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Abstract 

A wide range of transport bilevel problems are investigated referring to an 
elementary network consisting of one Origin Destination (OD) pair, with a given 
demand, connected by two links. In this context it is shown that these problems, 
generally non-convex, exhibit several local minima. Most results are supplied in 
a graphical form and analytical proofs are developed for the NDP with linear 
investment functions. 
 
 

1 Introduction 
Since the work of Tobin and Friesz6 has opened the field of assignment 
sensitivity analysis, several contributions (for example Friesz et al.3, 
Yang8, Davis2), aiming at devising solution algorithms for classical 
transport bilevel optimisation problems (Network Design, Traffic Control 
Problem, OD Matrix Estimation etc.), exploited their approach to achieve 
lower level problem differentiation. These algorithms should be 
considered as heuristics, no exact and general solution to bilevel 
optimisation problems being available up to now. 

In this paper, we formulate and analyse a specific Network Design 
Problem (NDP), referring to the most elementary conceivable network. 
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The essentiality of network topology will make the NPD solution a trivial 
task. On the other hand, this permits us to investigate rather deeply the 
structure of the problem: thanks to the extreme simplicity of the network, 
only few variables will be involved, so that we are in a position to see 
literally what is going to happen as the parameters of the problem vary. 
Concretely, we will consider a single OD pair, with a given transport 
demand q, connected by two links/paths a and b, whose average travel 
costs cp , p=a, b , are known functions of the traffic flow fp on the link 
and of some kind of resource kp allocated to it. We then investigate 
problem (1), in the following referred to as Basic Problem (BP) 
 
 
 
 
 
 
 

 
where: 
. the total user cost C is assumed as objective function; 
. the whole available budget I is supposed to be spent; 
. the equilibrium flow pattern is determined according to the deterministic 
user equilibrium (DUE); 
. investment functions ip , p=a, b , are assumed to be linear. 

Some modification of the BP will be then introduced and analysed 
through numerical examples. 
 

2 Link cost functions 
Most of the frequently used link congestion cost functions are of the 
multiplicative type, namely c=u⋅[1+d( f )], where u is a constant and d is 
an increasing function of the link flow f. Such a formalisation is not 
satisfactory when the construction of new infrastructures is involved. In 
order not to ignore, as it often happens, this aspect of the problem, we use 
the following functional form: 
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where u(k) is assumed to be a decreasing function of the capacity k and 
where the c(f,k) functions are assumed to be continuous, strictly 
increasing with respect to f and strictly decreasing with respect to k. The 
(2) becomes of the B.P.R. type when dp=(1+αp⋅xp^βp), and of the 
Davidson modified type when dp=[1+Jp⋅xp/(1-xp)] if xp<µp, dp=[1+Jp⋅(xp-
µp

2)/(1-µp)2)] otherwise. Moreover, in order to avoid optimal solutions 
that imply the allocation of too small resource quantities, which have no 
physical meaning, and still contemplate the case of “no investment at all” 
for some planned link, instead of formulating the problem as a mixed 
integer program, zero capacity links are associated to an infinitely high 
uncongested travel time. 

In formalising NDP (1) we use the concept of resource without any 
other specification; this approach allows us to place NDP and Traffic 
Control Problem (TCP) (Yang & Yagar7) in the same framework, when 
dealing with our elementary network. On this regard, we remember that a 
detailed representation of traffic lights operation or a different traffic 
control / route choice problem formalisation (Smith5) lead to completely 
different approaches, while a broad range of traffic management tools 
may be represented, in aggregate form, as a (road) space and (green) time 
resources allocation problem. Moreover, while it has been shown 
(Papola4) that, in practical cases, the minimum cycle can be regarded as a 
good approximation of the optimal cycle, as the saturation degree 
becomes only moderately high, the corresponding average delay can be 
conveniently used as a cost function in the context of TCP since it can be 
reduced to the form c=u⋅(1+d). In this case resources and investment are 
the same and represent green time values to be allocated on two 
conflicting approaches belonging to the same OD pair. 
 

3 Analysing the Basic Problem 

3.1 Link/Path utilisation pattern 

Budget constrains can be eliminated from the problem (1), by expressing 
the capacities kp as a function of the budget share θ, utilising the inverse 
kp(ip), so assuming θ as design variable: ia=θ⋅I, ib=(1-θ)⋅I, θ∈[0,1]. 

We will first deal with the case u’≠0, where the limit of u(k) as k 
approaches zero is +∞. The assumption that to zero capacity links 
corresponds an infinitely high uncongested travel cost gives places to the 
existence of three ranges of θ : θ∈[0,θA), only link b is utilised; 
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θ∈(θA,θB), both links are utilised; θ∈(θB,1], only link a is utilised. Points 
Α and Β in figure 1 represent limit situations where respectively 
ca(0,θ)=cb(q,θ) and ca(q,θ)=cb(0,θ). 
 
 
 
 
 
 
 
 
 
 
 
The existence and the uniqueness of points A and B can be easily proved. 
In fact, owing to the properties of the c(f,θ) functions, it is ca(0,0)>cb(q,0) 
and ca(0,1)<cb(q,1). The assertion follows. The same holds for point B. 
The properties of the functions also imply that θA<θB, as can be seen in 
figure 1. 
 

