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Bubble-Turbulence Interaction in Binary Fluids
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Abstract. Multiphase flows represent a central issue in many natural, biological and industrial fields. For
instance, liquid jets vaporization, petroleum refining and boiling, emulsions in pharmaceutical applications,
are all characterized by a disperse phase, such as solid particles or liquid bubbles, which evolve in
a Newtonian carrier fluid. Features such as the global evaporation rates of liquid fuels in air or the
homogeneity of the emulsions are controlled by the finest interaction details occurring between the two
phases. In this paper we study the rising motion of a bubble induced by buoyancy in a viscous fluid.
Usually this issue is tackled by tracking the bubble interface by means of sharp interface methods.
However this approach requires “ad hoc” techniques to describe changes in the topological features of
the deforming interface and to enforce the mass preservation. Here the problem is addressed by using a
different philosophy based on a diffuse interface method, that allows a straightforward analysis of complex
phenomena such as bubbles coalescence and break up without any numerical expedient. The model we
adopt, funded on a solid thermodynamical and physical base, relies on the Cahn-Hilliard equation for the
disperse phase, see Cahn & Hilliard (1958) and Elliott & Songmu (1986).

1. Introduction

Multiphase flows are common in many natural, biological and industrial systems. Typical examples are
liquid fuel jets in different kind of engines, petroleum refining and boiling, emulsions in pharmaceutical
applications, chemical reactors. In all these cases a Newtonian fluid carries a disperse phase, such as
solid particles or liquid droplets, which gives rise to a complex and intriguing dynamics. Among the
different aspects of the general problem concerning turbulence in multiphase flows, the present paper
focuses on the issue of the rising (falling) of the bubbles (droplets), their deformation and break-up and
the turbulent fluctuations thereby generated. The overall importance of the topic is proved by the great
number of dedicated numerical and experimental studies. In Grace et al. (1976) and Bhaga & Weber
(1981) Reynolds (Re), Eötvös (Eo) and Morton (Mo) numbers are identified as the proper dimensionless
parameters which control the dynamics and determine shape and terminal velocity of a rising (falling)
bubbles (droplets). Further experiments have shown, see e.g Tomiyama et al. (2002), the crucial role of
the initial bubble shape on the successive rising dynamics in pure or contaminated water when surface
tension is determinant and the bubble Reynolds number is small.

Concerning numerical approaches, most studies were based on potential flow theory, see e.g. Oguz
& Prosperetti (1993), which provides a reasonable description of the physics when slip occurs at
the bubble surface. The improvements of numerical techniques and the increased computational
capabilities of super-computers recently allowed for finely resolved simulations of rising bubbles (or
falling droplets) aimed at understanding and revealing more detail on flow structures and dynamical
mechanism. In Ryskin & Leal (1984) the authors perform one of the first numerical simulations of rising
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bubbles addressing the bubble dynamics in the steady state regime while in Unverdi & Tryggvason (1992)
a three-dimensional simulation extends the analysis to the transient phase. The results show very good
agreement with the experimental data in regimes characterized by small shape deformations and rising
velocities. However the numerics, based on front tracking algorithms, become computationally heavy
when the interface get substantially entangled. Actually tracking and capturing the interface involves
several numerical and algorithmic issues especially when a topology change occurs (e.g. the bubble
break-up). In addition these procedures employ mathematical expedients related to the interpolation of
the thin interface which may have non trivial consequences on the accuracy of the method. In this context,
level set and volume-of-fluid method or their combination are worth mentioning as further numerical
improvements for the treatment of the thin gas/liquid interface (Ohta et al., 2005).

In this paper we investigate essentially the same kind of dynamics by using the Navier-Stokes
equations coupled with the Cahn-Hilliard equation (Cahn & Hilliard (1958)). The latter allows to mimic
a binary system of two immiscible liquids by introducing a phase variable ϕwhich discriminates between
the two pure fluids, ϕ = ±1, while ranging from −1 to +1 across the thin interface.

