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Abstract

The study analyzes the temperature fluctuations in incompressible homoge-
neous isotropic turbulence through the finite scale Lyapunov analysis of the
relative motion between two fluid particles. The analysis determines the tem-
perature fluctuations through the Lyapunov theory of the local deformation,
using the thermal energy equation. The study provides an explanation of the
mechanism of temperature cascade, leads to the closure of the Corrsin equa-
tion, and describes the statistics of the longitudinal temperature derivative.
The results here obtained show that, in the case of self-similarity of velocity
and temperature correlations, the temperature spectrum exhibits the scal-
ing laws κn, with n ≈ −5/3, −1 and −17/3 ÷ −11/3 depending upon the
flow regime, and in agreement with the theoretical arguments of Obukhov–
Corrsin and Batchelor and with the numerical simulations and experiments
known from the literature. The longitudinal temperature derivative PDF is
found to be a non-gaussian distribution function with null skewness, whose
intermittency rises with the Taylor scale Péclet number.

This study applies also to any passive scalar which exhibits diffusivity.

Keywords: Lyapunov Analysis, Corrsin equation, von Kármán-Howarth
equation, Self-Similarity

1. Introduction

This work proposes the adoption of the finite–scale Lyapunov theory,
for studying the temperature fluctuations in incompressible homogeneous
isotropic turbulence in an infinite domain. The study is mainly motivated
by the fact that, in isotropic turbulence, the temperature spectrum Θ(κ)
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exhibits several scaling laws κn in the different wavelength ranges, depending
on Taylor scale Reynolds number R and Prandtl number Pr (Corrsin (JAP
1951), Obukhov (1949), Batchelor (1959), Batchelor et al (1959)). This is
due to the combined effect of these parameters which produces a peculiar
connection between temperature fluctuations, fluid deformation and velocity
field.

For large values of R and Pr, Corrsin (JAP 1951) and Obukhov (1949)
argumented, through the dimensional analysis, that Θ(κ) ≈ κ−5/3 in the so-
called inertial-convective subrange (see Fig. 1). Batchelor (1959) considered
the isotropic turbulence at high Prandtl number, when R is assigned. There,
the author assumed that, at distances less than the Kolmogorov scale, the
temperature fluctuations are mainly related to the strain rate associated to
the smallest scales of the velocity field. As the result, he showed that Θ ≈ κ−1

in the so-called viscous-convective interval, a region where the scales are less
than the Kolmogorov length (see Fig. 1). Different experiments dealing with
the grid turbulence (Gibson & Schwarz (1963), Mydlarski & Warhaft (1998))
and calculations of the temperatue spectrum through numerical simulations
(Donzis et al (2010) and references therein) indicate that Θ(κ) follows the
previous scaling laws.

On the contrary, when Pr is very small, the high fluid conductivity deter-
mines quite different situations with respect to the previous ones. Batchelor
et al (1959) analyzed the small–scale variations of temperature fluctuations
in the case of large conductivity, and found that Θ(κ) ≈ κ−17/3, whereas
Rogallo et al (1989) determined the temperature spectrum through numer-
ical simulations of a passive scalar convected by a velocity field with zero
correlation time. Rogallo et al (1989) showed that, when the kinetic en-
ergy spectrum follows the Kolmogorov law E(κ) ≈ κ−5/3, the temperature
spectrum varies according to Θ(κ) ≈ κn, with n ≈ −11/3.

Furthermore, experiments of grid turbulence state that both tempera-
ture and velocity correlations are linked each other when Pr = O(1) and
that decay rate and characteristic scales depend on the initial conditions.
Specifically, Mills et al (1958) obtained very important data about the air
turbulence behind a heated grid. They carried out several measurements
of nearly isotropic fluctuations of velocity and temperature at different dis-
tances from the grid, and recognized that the temperature correlation fθ is
roughly equal to the longitudinal velocity correlation f , and that the triple
correlation temperature–velocity p∗ is of the order of the triple velocity cor-
relation k. Later, Warhaft & Lumley (1978) experimentally showed that
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Figure 1: Scheme of the subranges of the temperature spectrum at high Prandtl numbers

spectrum shape and decay rate depend upon the initial conditions and that
the mechanical–thermal time scale ratio tends to a value close to unity.

Another important characteristics of Θ(κ) is the self–similarity. This is
related to the idea that the combined effect of temperature and kinetic energy
cascade in conjunction with conductivity and viscosity, makes the tempera-
ture correlation similar in the time. This property was theoretically studied
by George (see George (1988), George (1992) and references therein) which
showed that the decaying isotropic turbulence reaches the self–similarity,
where Θ(κ) is scaled by the Taylor microscale whose current value depends
on the initial condition. Recently, Antonia et al (2004) studied the temper-
ature structure functions in decaying homogeneous isotropic turbulence and
found that the standard deviation of the temperature, like the turbulent ki-
netic energy, follows approximately the similarity over a wide range of length
scales. There, the authors used this approximate similarity to calculate the
third-order correlations and found satisfactory agreement between measured
and calculated functions.

From a theoretical point of view, the properties of Θ(κ) can be investi-
gated through the evolution equation of the temperature spectrum. Θ(κ)
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is the Fourier-Transform of fθ which in turn satisfies the Corrsin equation
(Corrsin (JAS 1951)). This latter includes the term G, a quantity providing
the temperature cascade, directly related to the triple correlation p∗, and
responsible for the thermal energy distribution at the several wavelengths.
As G depends also on the velocity fluctuations, the Corrsin equation requires
the knowledge of the velocity correlation f , thus it must be solved together
to the von Kármán–Howarth equation. On this argument, some work has
been written. For instance, Baev & Chernykh (2010) (and references therein)
studied temperature and kinetic energy spectra adopting a closure model for
the Corrsin and von Kármán–Howarth equations based on the gradient hy-
pothesis, which incorporates empirical constants. Nevertheless, to the author
knowledge, the estimation of Θ(κ) based on the theoretical analysis of the
closure of von Kármán-Howarth and Corrsin equations has not received due
attention.

This is the motivation of the present work, whose main objective is to
propose the closure of the Corrsin equation and a description of the statistics
of the temperature derivative. The present study is based on the finite–scale
Lyapunov theory, just used by de Divitiis (2010) and de Divitiis (2011) for
determining the closure of the von Kármán-Howarth equation and the statis-
tics of the velocity difference. Here, this theory gives G in function of f and
∂fθ/∂r, and describes also the statistics of the temperature gradient through
the Lyapunov analysis of the local strain and the canonical decomposition
of temperature and velocity in terms of proper stochastic variables. The
closure of the Corrsin equation is obtained considering that G is frame in-
variant, thus G is calculated in the finite scale Lyapunov basis. The adoption
of this basis is revealed to be an usefull choice for determining the analyti-
cal expression of G. For what concerns the von Kármán–Howarth equation,
the analytical closure proposed by de Divitiis (2010) is here adopted. From
the system of equations of von Kármán–Howarth and Corrsin, an ordinary
differential system is determined, through the hypothesis of self-similarity
for f and fθ. This differential system is first reduced to a Cauchy’s initial
condition problem, then it is numerically solved for several values of R and
Pr. The results show that the temperature spectrum exhibits scaling laws
whose exponents depends on R and Pr, in agreement with the experimental
and theoretical data of the literature (Corrsin (JAP 1951), Obukhov (1949),
Rogallo et al (1989), Mills et al (1958), Gibson & Schwarz (1963)). As far
as the statistics of the longitudinal temperature gradient is concerned, it is
represented by non-gaussian PDF with null skewness and a Kurtosis greater
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than three whose value rises with the Péclet number Pr R.

