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(ITALY)
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Abstract. Particles advected by turbulent flows spread non uniformly and form small scale
aggregates known as clusters where their local concentration is much higher than it is in nearby
rarefaction regions. Recently it has been shown that the addition of a mean flow, through its
large scale anisotropy, induces a preferential orientation of the clusters whose directionality can
even increase in the smallest scales. Such finding opens new issues in presence of large mass
loads, when the momentum exchange between the two phases becomes significant and the back-
reaction of the particles on the carrier flow cannot be neglected. These aspects are addressed
by direct numerical simulations data of particle laden homogeneous shear flows in the two-way
coupling regime. Particles with Stokes number of order one induce an energy depletion of the
classical inertial scales and the amplitude increase of the smallest ones where the particle back-
reaction pumps energy into the turbulent eddies. We find that increased mass loads results
in a broadening of the energy co-spectrum extending the range of scales driven by anisotropic
production mechanisms. Such results are obtained in the context of the classical “particle in
cell” method. To go beyond this approach we propose a new methodology to model particle
laden two phase flows. The method is based on the exact unsteady Stokes solution around
a point-particle and is intended to provide a physically consistent picture of the momentum
exchange between the carrier and disperse phase.

1. Introduction

Transport of inertial particles is involved in several fields of science such as droplets growth and
collisions in clouds, Falkovich et al. (2002), the plankton accumulation in the oceans, Lewis &
Pedley (2000) or the plume formation in the atmosphere, Woods (2010). Multiphase flows are
also fundamental in several technological applications such as the design of internal combustion
engines injection systems, Post & Abraham (2002) or the prevention of sediment accumulation
in pipelines, Rouson & Eaton (2001).

The relevant physical aspect consists in the particles finite inertia which prevents them
from following the fluid trajectories leading to “preferential accumulation”. In homogeneous
conditions preferential accumulation manifests in the form of small scale clusters where most
particles concentrate, see e.g. Bec et al. (2007). In inhomogeneous flows, such as wall
bounded flows, preferential accumulation occurs in the form of “turbophoresis”, i.e. preferential
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localization in the near wall region, Reeks (1983); Picano et al. (2009), see also Soldati &
Marchioli (2009).

The effect of turbulent transport on particle dynamics has been studied extensively. Much
less is known about the effect the disperse phase may have on the carrier flow demanding for
a renewed effort in this direction see e.g. Balachandar & Eaton (2010); Eaton (2009). It is
expected that, under proper coupling conditions, the momentum exchange between the two
phases might become relevant in driving the turbulent fluctuations away from their universal
equilibrium state predicted by Kolmogorov. Clearly, in contrast to the one-way coupling regime,
addressing these effects calls into play the more realistic two-way coupling mechanism, where
the disperse phase provides an active modulation of velocity fluctuations.

Important issues such as the increase of the particles settling velocity under gravity have been
addressed both numerically, Bosse et al. (2006) and experimentally, Yang & Shy (2005). Other
effects have been observed in the context of grid generated spatially decaying turbulence where,
starting from an isotropic state the particles feed-back leads to an anisotropic flow, Poelma et al.
(2007). Concerning wall bounded flows new features emerge such as the preferential suppression
of turbulence intensities in the wall normal direction, Pan & Banerjee (2001), the enhancement of
large scale anisotropy, Yiming et al. (2001) or the occurrence of drag reduction Zhao et al. (2010).
Concerning isotropy when it is broken by gravity or by the mean streamwise advection, the back-
reaction seems to immediately originate strong anisotropies in the carrier phase. Motivated by
recent findings in the context of anisotropic clustering, Gualtieri et al. (2009); Shotorban &
Balachandar (2006), we consider the modulation of turbulence in the context of a particle laden
homogeneous shear flow where anisotropic effect are disentangled from spatial inhomogeneities.