The relevant system of equation is summarized in the next section. In § 3 we describe the numerical
algorithm and the simulation parameters. A comparison of our results with the data obtained by Bhaga
& Weber (1981) and our main contributions are presented in § 4, while § 5 provides a final discussion on
numerical method and physical results.

2. Mathematical model

In diffuse interface methods the dynamics of two immiscible fluids is reproduced by somewhat artificially
thickening the interface. The consistency of the model relies upon a suitable thermodynamical
description where an additional contribution to the free energy density of the two pure fluids accounts
for the interface surface energy. According to Cahn & Hilliard (1958) a phase field variable ϕ ∈ [−1, 1]
is employed to describe the two phases. The free energy density is given by

f(ϕ,∇ϕ) =
1

2
λ |∇ϕ|2 + f0(ϕ) (1)

where the contribution proportional to the square of the phase variable gradient through the
phenomenological coefficient λ accounts for non local effects due to the interatomic interactions between
the two phases. The double-well potential f0 = λ/(2ε2)(ϕ2 − 1)2 takes care of the existence of two
stable states corresponding to the pure fluids. The phenomenological coefficient, λ/(2ε2), is expressed
in terms of the interfacial energy coefficient λ and the additional parameter ε which is a measure of the
interface thickness. Relaxation of the free energy

F =

∫
Ω
f(ϕ,∇ϕ)d3x (2)

towards its minimum is described by the Cahn-Hilliard equation

∂ϕ

∂t
+ u · ∇ϕ =

S2

CnCa
∇2G =

S2

CnCa
∇2
(
ϕ3 − ϕ− Cn2∇2ϕ

)
(3)

where G is the chemical potential, Cn = ε/` is the Cahn number, ratio of the interface thickness ε
and a typical macroscopic scale `, Ca = µUc/σ is the Capillary number which estimates the ratio of
viscous to capillary forces, with µ the dynamic viscosity of the carrier fluid (“background phase”), Uc

the macroscopic velocity and σ the surface tension. Finally the dimensionless number S =
√
Mµ/`

accounts for the Onsanger mobility coefficient M , here taken constant. For the Cahn-Hillard equation,
taken saparately from the momentum balance of the fluid (modified Navier-Stokes equation), S controls
the characteristic time scale. As well known, the two contributions to the free energy density have
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opposite effects: the first one (ϕ3 − ϕ) promotes the formation of uniform patches of pure fluid, thereby
leading to the formation of interfaces. The second one (Cn2∇2ϕ) penalizes the interface itself, where
the phase variable gradient is significant, thus contributing to reduce the extension of the interface. In
physical terms, the interface is extremely thin in standard conditions (order of few nanometers) hence
the Cahn number it is expected to be very small. Simple dimesional consideration reported below show
that S is also extremely small Yue et al. (2010).

The flow is assumed isothermal, both fluid are incompressible and the only density variations occur
across the interface since the density depends ϕ. Under these hypothesis the Cahn-Hillard equation (3)
is coupled to the incompressible Navier Stokes equations,

∇ · u = 0

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u +

1

ReCaCn
G∇ϕ+

1

Fr2

(
1− ρ(ϕ)

ρ0

)
ĝ . (4)

In the momentum balance equation Re = Uc`ρ0/µ is the Reynolds number and Fr = Uc/
√
g` is the

Froude number with g = gĝ the gravitational acceleration. As anticipated, the density depends on the
field variable and the ratio between local, ρ(ϕ), and carrier phase density, ρ0, generates the buoyancy
term. A linear dependence captures the essential physics, se e.g. Celani et al. (2009),

ρ(ϕ) =
1− ϕ

2
ρ0 +

1 + ϕ

2
(ρ0 −∆ρ)

and assuming ρ0 −∆ρ� ρ0 the buoyancy term reads

1

Fr2

1 + ϕ

2
ĝ .

Surface tension is described by the distributed force proportional to chemical potential times the phase
gradient, G∇ϕ, which accounts for the momentum exchange between the two phases. The complete
model can be shown to be thermodynamically consistent for a system of two immiscible fluids.