2. Temperature correlation equation

For sake of convenience, the procedure to obtain the Corrsin equation is
here renewed.

The isotropic homogeneous velocity and temperature fields are consid-
ered, where fluid viscosity ν and thermal conductivity k are assigned quan-
tities. The equations of the temperature fluctuation ϑ in two ponits x ≡
(x, y, z) and x′ ≡ x + r, are

∂ϑ

∂t
+

∂ϑ

∂xk
uk − χ

∂2ϑ

∂xk∂xk
= 0 (1)

∂ϑ′

∂t
+
∂ϑ′

∂x′k
u′k − χ

∂2ϑ′

∂x′k∂x
′

k

= 0 (2)

being r = (rx, ry, rz) the separation vector, χ = k/(ρCp) is the fluid thermal
diffusivity, and Cp is the specific heat at constant pressure. In case of ho-
mogeneous temperature fluctuations, the temperature correlation is defined
as

fθ =
〈ϑϑ′〉
θ2

(3)

where θ =
√

〈ϑ2〉 is the standard deviation of the temperature fluctuations,
constant in the space.

As well known, the evolution equation of fθ is determined multiplying Eq.
(1) and (2) by ϑ′ and ϑ, respectively, and summing the equations (Corrsin
(JAS 1951)). The so obtained equation, averaged with respect to the ensam-
ble of the temperature fluctuations, leads to

θ2∂fθ

∂t
+ fθ

dθ2

dt
+

∂

∂rk

〈ϑϑ′(u′k − uk)〉 − 2χθ2

(

∂2fθ

∂r2
+

2

r

∂fθ

∂r

)

= 0 (4)

The first two terms of Eq. (4) express the time variations of fθ and θ,
the third one, arising from the convective terms, provides the mechanism of
temperature cascade, whereas the last one, the laplacian in the spherical co-
ordinates of fθ, describes effects of the thermal diffusion. Because of isotropy
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of temperature and velocity fluctuations, the third term can be expressed
through the scalar G(r), an even function of |r|

∂

∂rk
〈ϑϑ′(u′k − uk)〉 = −G (5)

According to Corrsin (JAS 1951), Corrsin (JAP 1951), G is

G = 2

(

∂p∗
∂r

+ 2
p∗
r

)

≡ 2

r2

∂

∂r

(

p∗r
2
)

(6)

being p∗(r) the triple correlation between temperature fluctuations in x and
x′, and the velocity component in x along the direction r

p∗(r) =
〈urϑϑ

′〉
θ2u

(7)

and ur is the longitudinal component of the velocity fluctuation.
Now, the temperature cascade, responsible for the distribution of thermal

energy at the different wave–lengths, does not modify θ, hence G(0) = 0 and
G ≈ r2 near the origin. Therefore, p∗ ≈ r3 when r → 0, and for r = 0 Eq.
(4) gives the evolution equation for θ (Corrsin (JAP 1951))

dθ2

dt
= −12χ

θ2

λ2
θ

(8)

λθ is the scale of the temperature correlation, or Corrsin microscale, defined
as (Corrsin (JAS 1951))

λθ =

√

− 2

f ′′

θ (0)
(9)

where the superscript apex denotes the differentiation with respect to r. As
the consequence, the evolution equation of fθ is

∂fθ

∂t
− 12

χ

λ2
θ

fθ −G− 2χ

(

∂2fθ

∂r2
+

2

r

∂fθ

∂r

)

= 0 (10)

whose boundary conditions are

fθ(0) = 1,

lim
r→∞

fθ(r) = 0
(11)
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Note that Eq. (10) depends also on the velocity fluctuations through G(r)
whose analytical expression is not given at this stage of this analysis. There-
fore, Eq. (10) is not closed and provides only a link between G and fθ.
Accordingly fθ is related to f . As k and ν are both constant, the von
Kármán–Howarth equation (see Eq. (90), Appendix) is independent from
fθ and θ, hence Eq. (90) can be first solved separately, whereas Eq. (10)
requires the knowledge of f by means of G.

3. Lyapunov Analysis of the temperature cascade

The purpose of this section is to analyse the flow of the thermal energy
cascade with the finite-scale Lyapunov theory used by de Divitiis (2010), and
to propose an analytical expression for G which provides the closure of the
Corrsin equation. To this end, consider now the expression of G (Eq. (5))

G(r) = − ∂

∂rk

〈ϑϑ′(u′k − uk)〉 (12)

This is frame invariant, therefore, for sake of convenience, G is expressed in
the finite scale Lyapunov basis Eλ. This basis is associated to the problem
of the relative motion between two fluid particles (de Divitiis (2010))

dρ

dt
= u(x + ρ, t) − u(x, t),

dx

dt
= u(x, t)

(13)

where ρ gives the relative position between the particles, and u varies accord-
ing to the Navier–Stokes equations. Eλ is defined by means of the solutions
ρ1, ρ2 and ρ3 of Eq. (13), whose initial conditions ρ1(0), ρ2(0) and ρ3(0) are
mutually orthogonal vectors which satisfy |ρ1(0)| = |ρ2(0)| = |ρ3(0)| ≡ r.
Specifically, Eλ is obtained through the Gram-Schmidt orthonormalization
process applied to ρ1(t), ρ2(t) and ρ3(t).

In Eλ, the velocity difference fluctuation is expressed as (de Divitiis
(2010))

∆u ≡ u′ − u = λ(r)r + ωλ × r + ζ (14)
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Figure 2: Scheme of Finite-scale Lyapunov basis embedded into a material cylinder, at a
given time

where λ is the maximal finite scale Lyapunov exponent (associated to the

length r), defined by λ(r) ≈ 1/T
∫ T

0
dr/dt·r/r2 dt, and calculated in function

of f as (de Divitiis (2010))

λ(r) =
u

r

√

2(1 − f) (15)

ωλ is the angular velocity of Eλ with respect to the inertial frame of reference
ℜ, and ζ ≡ (ζ1, ζ2, ζ3), related to the other two exponents, makes ∆u a
solenoidal field, and is expressed in Eλ as (de Divitiis (2010))