Modeling the back-reaction in numerical simulations is an issue, der Hoef et al. (2008). The
local distortion of turbulence can be captured only by resolving the boundary of each particle
on the computational grid. In the resolved particle simulations (RPS) several approaches have
been proposed ranging from finite volume schemes, Burton & Eaton (2005) to Lattice Boltzman
Methods, Poesio et al. (2006). Other approaches are possible once it has been recognized that
the flow close to a small particle can be locally approximated by the Stokes Flow. In Zhang &
Prosperetti (2005), the Stokes solution is used to provide appropriate boundary conditions to the
Navier-Stokes equations close to each particle. These approaches, due to their computational
cost, are feasible only for a relatively small number of particles. When particles are much smaller
than the turbulent scales RPS can not be employed and particles must be considered as material
points i.e. as point source/sinks of momentum for the carrier fluid. Within this approximation
several other methodologies are available. For instance, the singular steady Stokes solution is
employed by Pan & Banerjee (2001) to account for the disturbance flow due to each particle
while in the force coupling method, Lomholt & Maxey (2003) the disturbance flow adopts a
regularized Stokes solution. The simplest approach is provided by the “particle in cell” method
introduced by Crowe et al. (1977) which has been widely adopted in the literature.

In this paper we will discuss how, by adopting a proper resolution for the carrier fluid and an
by using an appropriate number of particles, the particle in cell method is still able to capture
meaningful turbulence modification effects. After discussing its limitations we will present a new
approach to model the momentum coupling between the two phases. The new methodology is
based on the exact unsteady Stokes solution around a point-particle as will be reported in detail
in this contribution.

2. Point-particles: review and results

The carrier fluid flow is a homogeneous shear flow. The velocity field v is decomposed into
a mean flow U = Sx2 e1 and a fluctuation u where e1 is the unit vector in the streamwise
direction, x2 denote the coordinate in the direction of the mean shear S and x3 is in the spanwise
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direction. Rogallo’s technique, Rogallo (1981) is employed to write the Navier-Stokes equations
for velocity fluctuations in a deforming coordinate system convected by the mean flow according
to the transformation of variables ξ1 = x1 − Stx2; ξ2 = x2; ξ3 = x3; τ = t. The resulting
system

∇ · u = 0 ;
∂u
∂τ

= (u× ζ)−∇π + ν∇2u− Su2e1 + F , (1)

is numerically integrated by a pseudo-spectral method combined with a fourth order Runge-
Kutta scheme for temporal evolution. In equations (1) ζ is the curl of u, π is the modified
pressure which includes the fluctuating kinetic energy |u|2/2, ν is the kinematic viscosity and F
denote the back-reaction due to the disperse phase. The latter consists of diluted particles with
mass density ρp much larger than the carrier fluid ρf . The approximation of point particles can
be adopted whenever the particle diameter dp is much smaller than the typical turbulence scales.
It follows that the only relevant force is the Stokes drag Maxey & Riley (1983). Accordingly,
the equations for particles position xpi (t) and velocity vpi (t) are ẋpi = vpi ; v̇pi = fpi where
vi(xp, t) is the instantaneous fluid velocity evaluated at xpi (t), f

p
i = τ−1

p [vi(xp, t)− vpi (t)] is
the Stokes drag, τp = ρpd

2
p/(18νρf ) is the Stokes relaxation time and the dot denote time

derivative. According to the particle in cell method the back-reaction on the fluid is computed
as F = − (Nc/Np) Φ

∑n(ξ)
p fp where the sum is extended to all the n(ξ) particles belonging to

the computational cell centered at point ξ. Nc denote the number of Eulerian cells, Np is the
total number of particles and Φ denote the mass load ratio i.e. the ratio between the mass of the
disperse phase Mp = Npπρpd

3
p/6 and the carrier fluid Mf = ρfVf where Vf is the volume of the

computational box. Since fluid properties are known in an Eulerian frame a first interpolation
of the fluid velocity at the particle position is required to evaluate the Stokes drag. A second
interpolation is used when the back-reaction on the fluid is computed. Actually, the force fpi
acting on the pth particle is re-distributed via inverse interpolation to the nearest Eulerian grid
points. In our case we adopted a tri-linear scheme.

