results from datasets at significantly different values of the Reynolds
number. This is because the Reynolds number controls the extent of the range of
scales below LS, while the width of the production range above LS is fixed by the
shear parameter S∗ that we are able to keep almost comparable between the two
datasets.

Coming back to Fig. 10, we note that the phenomenon of preferential accu-
mulation corresponds to the sharp increase of g(r, θ) as the scale separation r is
decreased for a fixed direction θ . On the other hand, the large-scale anisotropy of
the carrier field manifests itself via the dependence of the ADF on the direction θ

(for fixed separation r). Specifically, the probability of finding particle pairs along
the direction θ = 45◦ is systematically larger than the corresponding computed along
any other direction (e.g., along θ = 315◦). This finding reflects the preferential
alignment of particle clusters observed in the snapshots of Figs. 3 and 5 (left). The
comparison of the ADF’s depicted in the two panels of Fig. 10 indicates that the
trend observed in the experiment is qualitatively well reproduced by the numerics,
apart from some minor quantitative discrepancies. For instance, DNS results indicate
that deviations from uniform concentration are confined to the smallest dissipative
scales, while a wider range of separations is involved in the experiments. Possible
reasons for this difference are the slight polydispersity of the particle population
used in the experiment, as well as finite-size effects of the particles which are not
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accounted for by the numerics. The scaling behavior of the ADF highlights an
important characteristic of the dispersion process of the solid phase [6]. Namely, the
anisotropy of the particle field, as qualitatively conveyed by the differences between
g(r, 45◦) and g(r, 315◦), is observed to be significant even at separations between
the Kolmogorov scale η and the shear scale LS. As explained later in more detail,
this behavior is in contrast with the properties of the carrier turbulence, where
the anisotropy of the velocity field builds up in the range of scales between the
integral and the shear scales, and falls off rapidly below LS in accordance with the
Kolmogorov phenomenology of isotropy recovery [17]. On a more quantitative basis,
the residual anisotropic structure of the particle clusters can be characterized by
considering suitable decompositions of the ADF which are aimed at discriminating
the isotropic component of the particle field and the anisotropic contributions. In
three-dimensions, the general tool is the so-called SO(3) decomposition (see e.g.
Ref. [18] and works cited therein). The technique allows to decompose a generic
scalar statistical observable which depend on a separation vector r, say g(r), into
components with a well-defined behavior under rotations. The basis functions used
in the SO(3) decomposition are the spherical harmonics, and the decomposition for
a scalar function reads:

g(r) =
+∞∑

j=0

l=+ j∑

l=− j

g jl(r)Y jl(r̂). (3)

In this expression, the spherical harmonics Y jl(r̂) are function of the unit vector
r̂ = r/r and account for the direction in which the observable g(r) is being probed,
while the coefficients g jl scale with the magnitude of the separation r and encode
the properties of the (particle) field at changing the observation scale. Note that
the index j measures the rate of change of the spherical harmonics over the unit
sphere, and is therefore representative of the level of anisotropy of the observable. In
particular, the isotropic component of the field corresponds to the index j = 0, since
the related spherical harmonics Y00 is constant, while anisotropic contributions corre-
spond to strictly positive values of j. In the present situation the SO(3) decomposition
will be used for characterizing the fluid velocity field. Concerning the particle pair
correlation function, since data are available only in a 2D domain, the relevant infor-
mation concerning anisotropy can be obtained by using the simpler two-dimensional
analogy, namely, the SO(2) decomposition. In this case, eigenfunctions of the group
of 2D rotations, (i.e. sinusoidal functions) are used, see e.g. Ref. [19]. The SO(2)
decomposition for the ADF is then simply given by:

g(r, θ) =
∑

j

A j(r) cos( jθ) + B j(r) sin( jθ), (4)