ζ1 = (λ1 − λ)̺1, ζ2 = (λ2 − λ)̺2, ζ3 = (λ3 − λ)̺3 (16)

where λ1, λ2 and λ3 are the Lyapunov exponents associated to the directions
̺1, ̺2 and ̺3, respectively. As the consequence, λ is a deterministic quantity,
whereas ωλ is a fluctuating variable related to the relative motion between
Eλ and ℜ. Without lack of generality, the coordinate ̺1 is supposed to be
associated to the maximal exponent, then λ1 → λ, λ2 = λ3 ≡ λζ, ̺1 diverges

being |̺1| >>> |̺2|, |̺3|, thus ζ1 → ζ̂1 6= 0

ζ1 = ζ̂1, ζ2 = (λζ − λ)̺2, ζ3 = (λζ − λ)̺3 (17)

The exponents λ2 = λ3 ≡ λζ are determined with the continuity equation.
With reference to Fig. 2, the equation is written considering, at a given
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time, the mass balance associated to a material circular cylinder whose axis
is parallel to the direction ̺1

2
σ̇

σ
+

˙̺1
̺1

= 0 (18)

where the dot denotes the differentiation with respect to t, σ̇ is evaluated at
the coordinate h ̺1, with h ∈ (0, 1), whereas ̺1 and σ ≡

√

̺2
2 + ̺2

3 are length
and diameter of the cylinder. Therefore, ˙̺1/̺1 and σ̇/σ identify λ and λζ ,
respectively, being

λζ = −λ
2

(19)

Substituting Eq. (14) into Eq. (12), and taking into account that λ is
constant with respect to the operation of statistical average (i.e. 〈λ..〉 =
λ〈..〉), G is the sum of three addends

G = G1 +G2 +G3 (20)

where

G1 = − ∂

∂̺k

(〈ϑϑ′〉λ̺k) ,

G2 = − ∂

∂̺k
(〈ϑϑ′〉ζk) ,

G3 = − ∂

∂̺k
(εkij〈ϑϑ′ωi〉̺j)

(21)

being εkij the Levi-Civita tensor. G1 reads as

G1 = −θ2

(

∂fθ

∂r
λr +

fθ

r2

∂

∂r

(

r3λ
)

)

(22)

and G2 is written taking into account that λ(r)r + ωλ × r + ζ is solenoidal

G2 = −∂〈ϑϑ
′〉

∂̺k

ζk +
fθθ

2

r2

∂

∂r

(

r3λ
)

(23)
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where r2 = ̺2
1 + ̺2

2 + ̺2
3. For what concerns G3, it gives null contribution, as

in isotropic turbulence, 〈ϑϑ′ωi〉 is a function of r = |r| and this implies that
G3 ≡ 0. Therefore G is

G = −θ2∂fθ

∂r
λr − ∂〈ϑϑ′〉

∂̺k
ζk (24)

The first term of Eq. (24) is the consequence of λ > 0 and provides partially
the mechanism of temperature cascade, giving a flow from small to big scales.
The second one, related to the other two Lyapunov exponents, goes against
the previous mechanism of cascade, being ∆u solenoidal, thus it will have
the opposite sign of the first term. To obtain the second term, observe that
into Eqs. (17), λ2 = λ3 = λζ = −λ/2, and this leads to

∂〈ϑϑ′〉
∂̺2

ζ2 =
3

2

∂fθ

∂r
λθ2̺

2
2

r
,

∂〈ϑϑ′〉
∂̺3

ζ3 =
3

2

∂fθ

∂r
λθ2̺

2
3

r
(25)

Moreover, because of the isotropy ∂〈ϑϑ′〉/∂̺1ζ̂1 must be of the form

∂〈ϑϑ′〉
∂̺1

ζ̂1 =
3

2

∂fθ

∂r
λθ2̺

2
1

r
(26)

Hence

∂ 〈ϑϑ′〉
∂rk

ζk = −3

2
θ2∂fθ

∂r
λr (27)

Accordingly, the analytical expression of G is

G(r) =
θ2

2

∂fθ

∂r
λr = θ2u

√

1 − f

2

∂fθ

∂r
(28)

Equation (28), representing the thermal energy cascade, gives the proposed
closure of the Corrsin equation and expresses the combined effect of tem-
perature and velocity correlations. Its main asset with respect to the other
models is that it is not based on the phenomenological assumption, but is
derived from a specific finite-scale Lyapunov analysis, under the assumption
of homogeneous isotropic turbulence. Equation (28) preserves θ and provides
the mechanism of the thermal energy transfer. This latter consists of a flow
of the thermal energy from large to small scales which only redistributes the
thermal energy between wavelengths and whose effectiveness depends upon
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f and fθ. According to the Lyapunov analysis of de Divitiis (2010), this
mechanism can be viewed in the following manner. If, at an initial time t0,
a toroidal material volume Σ(t0) is considered, which includes an assigned
amount of thermal energy, its geometry and position change according to the
fluid motion, and its dimensions will vary to preserve the volume. Choos-
ing Σ in such a way that the maximal dimension of the toroid R increases
with t, the finite-scale Lyapunov analysis leads to R ≈ R(t0)e

λ(t−t0). The
thermal energy, initially enclosed into Σ(t0), at the end of the fluctuation is
contained into Σ(t) whose dimensions are changed with respect to the initial
time t0. Therefore, the thermal energy is transferred from large to small
scales, resulting enclosed in a more thin toroid.

4. Formulation of the problem

At this stage of the analysis, the problem for determining f and fθ is
formulated through the von Kármán-Howarth and Corrsin equations, which
are here reported

∂f

∂t
=
K(r)

u2
+ 2ν

(

∂2f

∂r2
+

4

r

∂f

∂r

)

+
10ν

λ2
T

f (29)

∂fθ

∂t
=
G(r)

θ2
+ 2χ

(

∂2fθ

∂r2
+

2

r

∂fθ

∂r

)

+
12χ

λ2
θ

fθ (30)

whose boundary conditions are

f(0) = 1, lim
r→∞

f(r) = 0,

fθ(0) = 1, lim
r→∞

fθ(r) = 0
(31)

K and G are expressed by means of the finite scale Lyapunov analysis
(Eqs. (93) and (28))

K = u3

√

1 − f

2

∂f

∂r
,

G = θ2u

√

1 − f

2

∂fθ

∂r

(32)
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As k and ν are considered to be assigned quantities, according to Eqs.
(29) and (30), fθ is related to f , whereas f does not depend upon fθ.

The energy spectrum E(κ) and the transfer function T (κ) are the Fourier
Transforms of f and K, respectively (Batchelor (1953))





E(κ)

T (κ)



 =
1

π

∫

∞

0





u2f(r)

K(r)



κ2r2

(

sin κr

κr
− cos κr

)

dr (33)

accordingly, the temperature spectrum Θ(κ) and the temperature transfer
function Γ(κ) are here calculated as (Ogura (1958))





Θ(κ)

Γ(κ)



 =
2

π

∫

∞

0





θ2fθ(r)

G(r)



κr sin κr dr (34)

in such a way that

fθ(r) =

∫

∞

0

Θ(κ)
sinκr

κr
dκ, G(r) =

∫

∞

0

Γ(κ)
sinκr

κr
dκ (35)

and
∫

∞

0

Θ(κ) dκ = θ2,

∫

∞

0

Γ(κ) dκ = 0 (36)

5. Lyapunov analysis of the temperature fluctuations

The proposed procedure for calculating the temperature fluctuations is
based on the Lyapunov analysis of the fluid strain just proposed by de Divitiis
(2010), and on the adoption of Eq. (1).