Concerning the homogeneous shear flow, the mean shear induces velocity fluctuations
which are anisotropic at the larger scales driven by production while, at smaller separations,
the classical energy transfer mechanisms become effective in inducing re-isotropization. The
transition between the two regimes occurs across the shear scale LS =

√
ε/S3. The dynamics of

the disperse phase is controlled by the Stokes number Stη = τp/τη ratio of the particles relaxation
time τp to a characteristic flow time scale, typically the Kolmogorov time scale τη = (ν/ε)1/2.

In the two-way coupling regime, the mass load fraction Φ = Mp/Mf , is required as additional
dimensionless parameter to describe the momentum exchange between the two phases. We will
address data at a Taylor Reynolds number of Reλ = 50 corresponding to a Kolmogorov scale
η = 0.07 with a shear parameter S∗ = (L0/LS)2/3 = 7 advecting particles with unitary Stokes
number. The grid resolution, the total number of particles and the mass load ratio will be varied
to address different numerical and physical issues.

A detailed analysis of turbulence modulation calls into play the spectral distribution of the
turbulent kinetic energy. In figure (1) we show the energy spectra for the data at Φ = 0.4 with an
Eulerian resolution of 384×192×192 Fourier modes. By systematically changing the number of
particles per cell, namely Np/Nc, we observe how turbulent fluctuations are first attenuated in an
intermediate range of scales to be eventually enhanced at the smallest ones. However, besides
this general result, we observe a different behavior of the energy distribution at the smallest
scales depending of the ratio Np/Nc. For instance, as we diminish Np/Nc the smallest scale
seems to be more energized with respect to a case where more particles per cell are available.
This is due to the back reaction field which, being spatially localized at the particle position,
becomes progressively more spotty and intermittent when the Stokes drag is interpolated into
the Eulerian grid. The same comments hold for the energy cospectrum shown in the inset of
figure (1) (left panel) and for the dissipation spectrum plotted in the right panel of the same
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Figure 1. Effect of the number of particles per cell Np/Nc on the energy spectra at Φ = 0.4 and
fixed grid resolution of 384× 192× 192 Fourier modes. Left: energy spectrum and cospectrum
(inset). Right: dissipation spectrum in linear scale, in the inset the same data are plotted in
logarithmic scale.

figure. The effect of the number of particles per cell Np/Nc can be better appreciated when
data are plotted in a logarithmic scale. When the data are represented in linear scale to better
evaluate the area below the curve–its integral amounts for the total viscous energy dissipation
rate–the effect of Np/Nc is hardly appreciated. Such result allows to exclude any bias due to
the injection of the back-reaction field into the Eulerian grid which might effect the results if
it operates in a range of physically meaningful scales. Under this respect, the most critical
quantity is the energy dissipation rate. Indeed, even this quantity is not affected if a proper
resolution is adopted i.e. if enough scale separation between the physically active scales and the
scales of the order of the grid size is allowed. However, this is a strong resolution requirement
which compels the use of a fine grid even at a relatively small Reynolds number.

To complete the analysis of the point-particle method in figure (2) we explore the convergence
of the solution on different Eulerian grids when the mass load ratio Φ and the number of particles
per cell Np/Nc are fixed. In figure (2) we compare energy spectrum (left panel) and cospectrum
(right panel) for three different data sets. For instance, we fixed the mass load ratio Φ = 0.4
and considered two values of the mean particle concentration. For Np/Nc = 1 we refined the
Eulerian grid from 192 × 96 × 96 to 384 × 192 × 192 Fourier modes while for Np/Nc = 7 we
refined the grid from 96 × 48 × 48 to 192 × 96 × 96 Fourier modes. Good convergence of the
energy spectra is observed in the scale range common to both data sets. In the inset similar data
for Φ = 0.8 and Np/Nc = 7 show the same behavior. The analysis also allows to establish the
minimum number of particles per cell required to achieve a convergence see e.g. the two data
sets with the same grid resolution 192×96×96 Fourier modes, the same mass load Φ = 0.4, but
different values of Np/Nc. When the number of particles per cell is varied from one to seven,
the spectra seem to be unaffected in the whole range of resolved scales.