The index j again identifies subspaces with increasing levels of anisotropy. The
isotropic projection ( j = 0) is obtained by averaging the complete ADF along all
directions:

g0(r) = 1
2π

∫ 2π

0
g(r, θ) dθ (5)

and corresponds to the classical RDF which characterizes the particle field in terms
of the sole separation r in isotropic turbulence. In order to quantify the anisotropy
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Fig. 11 The anisotropic component of the angular distribution function g(r, θ) computed at corre-
sponding normalized separations r/LS for both the experimental (left panel) and DNS dataset (right
panel)

of the clusters, we plot in Fig. 11 the ratio
[
g(r, θ) − g0(r)

]
/g0(r), which extracts the

normalized anisotropic component of the ADF for both the experimental and the
numerical data (left and right panels, respectively). In the plot, the non-dimensional
separation r/Ls is kept constant, and the quantity is displayed as a function of the
angle θ . The departure from isotropy appears in both datasets as a strong dependence
of the observable on the direction θ : sharp maxima are observed at θ = 45◦, i.e. in
the direction of the maximum mean strain, while minima are detected along the
direction of maximum compression (θ = 315◦). Note that similar levels of anisotropy
are found in the two datasets at matching values of the dimensionless separation
(slight differences in the intensity of the anisotropic signals are probably due to the
small mismatch in shear- and particle parameters).

The anisotropy of the particle field is characterized in a slightly different way
in Fig. 12 (left panel), where we plot the ratio g2(r)/g0(r) which compares at
each scale r the most energetic anisotropic component of the ADF, namely g2(r)
with the corresponding isotropic projection g0(r). Note that the separation is again
made dimensionless by means of the shear scale in order to achieve a meaningful
comparison between experimental and numerical data. The representation in Fig. 12
(left) allows to test in a more direct way the range of scales of the particle field
where the directionality imprinted by the mean shear is still significant even in the
range of scales where the fluid velocity fluctuations are almost isotropic, i.e., the peak
anisotropy is reached well below the shear scale.

In order to better highlight the different structural properties of the fluid and
particle phases, the anisotropy of the carrier velocity field can be computed and
compared at each scale separation with the anisotropy of the particle field. The
velocity field is described statistically in terms of the longitudinal structure function
of order two (S2(r)), which is defined as:

S2(r, r̂) =
〈(

[u(x + r) − u(x)] · r̂
)2

〉
.

The SO(3) decomposition defined in (Eq. 3) allows to extract both the isotropic
( j = 0) and the anisotropic ( j > 0) components of the above quantity. Similar to the
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Fig. 12 Left panel: the anisotropy indicator (g2(r)/g0(r)), i.e. the ratio of the most energetic
anisotropic component of g(r, θ) to the isotropic projection, plotted versus non-dimensional particle
pair separation r/LS for the two datasets. Right panel: the anisotropy indicator of the particle field
(g2(r)/g0(r), symbols) compared with the anisotropy indicator of the fluid velocity field (S2

2−2/S2
00,

line), as computed from DNS data

particle field, the anisotropy of the velocity fluctuations can be gauged by comparing
at each scale r the magnitude of the anisotropic and the isotropic projections of S2

with that of the , according to the indicator IV(r) defined as:

IV(r) =
√∑

j,l S2
jl(r)

√
S2

00(r)
� S2

2−2

S2
00

. (6)

The comparison between the anisotropy of the particle field and the anisotropy of
the velocity field is shown in the right panel of the Fig. 12, where the appropriate
indicators are displayed as a function of the non-dimensional scale r/LS. The figure
evidences that, contrary to the velocity field, the directionality of the particle statistics
attenuates only at scales which are significantly smaller than the shear scale LS.
Namely, due to different inertia of the two phase the recovery of isotropy of the
particle field is delayed as compared to the fluid [6].

As a final remark, it is also interesting to note that the level of anisotropy drops
to negligible values as the pair separation goes to zero in the experimental data
(Fig. 12 left), while a substantial residual anisotropy is observed at dissipative scales
in the numerical data. This behavior is indeed not surprising once we recognize
the different extent of the range of scales available for the isotropization process
in the two cases. In fact, since the value of the non-dimensional shear intensity S∗
is similar in the experiment and in the numerics, the interval of isotropy recovery
(between the shear and the Kolmogorov scales) is in fact controlled by the Reynolds
number. The much larger value of Reλ in the experimental dataset allows for a
larger separation between LS and η and for a more effective isotropization of the
velocity fluctuations which, in turns, results in an more isotropic advection of the
particles. On the contrary, the relatively small Reynolds number typical of DNS
simulations implies that the inertial range below the shear scale is too narrow to
allow a significant isotropization of the clusters. In other words, closely below the
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shear scale viscous effects may become predominant with respect to inertial transfer
making the isotropy recovery less effective.