3.2 Analysis of total cost function 

We will analyse here the shape of the total cost C when a 
monodimensional function of the budget share is taken into 
consideration, by determining fa and fb, for any θ, according to DUE. 

For values of θ∈[0,θA), total cost C is an increasing function. 
Investment is in fact subtracted to the utilised path and it is given to the 
unutilised one, which, in practical terms, means a loss of capacity. 
Symmetrically, for values of θ∈(θB,1], total cost C is a decreasing 
function (see figure 1). 

Let us consider now the range θ∈(θΑ,θB) where both paths are 
utilised. Within this range the variation of path cost, following an 
investment reallocation dθ, is equal on both paths (dca=dcb) by definition. 
Then the necessary and sufficient condition for the total cost 
C=ca⋅fa+cb⋅fb=ca⋅q to decrease (dC<0) as a consequence of this 
investment reallocation is that dca=dcb<0. Considering again investment 
functions, it is: dip=ip

k⋅dkp, which implies dkp=dip/ip
k, p=a, b; so that, 

expressing cost as a function of capacity as in eqn. (2): 
 
 

Figure 1: determination of the path utilisation ranges through points A and B. 
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where the superscripts f and k denote derivatives with respect to the 
corresponding variables. The DUE implies: 
 
 
 
so that, being, obviously, dfb=-dfa and dib=-dia , the derivative of the 
equilibrium flow with respect to investment (on link a) is: 
 
 
 
while the derivative of total cost results to be: 
 
 
 
When considering cost functions of the less general but extensively used 
form (2), partial derivatives are: 
 
 
 
and derivative of equilibrium cost ca is: 
 
 
 
 
 
 
Equation (8) in points A and B, where there is no congestion on the empty 
link (d(0)=0), simplifies considerably. When the additional condition 
d’(0)=0 is assumed, as it happens when using BPR functions, 
remembering that ia=θ⋅I, from the (6) and the (8) we get: 
 
 
 
In conclusion, when u’≠0 and d’(0)=0, the total cost function C(θ) is 
increasing on the left of points A and B and decreasing on the right, which 
means that these points are two local maxima. Moreover, because the 
derivative on the left is not equal to that on the right, in points A and B 
C(θ) has a cusp (see figure 2). 

In the numerical examples we use BPR functions with parameters 
αa=αb=1,5 , βa=βb=4, assuming up(kp)=lp/V0

p(kp). As far as the u 
functions parameters is concerned, the following values have been used: 
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la=50 km, lb=45 km (lb=35 km when u’=0); when u’≠0  V0
p(kp)=ρ⋅kp

 σ, 
ρ=0,3 , σ=0,7; when u’=0 V0

p(kp)=50 km/h. In order to deal with more 
appreciable values, in the figures, instead of the total cost C, the average 
total cost C/q has been depicted. 

It can be observed that, since in the central range total cost C(θ) is 
decreasing on the left hand side and increasing on the right hand side, the 
continuity of the function and of its derivative ensures the existence of at 
least one relative minimum. As it is shown in figure 2 the actual shape of 
the function depends on the demand / budget ratio: if it is sufficiently 
low, then only one relative minimum arises; vice versa high values of the 
ratio exhibits two relative minima and one relative maximum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us consider now the case where u does not depend upon k 

(u’=0). With no loss of generality let ua>ub, so that path b is always 
utilised. Naturally enough point B then disappears, while, as it can be 
shown, the range where path b alone is utilised appears only if kb

max>kb
lim, 

being kb
max the maximum capacity corresponding to the whole budget I 

and kb
lim a specific capacity value defined by the following equation: 

db(q/kb
lim)=ua/ub-1. Considering that u’=0, when point A exists, the 

derivative of the total cost function C(θ) is positive on its left and zero on 
its right (see eqn. (9)), so that this is no more a maximum; though it is 
clearly a cusp (see figure 3). 

A central hypothesis in achieving the above results was d’(0)=0. 
As eqn. (8) shows, in cases where u’≠0 but d’(0)>0 the sign of dC/dθ 
depends on the cost function parameters. 

Figure 2: BP average total cost 
functions vs. θ when u’≠0. 

Figure 3: BP average total cost 
functions vs. θ when u’=0.
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3.3 Global minimum 

In the present case, as expected, the numerical results show that the 
global minimum is achieved when the whole budget is allocated to one of 
the two paths, which of them depending on the parameters values. 

The assertion can be easily proved for the particular case of a 
symmetrical network with u’≠0. In this case, in fact, for θ∈(θA,θB) the 
stationary point must fall, for a matter of symmetry, exactly in the 
middle. Naming K the total capacity allowed by available budget I, in 
correspondence of this point, saturation degree is the same for both links 
and it is equal to (q/2)/(K/2)=q/K. This is also the saturation degree 
experienced in the two external solutions and congestion cost is thus the 
same in these three points. Uncongested travel cost, however, is 
decreasing with capacity; thus, since C(0)=C(1)=q⋅u(K)⋅[1+d(q/K)] 
<C(1/2)=q⋅u(K/2)⋅[1+d(q/K)], it is evident that external solutions are 
better than the central one. 
 