In order to obtain the temperature fluctuation, consider now the rela-
tive motion between two contiguous particles, expressed by the infinitesimal
separation vector d x which obeys to the equation

dẋ = ∇u dx (37)

where dx varies according to the velocity gradient which in turn follows the
Navier-Stokes equations. As observed by de Divitiis (2010), in turbulence,
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dx is much faster than the fluid state variables, and the Lyapunov analysis of
Eq. (37) provides the expression of the local deformation in terms of maximal
Lyapunov exponent Λ ≡ λ(0) > 0

∂x

∂x0
≈ eΛ(t−t0) (38)

Now, the map χ : x0 → x, is the function which determines the current
position x of a fluid particle located at the referential position x0 at t = t0
(Truesdell (1977)). Equation (1) can be written in terms of the referential
position x0

∂ϑ

∂t
=

(

− ∂ϑ

∂x0p

uh + χ
∂2ϑ

∂x0p∂x0q

∂x0q

∂xh

)

∂x0p

∂xh

(39)

The adoption of the referential coordinates allows to factorize the temper-
ature fluctuation and to express it in Lyapunov exponential form of the lo-
cal deformation. As this deformation is assumed to be much more rapid
than ∂ϑ/∂x0puh and χ∂2ϑ/∂x0p∂x0q, the temperature fluctuation can be ob-
tained integrating Eq. (39) with respect to the time, where ∂ϑ/∂x0puh and
χ∂2ϑ/∂x0p∂x0q are considered to be constant

ϑ ≈ 1

Λ

(

− ∂ϑ

∂x0p
uh + χ

∂2ϑ

∂x0p∂x0q

)

t=t0

≈ 1

Λ

(

∂ϑ

∂t

)

t=t0

(40)

This assumption is justified by the fact that, according to the classical for-
mulation of motion of continuum media (Truesdell (1977)), ∂ϑ/∂x0puh and
χ∂2ϑ/∂x0p∂x0q are smooth functions of t -at least during the period of a
fluctuation- whereas the fluid deformation varies very rapidly according to
Eqs. (37)-(38).

6. Statistical analysis of temperature derivative

As explained in this section, the Lyapunov analysis of the local deforma-
tion and some plausible assumptions about the statistics of u and ϑ, lead
to determine the distribution function of ∂ϑ/∂r and all its dimensionless
statistical moments.
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The statistical properties of ∂ϑ/∂r, are here investigated expressing veloc-
ity and temperature through the following canonical decomposition (Ventsel
(1973))

u =
∑

k

Ûkξk, ϑ =
∑

k

Θ̂kξk (41)

where Ûk and Θ̂k are proper coordinate functions of t and x, and ξk (k =
1, 2, ...) are dimensionless independent stochastic variables which satisfy

〈ξk〉 = 0, 〈ξiξj〉 = δij , 〈ξiξjξk〉 = ̟ijk p, |p| >>> 1,
〈

ξ4
k

〉

= O(1) (42)

where ̟ijk = 1 for i = j = k, else ̟ijk=0. It is worth to remark that the
variables ξk are properly chosen in such a way that they express the mech-
anism of cascade for both velocity and temperature, through the condition
|p| >>> 1.

The dimensionless temperature fluctuation ϑ̂ is obtained in terms of ξk
substituting Eq. (41) into Eq. (40)

ϑ̂ =
∑

ij

Aijξiξj +
1

Pe

∑

k

bkξk (43)

where r = r̂λT , ϑ = ϑ̂ θ, whereas Pe = R Pr and R = uλT/ν are Péclet
and Reynolds numbers refereed to the Taylor scale, and Pr = ν/χ is the
fluid Prandtl number, therefore

∑

ij Aijξiξj and 1/Pe
∑

k bkξk arise from con-
vective term and fluid conduction, respectively. Now, thanks to the local
isotropy, both u and ϑ are two gaussian stochastic variables (Ventsel (1973),
Lehmann (1999)), accordingly, ξk satisfy the Lindeberg condition, a very gen-
eral necessary and sufficient condition for satisfying the central limit theorem
(Lehmann (1999)). This condition does not apply to ∂ϑ/∂r ≡ lim

r→0
∆ϑ/r. In

fact, as ∆ϑ is the difference between two correlated gaussian variables, its
PDF could be a non gaussian distribution function. To obtain this PDF, the
fluctuation ∂ϑ̂/∂r̂ is first calculated in function of ξk

∂ϑ̂

∂r̂
=
∑

ij

∂Aij

∂r̂
ξiξj +

1

Pe

∑

k

∂bk
∂r̂

ξk ≡ L+ S + P +N (44)

This fluctuation consists of the contributions L, S, P and N , appearing
into Eq. (44): in particular, L is the sum of all linear terms due to the
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fluid conductivity, S ≡ Sijξiξj is the sum of all semidefinite bilinear forms
arising from the convective term, whereas P and N are, respectively, the
sums of definite positive and negative quadratic forms, which derive from the
convective term. The quantity L + S tends to a gaussian random variable
being the sum of statistically orthogonal terms, while P and N do not, as
they are linear combinations of squares (Madow (1940), Lehmann (1999)).
Their general expressions are

P = P0 + η1 + η2
2

N = N0 + ζ1 − ζ2
2

(45)

where P0 andN0 are constants, and η1, η2, ζ1 and ζ2 are four different centered
random gaussian variables which are mutually uncorrelated thanks to the
hypotheses of fully developed flow and isotropy. Therefore, the longitudinal
fluctuation of the temperature derivative can be written as

∂ϑ̂

∂r̂
= ψ1ξ +

(

ψ2(η
2 − 1) − ψ3(ζ

2 − 1)
)

(46)

where ξ, η and ζ are independent centered random variables which exhibit
gaussian PDF with 〈ξ2〉 = 〈η2〉 = 〈ζ2〉=1, and ψ1 ψ2 and ψ3 are given quanti-
ties. Due to the isotropy, the skewness of ∂ϑ̂/∂r must be equal to zero, thus
ψ2 = ψ3, and

∂ϑ̂

∂r̂
= ψ1ξ + ψ2

(

η2 − ζ2
)

(47)

Furthermore, comparing the terms of Eqs. (47) and (44), we obtain that ψ1

and ψ2 are related each other and that their ratio ψ = ψ1/ψ2 depends on the
Péclet number

4ψ2
2

ψ2
1

=
〈(P +N)2〉

〈(Sijξiξj + 1/Pe ∂bk/∂r̂ξk)2〉 (48)