3. Methodology

The equations presented in the section § 2 are integrated in a triply periodic box with dimension
[Lx × Ly × Lz] = [2π × 2π × 4π] by means of a semi-implicit Fourier pseudo-spectral algorithm
which allows to easily integrate the high order spatial derivative terms in implicit form, with no time step
restriction for stability. A classical approach, see also Gualtieri et al. (2002), is used for the momentum
balance equation, with the non linear convective term written in the Lagrange form and explicitly treated
during the time integration while keeping the dissipative term implicit. Solenoidality of velocity is
achieved by projection on the divergence free subspace. Since all scalars whose gradient enters the
momentum coupling between the phases,

(
ϕ3 − ϕ− Cn2∇2ϕ

)
∇ϕ = ∇

(
ϕ4

4
− ϕ2

2

)
− Cn2∇2ϕ∇ϕ , (5)

can be gathered in a modified pressure p̃ = p+ ϕ4/4− ϕ2/2 which is taken care by projection, surface
tension reduces to the last term in (5).

Concerning the Chan-Hillard equation (3), after a careful analysis of its particular form, the same
basic semi-implicit approach is used. Specifically, the convective term and the Laplacian term on the right
hand side, ∇2(ϕ3 − ϕ), are explicit while the forth order term, ∇4ϕ, is implicit, to avoid unaffordable
stability time step limitations. Note that both the non linear, ∇2ϕ3, and the linear term, ∇2ϕ, are taken
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Figure 1. Phase field spectra for the isolated Cahn-Hillard equation. Left panel: partially implicit
treatment of the Laplacian term; right panel: explicit treatment of the Laplacian term.

together in explicit form, even though the latter could have been easily incorporated in the implicit part
of the algorithm. Figure 1 show that separating the two contribution is indeed detrimental for stability.
The figure shows the phase field spectra at different time steps taken from two numerical solutions of the
Cahn-Hilliard equation with no coupling to the momentum equation. The left panel refers to the case
where the two terms are split between implicit and explicit part of the algorithm, the right panel to the
case where both are explicit. The equation is solved in a [Lx × Ly × Lz] = [2π × 2π × 2π] triply-
periodic domain on a [Nx ×Ny ×Nz] = [48× 48× 48] grid. Starting from the same initial condition,
the interface between the two phases evolves towards a spherical shape, consistently with the minimum
energy principle. The low-wavenumber numerical instability of the first approach, left panel, is apparent
with an unphysical growth of the modes in a band around k = 4. The simultaneous explicit treatment
keeps stable for the entire evolution reaching the expected steady state solution.

In the one-dimensional case and only for specific boundary conditions the Cahn Hilliard equation is
known to conserve the global volume fraction, see Furihata (2001) and Liu et al. (2005). In the fully
three dimensional case addressed here, we explicitly checked the total mass conservation by tracking
its evolution in time of all the simulations presented. It is also important to keep in mind that the
maximum principle does not hold implying that the phase field ϕ is not strictly constrained to the range
−1 < ϕ < +1, see Liu et al. (2005).

Before discussing our results, a few more considerations on the values of the dimensionless are in
order. Capillary and Cahn numbers can be easily estimated by direct experiments measuring surface
tension and interface thickness. Concerning S =

√
Mµ/` the situation is less clear due to the presence of

the Onsanger mobility coefficient M . For interfaces between two fluid phases the mobility is extremely
difficult to address directly by experiments and is more the result of an effective modeling of the interface
dynamics. Its suggested values are extremely small, Yue et al. (2010), as could be concluded by the
following dimensional reasoning. The quantity ρM can be considered the characteristic time-scale
associated with the interface dynamics. Let us introduce the diffusive fluid time scale associated to
the interface thickness ε, ρε2/µ. The interesting dynamics occurs when coupling exists between the two,
ρM ' ρε2/µ. This leads to the estimate of the Onsanger Mobility number as

M ∼ ε2

ρν
∼ 1× 10−15 m3s

kg
,

where a water/air interface ws considered.
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Figure 2. Bubble rising velocity variation depending on non dimensional time. Left panel: first
simulation S1, right panel: second simulation S2. Parameters in table 2