From the above analysis we might draw some conclusions. The back reaction field becomes
progressively more spotty and intermittent as the Eulerian grid is refined. This effect might be
compensated by increasing the mean number of particle per cell. Secondly, since the back-
reaction field is grid-dependent, a sufficient separation between the physically active scales
and the grid size is needed. This constraint strongly limits the Reynolds number that can
be simulated with a given Eulerian grid. Such drawbacks are essentially due to the numerical
implementation of the coupling mechanism which simply redistributes the force acting on a
particle to the computational cell the particle belongs to. In fact, the regularization of the
back-reaction field is provided by the interpolation scheme and by the implicit filter represented
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Figure 2. Effect of the Eulerian grid resolution on the energy spectra. A coarse grid (open
symbols) is compared against a finer one (filled symbols) for a given value of the particles per cell
ratio Np/Nc and mass load Φ. Left: energy spectrum at Φ = 0.4, the squares refer to Np/Nc = 1
for two Eulerian resolutions, namely 192 × 96 × 96 (open squares) and 384 × 192 × 192 (filled
squares). The circles correspond to Np/Nc = 7 for a coarse 96 × 48 × 48 (open circles) and
finer 192× 96× 96 (filled circles) grid respectively. In the inset analogous data at Φ = 0.8 and
Np/Nc = 7, for the coarse 96×48×48 and the finer 192×96×96 grid respectively. Right: same
data as in the left panel concerning the energy copectrum.

by the Eulerian grid.

3. Exact Regularized Point Particle (ERPP) method: overview and results

Motivated by the results discussed in the previous section we present here a new coupling method
to account for the momentum exchange between the carrier and the disperse phase.

A point particle of mass mp in the relative motion with respect to a Newtonian fluid
experiences a drag force which can be modeled in terms of the Stokes drag D(t) =
3πµdp {ũ [xp(t), t]− vp(t)} where µ is the dynamic viscosity of the fluid, dp is the diameter
of the particle, here assumed to be spherical. The expression of the Stokes drag involves the
fluid velocity evaluated away from the particle i.e. in the particle scale, the fluid velocity at
infinity. This is an issue when two-way coupling is addressed since each particle produces
a self-disturbance flow. We use the Faxen correction to estimate the far field fluid velocity
ũ(xp, t) = u(xp, t) +L2

∞/24∇2u(xp, t) where the regularization scale L∞ is set by matching the
terminal particle velocity in still fluid.

In an Eulerian framework the force on the point particle is a singular field F(x, t) =
−D(t) δ [x− xp(t)] where F(x, t) is the force the particle exerts back on the carrier fluid and
δ(x) is the Dirac delta function. In such conditions, on a scale much larger than the particle
size but still much smaller than the relevant spatial scales of the carrier flow, the fluid motion
is well described by the incompressible Stokes equations,

∂v
∂t
− ν∇2v +∇p = F, v(x, 0) = v0(x) (2)

where v0 is the velocity field assigned as initial condition. Peculiarity of the mathematical model
we are using is that the linear, unsteady part of the fluid acceleration term has been retained
in eq. (2), even though it could have been neglected on the basis of the typical time scale of the
phenomenology. As we shall see, this choice will allow a well defined procedure to regularize the
solution of the coupled flow problem, where the particle reacts back on the fluid.
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Our problem consists in determining an efficient algorithm for a consistent and accurate
approximation of the solution of the singularly forced Stokes equation (2) able to allow the
coupling of the intermediate scale problem with the large scale, high Reynolds number solution
of the fully non-linear Navier-Stokes equation.