Taking into account the properties (42) of ξk (〈ξ3
k〉 >>> 1, 〈ξ4

k〉 = O(1)), and
in view of Eq. (48), we found

ψ ≡ ψ2

ψ1
= C

√
Pe (49)
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where C is a proper constant which has to be identified. Hence, the dimen-
sionless longitudinal temperature derivative is

ϑr
√

〈ϑ2
r〉

=
ξ + ψ (η2 − ζ2)
√

1 + 4ψ2
(50)

In order to identify C, observe that Eq. (50) is formally similar to the ex-
pression of the longitudinal velocity derivative ∂ur/∂r obtained in de Divitiis
(2010) (see also the appendix)

∂ur/∂r
√

〈(∂ur/∂r)2〉
=
ξu + ψu

(

χ(ηu
2 − 1) − (ζu

2 − 1)
)

√

1 + 2ψ2
u (1 + χ2)

(51)

ξu, ηu and ζu are independent centered gaussian random variables with 〈ξ2
u〉 =

〈η2
u〉 = 〈ζ2

u〉 =1, and

ψu(R) =

√

R

15
√

15
ψ̂u(0), ψ̂u(0) = O(1), χ = χ(R) = O(1) (52)

χ 6= 1 provides a negative skewness of ∂ur/∂r, whereas ψ̂u(0) ≃ 1.075 is
determined through an approximate estimation of the critical value of R (de
Divitiis (2010)). Now, when Pr = 1, it is reasonable to assume that the
ratio between linear and quadratic terms of Eq. (50) is equal to that of the
corresponding terms of Eq. (51). Accordingly, ψ ≃ ψu and this identifies an
approximate value of C

C ≈ ψ̂u(0)

153/4
≃ 0.141 (53)

The distribution function of the temperature derivatives is thus expressed
through the Frobenius-Perron equation

F (ϑ′r) =

∫

ξ

∫

η

∫

ζ

p(ξ)p(η)p(ζ) δ (ϑ′r − ϑr(ξ, η, ζ))dξ dη dζ (54)

where ϑr(ξ, η, ζ) is determined with Eq. (50), δ is the Dirac delta and p is a
centered gaussian PDF with standard deviation equal to one.

Finally, the dimensionless statistical moments of ϑr are easily calculated
considering that ξ, η and ζ are independent gaussian variables

Hn ≡ 〈ϑn
r 〉

〈ϑ2
r〉n/2

=
1

(1 + 4ψ2)n/2

n
∑

k=0

(

n
k

)

ψk〈ξn−k〉〈(η2 − ζ2)k〉 (55)
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It is worth to remark that, for non-isotropic turbulence or in more complex
cases with boundary conditions, the stochastic variables ξk could not satisfy
the Lindeberg condition, thus ϑ will be not distributed following a Gaussian
PDF, and Eq. (50) changes its analytical form and can incorporate more
intermittent terms (Lehmann (1999)) which give the deviation with respect
to the isotropic turbulence. Hence, the absolute statistical moments of ϑr

will be greater than those calculated with Eq.(55), indicating that, in a more
complex situation than the isotropic turbulence, the intermittency of ϑr can
be significantly stronger.

7. Self-Similar temperature spectrum

An ordinary differential equation which describes the spatial evolution of
fθ is now derived from Eq. (30), adopting the hypothesis of self-similarity
of von Kármán & Lin (1949), George (1988)-George (1992), and using the
proposed closure of the Corrsin equation.

Far from the initial condition, the simultaneous effect of temperature and
velocity cascade with the fluid conductivity and viscosity, acts keeping fθ

similar in the time. This is the idea of self-preserving correlation function
which was originally introduced by von Kármán (see von Kármán & Lin
(1949) and reference therein) for what concerns the velocity correlation, and
thereafter adopted by George (1988)-George (1992) for studying the temper-
ature spectrum. According to George (1988)-George (1992), the self–similar
temperature correlation can be scaled with respect to λT (t), thus

fθ = fθ(r̂), where r̂ = r/λT (t) (56)

Substituting Eq. (56) into Eq. (30), we obtain

−dfθ

dr̂

r̂

u

dλT

dt
=

√

1 − f

2

dfθ

dr̂
+

2

R Pr

(

d2fθ

dr̂2
+

2

r̂

dfθ

dr̂

)

+
12

R Pr

(

λT

λθ

)2

fθ (57)

Therefore, the boundary problem given by Eqs. (30) and (31). is here re-
duced to an ordinary differential equation of the second order in the variable
r, Equation (57) is a non–linear equation whose coefficients vary according
to Eq. (100) and

du2

dt
= −10νu2

λ2
T

,
dθ2

dt
= −12kθ2

λ2
θ

(58)

17



Now, if the self–similarity is assumed, all the coefficients of Eq. (57) do
not vary with the time (von Kármán & Howarth (1938)-von Kármán & Lin
(1949), George (1988)-George (1992)), thus

R = const,
1

u

dλT

dt
= const,

λθ

λT
= const (59)

As λT follows Eq. (100), λθ is obtained from the constancy of λθ/λT

λθ(t) = λθ(0)
√

1 + 10ν t/λ2
T (0). (60)

Thus, according to Warhaft & Lumley (1978) and George (1988)-George
(1992), the microscales λT , λθ and the rates dθ2/dt and du2/dt, depend on
the initial conditions of temperature and kinetic energy spectra. Taking into
account Eq. (100), we obtain

1

u

dλT

dt
=

5

R
(61)

Therefore, fθ(r̂) obeys to the following non–linear ordinary differential equa-
tion

5

R

dfθ

dr̂
r̂ +

√

1 − f

2

dfθ

dr̂
+

2

R Pr

(

d2fθ

dr̂2
+

2

r̂

dfθ

dr̂

)

+
12

R Pr

(

λT

λθ

)2

fθ = 0(62)

The self–similar solutions are searched over the whole range of r̂, but for the
dimensionless distances whose order magnitude exceed R. This corresponds
to assume the self–similarity for all the frequencies of the energy spectrum,
with the exception of the lowest ones (von Kármán & Howarth (1938), von
Kármán & Lin (1949)). Accordingly, ∂fθ/∂t, can be neglected with respect
to the other terms

R Pr

√

1 − f

2

dfθ

dr̂
+ 2

(

d2fθ

dr̂2
+

2

r̂

dfθ

dr̂

)

+ 12

(

λT

λθ

)2

fθ = 0 (63)

The boundary conditions of Eq. (63) arise from Eqs. (11)

fθ(0) = 1 (64)

lim
r̂→∞

fθ(r̂) = 0 (65)
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For r̂ = 0, Eq. (63) gives

d2fθ(0)

dr̂2
= −2

(

λT

λθ

)2

(66)

To determine fθ, λT/λθ must be first specified into Eq. (63). This is de-
termined using again the self–similarity of f and fθ, thus λT/λθ is calculated
by substituting Eq. (60) into Eq. (58) and integrating this latter from t = 0
to t

ln

(

θ(t)

θ(0)

)

= −3

5

(

λT

λθ

)2
1

Pr
ln

(

1 +
10ν

λT (0)2
t

)

(67)

whereas the velocity standard deviation is

ln

(

u(t)

u(0)

)

= −1

2
ln

(

1 +
10ν

λT (0)2
t

)

(68)

The full self–similarity (mechanical and thermal) occurs when θ and u are
proportional each other

θ(t)

θ(0)
=
u(t)

u(0)
(69)

The value of λT/λθ satisfying this condition depends on the Prandtl’s num-
ber, and is calculated with Eq. (67)

λθ

λT
=

√

6

5

1

Pr
(70)

Accordingly, f ′′

θ (0) is related to Pr

d2fθ(0)

dr̂2
= −5

3
Pr (71)

This result, in agreement with Corrsin (JAP 1951), George (1988), George
(1992), expresses a further link between f and fθ only in the case of self–
similarity.