Concerning the Cahn number, since the interface thickness is on the nanometer scale, for a bubble
with diameter D = 10−3m it follows Cn = ε/` ∼ 10−6. It is clear that the interface is too thin to be
tackled by numerical simulations, given the enormously large number of collocations point that would be
necessary necessary for its resolution. Nonetheless the Cahn-Hiliard model could still be though off as a
viable way to mimic the thin interface using an artificial numerical thickening. This amounts to consider
Cn as large as possible before unphysical effects emerge in the solution. Going the other way around,
one should progressively decrease Cn until the solution become independent of the specific value of the
Cahn number, thus identifying the so-called so called sharp interface limit.

4. Results & perspectives

The results of our diffuse-interface direct numerical simulation of a rising bubble are here compared
against experimental data by Bhaga & Weber (1981) and numerical data obtained with the sharp interface
tracking method discussed in Hua & Lou (2007). These authors use the Morton Mo = gµ4

2/(ρ2σ
3) and

the Eötvös Eo = g`2ρ2/σ numbers (definitions recalled in the introduction) as control parameters, see
table 1. To match our parameters we assume Fr = 1 and find Reynolds and Capillary number by the
relations Re = 4

√
Eo3/Mo, Ca = 4

√
MoEo, table 2. In addition we set S = 10−4 and Cn = 10−2.

The two simulations are performed in a [Lx×Ly×Lz] = [2π×2π×4π] domain with [Nx×Ny×Nz] =
[384× 384× 768] collocation points. The characteristic dimension of the cell grid is ∆x = 1.6× 10−2,
corresponding to three collocation points within the interface. Figure 3 shows an instantaneous

test Eo Mo Re vlim

S1 8.67 711 0.078 0.069
S2 32.2 0.00082 55.3 0.663

Table 1. Parameters of the two cases discussed in Bhaga & Weber (1981) and Hua & Lou (2007). The
last column gives the terminal rising velocity of the bubble, Hua & Lou (2007)

.

configuration of the rising bubbles (right column) in comparison with the experimental data of Bhaga
& Weber (1981) (left column) and numerical results provided by Hua & Lou (2007) (middle column).
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test Re Ca Fr vlim

S1 0.078 8.86 1. 0.065
S2 55.3 0.4 1. 0.668

Table 2. Set of parameters used in the two simulations described in the text. vlim in the last column is
the terminal rising velocity, see table 1 for comparison.

The agreement with both reference cases is quite reasonable and the terminal rising velocity vlim, last
column of tables 1 and 2, shows that the correspondence is quite acceptable also in quantitative terms.

Figure 3. Comparison between the experiment of Bhaga & Weber (1981) (left panels), the numerical
results of Hua & Lou (2007) (middle panels) and the present simulations (right panels). The black solid
line in the right panels marks the iso-level ϕ = 0. Vectors (red in electronic version) provide the local
fluid velocity. The parameters are summarized in the table 1 with same top to bottom arrangment.

The bubble of simulation S1 raises at a very small terminal velocity with an almost constant shape.
This is a low Reynolds number case: the impinging flow is too weak to overcome suface tension and the
bubble shape is unaffected. The velocity vectors (top left panel of figure 3) show that the flow is quite
similar to a Stokes flow with only a very small wake behind the bubble. The bubble velocity evolution is
presented in figure 2 where the velocity increases progressively until reaching the pateau corresponding
to the terminal velocity. In the last phases a slow but evident increase of the rising velocity is observed.
This is an artificial effect of the periodic boundary conditions, when the bubble starts interacting with the
wake produced by its own forward image.

With the parameters of the second simulation, S2, the bubble dynamics is entirely different also as
concerning the bubble shape, figure 3. Since the Reynolds number is larger and the capillary number is
almost the same of simulation S1 the flow velocity is significantly increased and the bubble deformed
from its initial shape. Figure 4 (left panel) presents the time evolution of the bubble shape. In this case
the flow around the bubble is substantially different from the Stokes flow observed in case S1. Indeed,
behind the initial spherical bubble the two recirculating regions induce a positive velocity insisting on
the stagnation point behind the bubble and brake the forwards-aft symmetry of the previous case.