3.3 Particle clustering and large scale inhomogeneities

In their simplest form, the radial distribution function, as well as its anisotropic
counterpart (the ADF), provides a direct measure of the fluctuations of the particles
field at scale r. A shortcoming of this observable is their inability to discriminate
between inhomogeneities in the instantaneous concentration field which are induced
by the mechanisms of preferential accumulation which prevail at small scales and
inhomogeneities which are instead associated to a non uniform insemination of the
incoming flow at relatively large scales. This point needs to be carefully addressed
(particularly in experimental studies) to correctly quantify the relevance of preferen-
tial accumulation and obtain a sound comparison with numerical results.

To gain insight into the above issue, we have conducted some exploratory tests.
Inspired by Ref. [20], we have considered the observable [g0(r) − 1] (see e.g. [21])
which vanishes in a spatially homogeneous ensemble. The quantity [g0(r) − 1] has
been computed for a number of experimental datasets collected at different distances
from the particle feeding device e.g. at �x ≈ 0.5 m and at �x ≈ 4.5 m. At the closest
measurement station, green symbols in the left panel of Fig. 13, the curve exhibits
a much slower decay at the largest scales. Moreover, in the intermediate range of
scales, say r/LS � 0.5 ÷ 1.5, the data indicate a significant increase of the number
of particles pairs found at that separations. However, this may be considered as a
“fictitious” clustering, which represents in reality the signature of insufficient mixing
of the particle “cloud” which are injected just upstream of the measurement station.
Actually at �x ≈ 4.5 m downstream from seeding devices the “cloud” of particles has
been exposed for a much longer time to turbulent mixing, resulting in a smearing out
of the large scales inhomogeneities which are unavoidably introduced by the seeding
process. In this case, actually, the observable [g0(r) − 1] quickly approaches zero at
the largest scales. Moreover, in the intermediate range of scales r/LS ∈ [0.5 : 1.5],
the data show only a weak increase as the scale separation is reduced, and eventually
increase dramatically as the smallest scales are reached (denoting the occurrence
of clustering). This different behavior can be understood in the light of recent
findings for isotropic turbulence described in Ref. [20]. The authors of this work
suggest that the slow decay of [g0(r) − 1] at large inertial scales could be modelled in
terms of a scaling law derived from simple dimensional arguments in the context of
the Kolmogorov phenomenology. Actually, when an initially spatially non-uniform
passive scalar field is mixed by turbulence, the magnitude of the pair correlation
function is controlled by the integral scale L0 and is characterized by a scaling law
behavior in the form: [g0(r) − 1] ∼ 1 − (r/Lo)

2/3, see e.g. [22]. This scaling is reported
for comparison in the right panel of Fig. 13 for the data measured at �x ≈ 0.5 m and
at �x ≈ 4.5 m (note that the shear scale is used in this case to mark the border of
the inertial range). The agreement with the particle statistics at the closest station
is indeed remarkable, confirming that the particle-laden flow has not yet reached a
fully homogeneous state. Farther away, the argument based on the turbulent mixing
is not able to describe the variation of the particle correlation any more (in this case,
the particle distribution can be described by another functional form, see Ref. [6]).