Observe that the solutions fθ ∈ C2 [0,∞) of Eq. (63) with dfθ/dr̂(0) = 0
and Pr 6= 0, tend to zero as r → ∞, thus the boundary condition (65) can
be replaced by the following condition in the origin

dfθ(0)

dr̂
= 0 (72)
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Therefore, the boundary problem represented by Eqs. (63), (64) and (65),
is reduced to the following initial condition problem written in the Cauchy’s
normal form

dfθ

dr̂
= Fθ

dFθ

dr̂
= −5 Pr fθ −

(

R Pr

2

√

1 − f

2
+

2

r̂

)

Fθ

(73)

the initial condition of which is

fθ(0) = 1, Fθ(0) = 0 (74)

In conclusion, the self-similar functions f and fθ are calculated as the
solutions of the ordinary differential system (102) and (73) with the initial
conditions (103) and (74).

8. Results and Discussion

The self-similar temperature and longitudinal velocity correlations are
here calculated with Eqs. (102) and (73), for several values of R and Pr.

The case with Pr → 0 (infinitely conductive fluid) is first considered.
This is a limit case of the differential system (73)-(74) corresponding to the
following equation

d2fθ

dr̂2
+

2

r̂

dfθ

dr̂
= 0 (75)

which does not admit analytical solutions for the boundary conditions (31).
Conversely, the case Pr → ∞ (ν >>> χ) gives the following result

lim
r̂→0

d2fθ

dr̂2
= −∞ (76)

which expresses the behavior of the temperature correlation near the origin,
whereas, for r̂ > 0, fθ is obtained solving Eqs. (73)-(74) by quadrature, in
terms of f

ln fθ(r̂) = −10
√

2

R

∫ r̂

0

dξ
√

1 − f(ξ)
(77)
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This equation states that, if R is large enough and

f ≃ 1 −
(

r

Lu

)2/3

, then also fθ ≃ 1 −
(

r

Lθ

)2/3

(78)

where Lθ= Lu are length scales proportional to λT

Lu = Lθ =
R

15
√

2
λT , (79)

Therefore, in case of self-similarity, with Pr → ∞, the ratios between the
scales are

Lθ

Lu

= 1,
λθ

λT

= 0 (80)

When R and Pr change, the ratios between the scales vary depending on
the combined values of R and Pr, therefore quite different situations occur.

In order to study the influence of R and Pr on fθ, Eqs. (102) and (73) are
numerically solved for different values of R and Pr. The Reynolds number
is assumed to be R =50, 100 and 300, whereas Pr ranges from 0.001, to 10.

Figure 3 shows f (dashed lines) and fθ (solid line) in such these condi-
tions. The temperature correlation, related to f by means of the mechanism
of temperature cascade (see Eq. (28)), is furthermore linked to f by self–
similarity (70). Therefore, for assigned values of R and λT , the Corrsin
microscale decreases with Pr and the curves of fθ seem to collapse into a
single diagram when Pr → ∞. On the contrary, small values of Pr, repre-
senting high thermal conductivity, determine large scales of variations of fθ

and p∗. In particular, the case R = 50 is first considered. For Pr =0.001,
fθ exhibits oscillations whose amplitude decreases when r̂ rises. As Pr in-
creases, the oscillations magnitude diminishes, and for 0.01 < Pr < 0.1 these
oscillations vanish, being fθ > 0, whereas the integral scales and the Corrsin
length diminish. The case R = 100 differs from the previous one. In fact,
the higher value of R determines sizable reduction of the oscillations, whereas
the integral scales of f and fθ are greater than the previous ones. Next, for
R = 300, the integral scales increase again, resulting fθ > 0 a monotonic
function of r for each value of Pr.

Accordingly, also the triple correlation temperature–velocity p∗ varies
with R and Pr. For R = 50, small values of Pr (0.001) cause large scales
of variations and sizable oscillations of p∗, whereas higher Prandtl numbers
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produce the loss of these oscillations and a reduction of the length scales
and of |p∗|. Increasing R (R = 100 and 300), the length scales rise, the os-
cillations disappear, and a reduction of |p∗|MAX is observed. The Prandtl’s
number acts on fθ, in such a way that its increment causes a diminishing of
the length scales and of |p∗|. When Pr = 0.7 and 1, the obtained results
agree very well with the classical experiments of Mills et al (1958) which
regards the turbulence behind heated grid, in the sense that, fθ is roughly
equal to f , whereas p∗ and the triple velocity correlation k exhibit the same
order of magnitude.

As far as the velocity correlations, f(r) and k(r), are concerned, these
agree with the results of de Divitiis (2011).

The properties of Θ(κ) are the consequence of the temperature correla-
tions. These spectra, calculated with Eq. (33) and (34), are depicted in
Fig. 4. The variations of Θ(κ) with R and Pr are quite peculiar. In any
case, according to Eq. (28), n → 2, as κ → 0. For Pr = 0.001, when R
ranges from 50 to 300, the temperature spectrum shows essentially two re-
gions, which correspond to two different scaling laws Θ(κ) ≈ κn (see also
Fig. 5): one near the origin where n ≃ 2, and the other one, at higher κ,
where −17/3 < n < −11/3, (value very close to −13/3). Between these re-
gions, the exponent n varies rapidly at low Reynolds number, whereas when
R increases, n exhibits more gradual variations. The value of n ≈ −13/3
here calculated, is in between the exponent proposed by Batchelor et al
(1959) (−17/3) and the value determined by Rogallo et al (1989) (−11/3)
with the numerical simulations. Increasing κ, n strongly diminishes, and
Θ(κ) does not show scaling law. When Pr=0.01, the three curves intersect
each other for n ≃ −5/3, where these have inflection points. The width
of the interval where −17/3 < n < −11/3 diminishes, in particular now
−17/3 < n < −13/3, value in agreement with Batchelor et al (1959). For Pr
=0.1, the previous scaling law with n ≈ −13/3 vanishes, whereas for R = 50
and 100, n changes with κ and Θ(κ) does not show a noticeable scaling law.
When R = 300, the born of a small region in which n has an inflection point
is observed for n ≈ −5/3. For Pr = 0.7 and 1, with R = 300, the width of
this interval is increased, whereas at Pr = 10, and R = 300, we observe two
regions: one interval where n has a local minimum with n ≃ −5/3, and the
other one where n exhibits a relative maximum, with n ≃ −1. For larger κ,
n diminishes and the scaling laws disappear.