The algorithm we devise exploits the localization operated by the diffusion equation for the
intermediate scale vorticity field associated to the particle motion ζ(x, t) = ∇× v(x, t),

∂ζ

∂t
− ν∇2ζ = ∇× F = D(t)×∇δ [x− xp(t)] , ζ(x, 0) = ζ0(x). (3)

The above linear problem can be split in a forced problem with homogeneous initial
conditions and the free diffusion of the initial vorticity with non homogeneous initial
conditions ζ = ζf + ζh. The solution is explicitly expressed as a convolution with the
fundamental solution of the diffusion equation, ∂tg − ν∇2g = δ (x− ξ) δ(t − τ) given by
g(x, ξ, t, τ) = exp

{
−|x− ξ|2/ [4ν(t− τ)]

}
/ [4πν(t− τ)]3/2 which corresponds to a Gaussian

with time dependent variance σ(t− τ) =
√

2ν(t− τ).
The solution of the forced problem with homogeneous initial conditions is given by

ζf (x, t) =
∫ t

0
D(τ)×∇g [x− xp(τ), t− τ ] dτ , (4)

while the solution of the homogeneous equation is given by the standard spatial convolution
with the fundamental solution,

ζh(x, t) =
∫

ζ0(ξ, t)g(x, ξ, t, 0)dξ. (5)

The vorticity field is apparently singular. The singularity comes from the contribution to the
integral near the upper integration limit, τ ' t, where g(x, ξ, t, τ) tends to behave as badly as the
Dirac delta function. On the contrary, due to the strong regularization operated by the diffusion
operator, away from the upper integration limit the integrand is smooth. We can then define a
regularization procedure based on a temporal cut-off ε such that the vorticity is additively split
into a regular and a singular component, ζf (x, t) = ζR(x, t, ε) + ζS(x, t, ε) with smooth and
singular part respectively given by

ζR(x, t) =
∫ t−ε

0
D(τ)×∇g [x− xp(τ), t− τ ] dτ , (6)

and by

ζS(x, t) =
∫ t

t−ε
D(τ)×∇g [x− xp(τ), t− τ ] dτ . (7)

The regular field ζR can be interpreted as the free diffusion in the time interval [t− ε, t] of the
complete field, superposition of regular and singular components, at time t− ε, ζf (x, t− ε),

ζR(x, t) =
∫

ζf (ξ, t− ε)g [x− ξ, ε] dξ , (8)

where the spatial convolution of the field ζf at time t− ε with the fundamental solution of the
diffusion equation with time argument ε propagates forward the field from t− ε to time t. The
regular part of the vorticity field, ζR, is everywhere smooth and characterized by the smallest
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spatial scale σ(ε) =
√

2νε. It is easy to derive the differential equation satisfied by ζR(x, t)
namely

∂ζR
∂t
− ν∇2ζR = −∇x ×D(t− ε)g [x− xp(t− ε), ε] , t > ε; ζR(x, ε) = 0 . (9)

The decomposition of the vorticity field into smooth and singular components can be exploited
in an efficient computational algorithm to couple the dynamics of the two phases. Given its
smoothness properties the field ζR(x, t) can be represented on a discrete grid, provided the
grid size ∆ is comparable with the smallest scale of the field σ(ε). In fact, the vorticity field
given by eq.(9) provides the regularized disturbance produced by a small spherical particle
experiencing the drag force D(t). By standard techniques the disturbance vorticity can be rec
into a corresponding disturbance velocity field which is then injected into the Eulerian grid.

In order to evaluate the proposed method we consider the unsteady motion of a single
spherical particle settling from rest under the effect of a constant body force e.g. gravity which
is then removed at latter times. The problem is challenging. Actually, when considering only
a single particle in the two-way coupling regime the only modification of the flow is induced
by the particle itself. This requires an accurate evaluation of the Stokes drag by means of the
Faxen correction discussed above. Moreover, the motion of the particle is unsteady as it would
be in a real turbulent flows where the particle experiences continuos variation of the fluid motion
along its trajectory. The velocity of the particle resulting from the ERPP calculations are shown
in figure (3). The data are compared with a spatially resolved numerical simulation around a
finite size particle obtained by the Comsol Multiphysics solver. The ERPP results are shown for
different values of the regularizing parameter σ(ε) and present good agreement with the resolved
simulation data. Note that both the transient motion and the terminal velocity are correctly
estimated by the ERPP method. In the inset, we have checked the sensitivity of the ERPP to
the particle Reynolds number.