Flow Turbulence Combust

Fig. 13 Left panel: the quantity [g(r) − 1] measured at different distances from the curved screen.
Green squares correspond to data collected near the seeding device (�x ≈ 0.5 m), red diamonds
represent data collected far downstream (�x ≈ 4.5 m). Right panel: the quantity [g(r) − 1] measured
at �x ≈ 0.5 m is tested against the prediction 1 − (r/LS)2/3 (line) suggested in Ref. [20]

In order to have further insight into the crosstalk between effects due to large-
scale nonuniformities and turbulent clustering, we have designed a targeted numeri-
cal numerical experiment. We considered a time-evolving homogeneous shear flow,
i.e. a configuration which can be easily recasted into a spatially evolving flow by
means of the transformation x∗ = S t, where x∗ is the streamwise coordinate made
dimensionless with the vertical dimension Ly of the experimental apparatus. The
flow was initially seeded with Lagrangian tracers and inertial particles distributed
at random homogeneous positions in a sphere of radius π/2. The initial condition
is homogeneous at small scales (i.e., for separations smaller than the sphere diam-
eter), while it is strongly non homogeneous at larger scales. Figure 14 reports the
observable [g0(r) − 1] at different simulation time steps (corresponding to different
downstream locations in the experiment) for both the Lagrangian tracers –lines–
and the inertial particles –symbols. The data show distinct behaviors of the pair
correlation function at small and large scales respectively. At small scales, [g0(r) − 1]
rapidly diverges, indicating the occurrence of clustering. On the contrary, when
large separations are probed, the pair correlation function is strongly affected by
the large scale non homogeneous effects inherited from the initial condition. In fact,
as previously discussed, the quantity [g0(r) − 1] is characterized by a slow decaying
tail at the largest scales, which typifies spatially non homogeneous distributions of
a passive scalar. The data also convey an other important massage: during the early
stages of the simulation, i.e. close to the particle injection point in the experiment,
the behavior of Lagrangian tracers and of inertial particles does not substantially
differ. Hence, we are confident that the scaling law postulated in Ref. [20] may
be representative of large scales inhomogeneities also for the inertial particles, as
discussed above. The fact that inertial particles with St = 0.3 behave essentially
as the Lagrangian tracers, as shown by symbols and lines in Fig. 14, during the
initial stages of the simulation is not surprising. In fact, the response of inertial
particles to turbulent fluctuations is parameterized in terms of the Stokes number
St = τp/τ f , where τ f is a characteristic timescale of the turbulent fluctuations. During
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Fig. 14 Pair correlation
function computed for both
Lagrangian tracers (lines) and
inertial particles (symbols), for
different nondimensional
times S ∗ t along the simulation
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the early stages of the dispersion process, particles are essentially dragged by the
most energetic (large-scale) turbulent motions, which are characterized by a time
scale comparable with the integral eddy turn-over time τ0, i.e. τ f � τ0. The relevant
Stokes number is then St0 = τp/τ0 → 0, which suggests that the response of inertial
particles to the highly energetic large scale eddies should not differ significantly from
the response of a passive tracer.

4 Concluding Remarks

The spatial distribution of heavy particles (St ≈ 0.3 ÷ 0.5) advected by a homoge-
neous shear flow in the one-way coupling regime has been characterized by means
of a combination of experimental and numerical investigations. The emphasis is
placed on the aspects of preferential accumulation and on the anisotropic features of
the particle field. The visual inspection of particle snapshots indicates that particles
tend to aggregate into thin clusters outside vortex cores, and that the mean velocity
gradient induces an evident preferential orientation on the particle clusters. An
analysis conducted in terms of Voronoï tessellations provides a more quantitative
characterization of the clustering process. In particular, the analysis of Voronoï dia-
grams has shown that specific features observed in isotropic conditions, e.g. the self-
similar behavior of small-scale clustering regions, are also shared by homogeneous
shear turbulence. Overall, an extremely satisfactory agreement between numerical
and experimental findings was observed.

The use of the Angular Distribution Function provides an alternative way to
characterize the geometry of the clusters, and in particular to estimate the anisotropy
content of the particle field at changing the scale of observation. The main effect
associated with particle inertia consists in a delay of the isotropy recovery process of
the particle concentration field as compared to the underlying velocity field. Despite
the differences of the flow parameters, the numerical approach was again found to
correctly reproduce the qualitative variation of the anisotropy level measured ex-
perimentally. The above correspondence among the obtained results is instrumental
for further comparisons, namely for cases like the two way coupling regime, where
an appropriate modelling of the inter-phase momentum exchange is required in the
numerical simulation.
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