Figure 4 reports also (on the bottom) the spectra Γ(κ) (solid lines) and
T (κ) (dashed lines) which describe the mechanism of kinetic energy and
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temperature cascade. As these latter do not modify the value of θ and u,
∫

∞

0
T (κ)dκ ≡ 0, and

∫

∞

0
Γ(κ)dκ ≡ 0.

The presence of the scaling law n ≃ −5/3 agrees with the theoretical
arguments of Corrsin (JAP 1951), Obukhov (1949) (see also Mydlarski &
Warhaft (1998), Donzis et al (2010) and references therein), where in the
limit of high R and Pr

Θ(κ) = Cθǫ
−1/3ǫθκ

−5/3, (81)

in the inertial–convective range, being

ǫθ = 12χ
θ2

λ2
θ

, ǫ = 15ν
u2

λ2
T

(82)

and Cθ is the so-called Corrsin-Obukhov constant, a quantity of the order of
the unity. This study identifies Cθ by means of the obtained results, analysing
the quantity

FC(κ) = Θ(κ)ǫ1/3κ5/3ǫ−1
θ (83)

-here called Corrsin function- in terms of κ, Re and Pr. This is calculated
as Cθ = FC(κ) in the range where FC(κ) is about constant. A different
Corrsin–Obukhov constant Cθ1 can be also defined with respect to the one
dimensional spectrum

dΘ1

dκ1
(κ1) = −Θ(κ1)

2κ1
, where Θ1(κ) = Cθ1ǫ

−1/3ǫθκ
−5/3 and Cθ1 = 0.3Cθ (84)

Figure 6 reports FC in terms of κ for different values of R and Pr. For
Pr =0.01, at relatively small Reynolds number, the temperature spectrum
does not follow κ−5/3, thus Cθ is not defined, wheres at R = 300 the diagram
shows a region with a local maximum where the variations of FC are relatively
small. This maximum can identify the value of Cθ which results to be about
1.5 (Cθ1 ≃ 0.45). For Pr =0.1, the larger scaling interval, implies a wider
range in which FC(κ) ≃ const, for each Reynolds number, resulting now
Cθ ≃ 1.8 (Cθ1 ≃ 0.54). When Pr = O(1) (0.7 in the figure), the scaling
law κ−1, determines that FC slightly rises with κ, ranging from 1.4 to 2
(Cθ1 ≃ 0.42÷0.58), vales comparable with Mydlarski & Warhaft (1998). For
Pr = 10, the region with Θ ≈ κ−1 increases, therefore FC reveals sizable
variations and Cθ can be defined only in a small range of κ.
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The scaling law k−1 is in line with the theoretical arguments proposed in
Batchelor (1959), where

Θ(κ) = CB

√

ν

ǫ
ǫθ κ

−1, (85)

in the viscous–convective range, being CB = O(1) the Batchelor’s constant.
The present analysis identifies CB through the temperature spectra previ-
ously calculated. To this end, the following quantity

FB(κ) = Θ(κ)κ

√

ǫ

ν
ǫ−1
θ (86)

here called Batchelor’s function, is considered for several κ, Re and Pr. This
constant is here calculated as Cθ = FB(κ) in the region of κ where FB(κ) ≈
const (or at least exhibits a plateau). Also the Batchelor’s constant CB1 can
be defined with respect to the one dimensional spectrum (84)

Θ1(κ1) = CB1

√

ν

ǫ
ǫθ κ

−1
1 , where CB1 = 0.5CB (87)

In Fig. 7, FB is represented versus κ for different values of Re and Pr. It
is apparent that FB ≈ const when Pr is high enough. For Pr =10, when R=
50, 100 and 300, the corresponding values of CB are about 5, 7 and 8 (that
is CB1 ≃ 2.5, 3.5 and 4) and this occurs for 1 < κ < 10. These values are in
quite good agreement with Donzis et al (2010) (and references therein), and
are consistent with the experiments of Grant et al (1968) and Oakey (1982)
which deal with the temperature spectrum observed in ocean.

Next, in order to analyse the statistics of the temperature derivative, the
PDF of ∂ϑ/∂r is calculated with Eqs. (54) and (50), for different values
of the parameter ψ = C

√
Pr R. This PDF is obtained with sequences of

the variables ξ, η and ζ , each generated by a gaussian random numbers
generator. The distribution function is then calculated through the statistical
elaboration of these data and Eq. (50). The corresponding results are in Fig.
8, where the PDF is shown in terms of the dimensionless abscissa

s =
∂ϑ/∂r

√

〈∂ϑ/∂r2〉
(88)
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These distribution functions are normalized, in order that their standard
deviations are equal to the unity. These PDF are even functions of s and
their tails rise with ψ in such a way that the intermittency of ∂ϑ/∂r increases
with ψ, according to Eq. (55). The PDFs shown in the figure are calculated
for ψ = 0, 0.25, 0.5, 1., 10., ∞, in particular for ψ = 10 and ∞, the curves are
about overlapped. In order to study the influence of ψ on this intermittency
and on the statistics of s, the flatness H4 and the hyperflatness H6, defined
as

H4 =
〈s4〉
〈s2〉2 , H6 =

〈s6〉
〈s2〉3 (89)

are also calculated. These are depicted in Fig. 8 in function of ψ. For ψ =0,
the PDF is gaussian which corresponds to H4 = 3 and H6 = 15. Increasing
ψ, the non–linear fluctuations due to η and ζ , determine an increment of H4

and H6 that tend to the limits H4 = 9 and H6 = 225 when ψ → ∞.
These results are compared with the experiments of Sreenivasan et al

(1980) which in turn give the flatness of ∂ϑ/∂r. The value of C identified
with this comparison of H4 is C ≃ 0.135 against the value C ≈ 0.141 here
calculated in the proper section.

9. Conclusions

The finite scale Lyapunov theory is adopted to study the temperature
fluctuations in homogeneous isotropic turbulence. This analysis leads to the
closure of the Corrsin equation and provides the statistics of the temperature
fluctuations.

The results, which represent a further application of the analysis pre-
sented in de Divitiis (2010) and de Divitiis (2011), are here obtained in the
case of self-similar velocity and temperature fluctuations, and can be so sum-
marized:

1. The energy equation, written using the referential coordinates and the
Lyapunov analysis of the local deformation, allows to factorize the tem-
perature fluctuation and to express it in Lyapunov exponential form of
the local deformation.

2. The finite scale Lyapunov analysis provides an explanation of the phys-
ical mechanism of temperature cascade and gives the closure of the
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Corrsin equation. This is a non-diffusive closure expressing G in terms
of f and ∂fθ/∂r.

3. This closure provides a mechanism of cascade which generates tem-
perature spectra with different scaling laws, depending on R and Pr.
In particular, for proper values of R and Pr, these spectra satisfy the
Corrsin–Obukhov and Batchelor scaling laws in opportune regions of
wave–numbers.