In the first stages when the bubble is accelerated from rest the velocity in the recirculation regions
is larger than the rising velocity. The bubble is then forced to assume the characteristic ”cup” shape
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Figure 4. Left panel: bubble shapes along the time evolution under the effects of the buoyancy and the
drag force for case S2, see table 2. Right panel: Instantaneous bubble shape (solid line) and fluid velocity
field (red arrows) at three different time istants: t = 2 (top-left panel), t = 3 (top-right panel), t = 15
(bottom panel).

apparent in the right panel of figure 4. As the rising velocity increases, it overcomes for a while the
terminal raising velocity achieved at later times, right panel of figure 2. During this phase the fluid
velocity difference between front and aft of the bubble and the strain associated with the recirculating
regions induce a further deformation of the bubble which assumes a disk-like shape. In these conditions
the drag exerted on the bubble increases and the bubble eventually slows down to its terminal velocity,
see figure 2 (right panel).

As preliminary simulations show, a further increase of the Reynolds number and a decrease of the
Capillary number lead to larger deformations of the air-water interface which easily evolves towards
more complex structures with significant topological changes. In such conditions the Cahn-Hilliard
equations are in principle still able to describe the dynamics. However, to avoid numerical artifacts, it is
necessary to increase substantially the number of collocation points, to correctly capture the small-scale
interface corrugation and the bubble break-up in the correct sharp interface limit.

5. Final remarks and discussion

Numerical simulations of a buoyancy-dominated raising bubble has been performed based on the Cahn-
Hillard model for binary flows. This diffuse interface approach adopts a phase variable ϕ that ranges
from ϕ = +1 to ϕ = −1 in the thin interface between the two phases. The method is excellent for
the simulation of binary flows in presence of strong interface deformation and works also in case of
topological changes associated to bubble break-up. As a drawback, the need to reach the sharp interface
limit to capture the correct dynamics of actual fluid-fluid interfaces compels to adopt very thin interfaces
(small Cahn number). This requirement results in strong limitations especially in three-dimensional
simulations when the interface topology becomes extremely complex and, simultaneously, the bubble
dimensions are small compared with the integral scale of the system. So-far this limited the adoption
of the Cahn-Hillard model coupled with the Navier-Stokes equation system to two-dimensional cases.
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Here we have attempted a three-dimensional simulation for the simple case of a single rising bubble in
otherwise still fluid. The dynamics of rising bubbles is a well known problem widely discussed in the
literature and is an interesting test case to evaluate potentiality and drawbacks of the diffuse interface
method. The coupled Navier-Stokes/Cahn-Hilliard system has exploited its potential in the data we have
discussed showing good qualitative and quantitative agreement with previous results available in the
literature, Bhaga & Weber (1981) and Hua & Lou (2007). Indeed, we were able to explain the interaction
of fluid structures and interface through the distributed surface tension that provides the momentum
source of the Navier-Stokes equations.

Although only a small range of Capillary and Reynolds numbers were investigated, the overall
impression is that the approach could be pushed to study turbulence induced bubble/droplet break-up
in a turbulent flow. Often, however, the situation is in principle easier to handle that in the extreme
case of bubble break up. In equilibrium, bubble/droplet dimensions, turbulence intensity and interface
parameters are expected to result in characteristic values of the bubble/droplet Reynolds and Capillary
numbers far away from the critical values corresponding to large shape deformations and break-up,
conditions in principle much easier to handle from the numerical point of view. Concerning future
perspectives of this preliminary attempt, on one side we intend to address the turbulence intensity
required to achieve bubble break-up and coalescence as a function of surface tension and bubble size.
On the other side, we are interested in analyzing the local turbulence modification induced by bubble
deformations in the context of two-way coupling modeling of multiphase flows. Both aspects are crucial
in different areas of applications of multiphase flows, e.g. understanding droplet formation/coalescence
in turbulent systems of different nature and liquid jet break-up modeling of use in a number of
technological applications.
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