Second and more severe check is provided in figure (4) where we plot the disturbance velocity
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Figure 3. Particle velocity versus time: the particle is accelerated from rest at t = 0 by means
of a constant external force. Successively at t/τp = 20 the force is removed and the particle is
progressively decelerated by the Stokes drag. The particle velocity is normalized by the Stokes
settling velocity w = τp f where f is the external force. Time is rescaled by the Stokes time τp.
Data corresponds to a particle Reynolds number Rep = w dp/ν = 3 · 10−1. In the inset same
data at Rep = 3 · 10−3. The lines correspond to different values of the ratio a/σ(ε) where a is
the particle radius, the open symbols are the data provided by Comsol Multiphysics.
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profiles computed by the ERPP in comparison with the Comsol Multiphysics solution. We
present the velocity along the settling direction (left column) and along the transversal direction
(right column). Panels from top to bottom refer to different times across the particle trajectory.
At all times the ERPP solution is able to capture the spatial structure of the disturbance
flow as compared to the fully resolved numerical data. In the plot we have reported the
corresponding steady Stokes and Oseen-improved solution past a sphere. Note that the quasi-
steady approximation for the disturbance field is quite inaccurate especially at early times when
the particle accelerates from rest. This is crucial in turbulence when the particle evolves subject
to the sudden acceleration induced by the chaotic nature of the flow. On the contrary, the
present solution fully captures such unsteadiness. The ERPP method is also able to capture
the flow front-back symmetry breaking due to finite Reynolds number effects along the transient
phase. Actually at steady state the solution is better described by the Oseen solution rather than
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Figure 4. Flow disturbance due to a particle moving from left to right. 1D profiles of the
streamwise velocity in the parallel (left) and transversal (right) directions. Panels from top to
bottom correspond to different times namely t/τp = 1, 2, 10. The ERPP results for different
values of a/σ (symbols) are compared against the solution provided by Comsol Multiphysics
(solid line). For comparison we provide the steady Stokes solution (dashed line) and the Oseen-
improved correction (red solid line).
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the Stokes solution. As a final comment, we observe that the finest details close to the particle
boundary are sensitive to the ratio a/σ. In particular, as already addressed by Lomholt & Maxey
(2003) for the steady Stokes solution, for a/σ = (π/2)1/2 the disturbance flow reproduces the
rigid motion of the sphere by matching the rigid body velocity at the center. We find that this
result holds also during the transient phase at least for t ≥ τp. However, irrespective of the
value of a/σ, the far field behavior does not change. For instance, the ERPP solution collapse
on the Comsol Multiphisics solution already after a few particle’s radius. This is extremely
important since our aim consist in the simulation of a large ensemble of point-particles where it
is unfeasible to resolve the spatial scales comparable with the particle radius.

4. Final remarks

We have discussed DNS data of a particle laden homogeneous shear flow in the two-way coupling
regime. Concerning the alteration of turbulence we found that particles with Stokes number of
order one induce an energy depletion of the classical inertial scales and the amplitude increase
of the smallest ones where the particle back-reaction pumps energy into the turbulent eddies.
We also find a broadening of the energy co-spectrum extending the range of scales driven by
anisotropic production mechanisms. As far as the “particle in cell” method is correct our results
are physically meaningful. In fact, as the particle in cell back-reaction field is grid-dependent,
we took care to have a sufficient separation between the physically active scales and the grid size
before drawing our physical conclusions. To overcome the limitations of the method we have
developed a new approach to account for the momentum exchange between the two phases.
The new methodology, based on the exact unsteady Stokes solution around a point-particle, has
been tested in the simple case of a point particle settling under gravity. The method provides a
physically consistent picture of the momentum coupling between the carrier and disperse phase.
In fact, the ERPP is able to reproduce both the particle transient motion and the finest spatial
details of the induced disturbance flow. The ERPP is expected to provide accurate and efficient
results for turbulent particle-laden flows, when the particle size is sufficiently smaller than the
typical Kolmogorov scale of the flow.
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