4. The Corrsin–Obukhov and Batchelor constants here identified with the
proposed theory, agree with the different source from the literature.

5. The PDF of ϑr and the corresponding dimensionless moments are deter-
mined through a canonical decomposition of velocity and temperature
in terms of random variables which describe the mechanism of cascade.
This is a non-Gaussian PDF whose intermittency increases with R and
Pr, in agreement with the experiments of the literature.

.
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11. Appendix

For sake of convenience, this section reports the main results of the finite
scale Lyapunov analysis obtained by de Divitiis (2010) and de Divitiis (2011),
which deal with the homogeneous isotropic turbulence.

11.1. Closure of the von Kármán-Howarth equation

For fully developed isotropic homogeneous turbulence, the pair correlation
function f of the longitudinal velocity ur, satisfies the von Kármán-Howarth
equation (von Kármán & Howarth (1938))

∂f

∂t
=
K(r)

u2
+ 2ν

(

∂2f

∂r2
+

4

r

∂f

∂r

)

+
10ν

λ2
T

f (90)
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the boundary conditions of which are

f(0) = 1,

lim
r→∞

f(r) = 0
(91)

where r is the separation distance, λT ≡
√

−1/f ′′(0) is the Taylor scale, and
u is the standard deviation of ur, which satisfies the equation of the turbulent
kinetic energy (von Kármán & Howarth (1938))

du2

dt
= −10ν

λ2
T

u2 (92)

This equation, obtained putting r = 0 into Eq. (90), gives the rate of kinetic
energy in function of u and λT (von Kármán & Howarth (1938), Batchelor
(1953)). The function K(r), related to the triple velocity correlation func-
tion, represents the effect of the inertia forces and expresses the mechanism
of energy cascade. Thus, the von Kármán-Howarth equation provides the re-
lationship between the statistical moments 〈(∆ur)

2〉 and 〈(∆ur)
3〉 in function

of r, where ∆ur is the longitudinal velocity difference.
The Lyapunov theory proposed in de Divitiis (2010) leads to the closure

of the von Kármán-Howarth equation, and expresses K(r) in terms of f and
∂f/∂r

K(r) = u3

√

1 − f

2

∂f

∂r
(93)

where K(0) = 0 represents the condition that K does not modify the fluid
kinetic energy (von Kármán & Howarth (1938), Batchelor (1953)).

11.2. Statistics of the longitudinal velocity difference

Here, the results of de Divitiis (2010), dealing with the statistics of the
longitudinal component of velocity difference ∆ur are recalled.

There, ∆ur is represented in terms of centered random variables

∆ur
√

〈(∆ur)2〉
=
ξu + ψu

(

χ(ηu
2 − 1) − (ζu

2 − 1)
)

√

1 + 2ψ2
u (1 + χ2)

(94)
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where ψu is a function of r and of the Taylor scale Reynolds number

ψu(r, R) =

√

R

15
√

15
ψ̂u(r) (95)

ψu0 = ψu(R, 0), with ψ̂u(0) = 1.075, and χ 6= 1 provides a nonzero skewness
of ∆ur (de Divitiis (2010)).

Equation (94), arising from statistical considerations about the Fourier-
transformed Navier-Stokes equations, expresses the internal structure of the
fully developed isotropic turbulence, where ξu, ηu and ζu are independent
centered random variables which exhibit the gaussian distribution functions
p(ξu), p(ηu) and p(ζu) whose standard deviation is equal to the unity.

11.3. Self-Similarity in homogeneous isotropic turbulence

Now, the results of de Divitiis (2011) are briefly summarized, for what
concerns the self-similarity of homogeneous isotropic turbulence. These re-
sults are based on the idea of self-preserving correlation function which was
originally proposed by von Kármán & Howarth (1938)-von Kármán & Lin
(1949): far from the initial condition, the combined effects of energy cascade
and viscosity act keeping the velocity correlation function f and the energy
spectrum E(κ), similar in the time for large values of wavelengths, in partic-
ular in the inertial sub-range. The condition of self-preserving f , applied to
Eq. (90), leads to the following ordinary differential equation

√

1 − f

2

df

dr̂
+

2

R

(

d2f

dr̂2
+

4

r̂

df

dr̂

)

+
10

R
f = 0 (96)

whose boundary conditions are from Eqs. (91) (von Kármán & Howarth
(1938))

f(0) = 1, (97)

lim
r̂→∞

f(r̂) = 0 (98)

Into Eq. (96), f = f(r̂), where r̂ is the dimensionless variable r̂ = r/λT (t)
which depends upon r and t, therefore

d2f

dr̂2
(0) = −1 (99)
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Observe that Eq. (96) gives the self-similar f and E in the inertial range
and for κ → ∞ (small r). Although Eq. (96) does not describes the energy
spectrum near the origin, E(κ) satisfies the continuity equation, being E ≈ κ4

for κλT << 1.
This similarity and the equation of the turbulent kinetic energy lead to

the expressions of u and λT

λT (t) = λT (0)
√

1 + 10ν t/λ2
T (0), u(t) =

u(0)
√

1 + 10ν t/λ2
T (0)

. (100)

As the solutions f ∈ C2 [0,∞) with df/dr̂(0) = 0 tend to zero when r →
∞, the boundary condition (98) can be replaced by the following condition
in the origin

df(0)

dr̂
= 0 (101)

Therefore, the boundary problem represented by Eqs. (96), (97) and
(98), corresponds to the following initial condition problem written in the
Cauchy’s normal form

df

dr̂
= F

dF

dr̂
= −5f −

(

1

2

√

1 − f

2
R+

4

r̂

)

F

(102)

the initial condition of which is

f(0) = 1, F (0) = 0 (103)
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Figure 3: Correlation functions for Pr= 10−3, 10−2, 0.1, 1.0 and 10, at different Reynolds
numbers. Top: velocity correlation f (dashed line) and temperature correlation fθ (solid
lines). Bottom: triple velocity correlation k (dashed line) and triple velocity-temperature
correlation p∗ (solid lines)
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Figure 4: Spectra for Pr= 10−3, 10−2, 0.1, 1.0 and 10, at different Reynolds numbers.
Top: kinetic energy spectrum E(κ) (dashed line) and temperature spectrum Θ(κ) (solid
lines). Bottom: velocity transfer function T (κ) (dashed line) and temperature transfer
function Γ(κ) (solid line)
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Figure 5: Scaling exponent of the temperature spectrum calculated for Re = 50, 100 and
300, at different values of the Prandtl’s number.
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Figure 6: Corrsin function for R= 50, 100 and 300, at different values of Prandtl’s numbers.
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Figure 7: Batchelor’s function for R= 50, 100 and 300, at different values of Prandtl’s
numbers.

37



Figure 8: Distribution function of the longitudinal temperature derivatives, at different
values of ψ = C

√
Pr R
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Figure 9: Dimensionless statistical moments, H4 and H6 of ∂ϑ/∂r in function of the
parameter ψ.
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