4 Modifying the Basic Problem 

4.1 Different route choice models 

In figure 4 are depicted the average total cost curves C/q, for u’≠0, 
when considering a deterministic system equilibrium DSE flow 
assignment; the corresponding DUE curves are also depicted for 
comparison. It is worth noting that DSE curves are, by definition, 
regularly non-above the corresponding DUE ones. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: SUE average total cost 
functions vs. θ  when u’≠0. 
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Figure 4: DSE and DUE average total 
cost functions vs. θ  when u’≠0. 
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In figure 5 are depicted the average total cost curves C/q when 
stochastic user equilibrium (SUE) is considered, adopting a logit model 
with different values of the parameter ϕ, while q is kept equal to 4000 
veic/h. The case u’≠0 is considered. Since now are always utilised both 
paths, it does not make sense considering different ranges of utilisation 
and cusps do not exist any more; yet for sufficiently high values of the 
logit parameter ϕ, (low utility variance) a shape similar, a part from the 
cusps, to the ones already met in the BP can be easily recognised. Clearly 
non-convexity, being an intrinsic feature of the problem, does not 
disappear by switching to the stochastic approach, (see figure 5). 
 

4.2 Scale economies and diseconomies 

Investment functions ip take into account physical features of the links as 
well as environmental costs associated to resource allocation such as 
traffic pollution, visual impact, contiguity with environmentally sensitive 
or densely populated areas and land separation effects. 

In the present work, to get numerical examples, the following 
simple form has been considered: ip=lp⋅χp⋅kp^γp, being lp the length of the 
link, χp and γp two calibration parameters. Throughout all examples we 
assume χp to be equal to 2.500.000 for both paths, while budget I was 
taken equal to 500 billions of It.Lires. Scale economies and diseconomies 
are then simulated by considering respectively a value for γp less than one 
(0,7 in the examples) and higher than one (1,4 in the examples). 
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Figure 6: scale economies average total 
cost functions vs. θ  when u’≠0. 

Figure 7: scale economies average total 
cost functions vs. θ  when u’=0. 
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Scale economies can be justified in connection with new roar 

construction, scale diseconomies in connection with the above mentioned 
environmental costs. The effects of scale economies and scale 
diseconomies on the total cost function shape, for different values of q, 
are depicted in figures 6 and 7 and in figures 8 and 9, respectively; where 
figures 6 and 8 refer to u’≠0 and figures 7 and 8 to u’=0. It is well worth 
noting that in the case of scale diseconomies internal solutions tend to be 
better so that the global minimum may correspond to points where 
resources are allocated to both links. Scale economies still imply an “only 
to the best link” solution. 

 

4.3 Relaxing the budget constraint 

We consider now the following problem: 
 
 
 
 
 
 
 
where, contrariwise to problem (1), the budget constraint is removed and 
the cost of the investment is added to the total user cost in the objective 
function and where λ and ν are assumed equal to 43.800.000 and 0,1 
respectively. 
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Figure 8: scale diseconomies average 
total cost functions vs. θ  when u’≠0. 

Figure 9: scale diseconomies average 
total cost functions vs. θ  when u’=0. 
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In figures 10 and 11 are depicted the F(ka,kb) surfaces by means of 
sections F=constant where no scale economies or diseconomies are 
present. By means of vertical sections, I=constant, we can obtain, instead, 
two dimensional curves identical, as far as the shape is concerned, to the 
above corresponding C(θ) curves. In particular, figure 10 refers to the 
case u’≠0, while figure 11 refers to u’=0. In both cases, as expected, 
global minimum lays in points where it is ka=0 or, alternatively, kb=0. 

The same problem, formulated according to a DSE gives place to a 
saddle point as depicted in figure 12. 
 

6 Conclusions 
A number of different conceivable NDP nave been examined. Namely, 
from the supply side (upper problem): total user costs subject to budget 
constraint, with scale economies and diseconomies; total user cost plus 
investment cost. From the demand side (traveller’s’ response): 
deterministic user equilibrium; stochastic user equilibrium; deterministic 
system equilibrium. 

Despite the extreme simplicity of the network, and really thanks to 
that, we were able to fully investigate the behaviour of the system and to 
carry out some general results. The non-convexity appears to be an 
intrinsic characteristic of bilevel problems: in fact, whatever case we 
consider, unless we limit ourselves to assume the uncongested travel time 
not dependent upon the investment, several local minima are present. 
Moreover, on condition that the parameters are opportunely specified, the 
system exhibits similar behaviours, apart from some specificity like the 
existence of the cusps within the deterministic framework. Finally it is 
worth noting that slight variations of the parameter values modify 
substantially the behaviour of the system. 

The results, far from being conclusive, represent an interesting 
starting point in the direction of investigating the general behaviour of the 
problem when real networks are considered. 
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Figure 12: F(kb,ka) surface when the problem is the same as (10) but 
formulated according to a DSE and u’≠0. 


