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The mechanisms of Usutu virus (USUV) pathogenesis are largely unknown. The aim of this study

was to evaluate the sensitivity of USUV to interferon (IFN) and the capacity of USUV to stimulate

IFN production. Initial experiments were conducted to characterize the susceptibility of human cell

lines to USUV infection and to evaluate the single-growth cycle replication curve of USUV.

Results indicate that USUV is able to infect a variety of human cell lines, completing the replication

cycle in Hep-2 and Vero cells within 48 h. Pre-treatment of cells with types I and III IFNs

significantly inhibited the replication of USUV. However, the inhibitory effects of IFNs were

considerably less if IFN was added after viral infection had been initiated. Also, USUV weakly

induced types I and III IFNs.

Usutu virus (USUV), an African mosquito-borne flavivirus
of the Japanese encephalitis virus serocomplex, has been
detected in dead birds and/or mosquitoes in several
European countries since 2001 (Weissenböck et al., 2002,
2003; Chvala et al., 2007; Vazquez et al., 2011). Moreover,
human neuroinvasive USUV infections were reported in two
immunocompromised patients in Italy recently (Cavrini
et al., 2009; Pecorari et al., 2009) and USUV-specific IgG was
detected in the serum of four subjects living in north-eastern
Italy with no history of other flavivirus infections (Gaibani
et al., 2012). Although USUV has become a new emerging
pathogen in Europe (Vazquez et al., 2011), very little is
known about its pathogenesis and about the activation of
the innate immune response triggered by the virus infection.

In the light of lack of data on the sensitivity of USUV
to interferon (IFN) and taking into consideration the
implications for the underlying mechanism of USUV
course of infection, we evaluated the susceptibility of
different human cell lines to USUV infection, analysed the

growth characteristics of USUV in various human cell lines
and investigated whether USUV is sensitive to the antiviral
activity of types I and III IFNs.

To allow careful examination of the effects of types I and
III IFNs on USUV replication, initial experiments were
conducted to evaluate the in vitro susceptibility of various
human cell cultures to USUV infection. USUV in vitro
infection has been studied in a variety of animal-derived
cell lines including Vero (Bakonyi et al., 2005), which was
used as reference cell line in the current study. Different
human cell lines [the human lung adenocarcinoma
epithelial A549, human colon adenocarcinoma CaCo-2,
human epitheloid cervix carcinoma HeLa, human hepato-
blastoma Hep-G2, human epidermoid larynx carcinoma
Hep-2, human colon adenocarcinoma SW480, human
epidermoid oral carcinoma KB, human embryonic human
lung MRC-5 and human colon adenocarcinoma grade II
HT29 (16106 cells per well in six-well plates)] were
infected with USUV (Vienna 2001-blackbird strain,
GenBank accession no. AY453411; Bakonyi et al., 2005;
Weissenböck et al., 2002) at an m.o.i. of 0.1 TCID50 per
cell. After 48 h the culture supernatants were added to the

A supplementary table and figure are available with the online version of
this paper.
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cell lysate and titrated for USUV content by using either
yield assay (Reed & Muench, 1938) or real-time RT-PCR
(Cavrini et al., 2011). The results showed that all cell lines
tested were susceptible to USUV infection as evidenced, in
most cells, by the appearance of characteristic cytopathic
effects (CPEs), and resulted in USUV yield or viral RNA
production of at least 4.5 log TCID50 ml21 and 8.1 log
RNA copies ml21, respectively (Fig. 1a, b and Table S1,
available in JGV Online). Three human cell lines, namely
A549, Hep-2 and KB, developed a clear-cut CPE compar-
able to that produced in Vero cells with an USUV titre of at
least 5.5 log TCID50 ml21 and 9.5 log RNA copies ml21,
respectively.

Since only three human cell lines (A549, Hep-2 and KB)
developed a clearly visible CPE following USUV infection
and considering that Hep-2 cells showed the highest IFN
lambda-induced protection from vesicular stomatitis virus
[VSV (Indiana strain) IFN-sensitive virus] infection (data
not shown), this cell line was considered suitable for the
evaluation of the sensitivity of USUV to the antiviral
activities of types I and III IFNs. In order to validate the
results on USUV sensitivity to type I IFN, the same
experiments were conducted in the Vero cell line.
Evaluation of antiviral activity of IFN lambda subtypes
was not performed in Vero cells because this cell line is not
sensitive to type III IFN preparations (data not shown). To
enable careful examination of the effects of IFNs on USUV,
initial experiments were conducted to characterize the
growth of USUV in Vero and Hep-2 cell lines. The
infection of both cell lines (16106 cells per well in six-well
plates) was carried out at an m.o.i. of 1 TCID50 per cell.
Aliquots of the cells and the cell culture fluid were collected
at the time of virus adsorption [i.e. 90 min post-infection
(p.i.)] and at 2, 4, 6, 8, 11, 24, 48, 60, 72, 96 and 120 h p.i.,
and were titrated in Vero cells by using Reed & Muench’s
(1938) method. The kinetics of USUV growth in Hep-2
and Vero cells are shown in Fig. 2(a, b). As shown, USUV
titres reached 104.25 and 103.25 TCID50 ml21 in extracellular
fluids 11 h after Hep-2 and Vero cell infections, respect-
ively. The USUV yields peaked 48 h p.i. at approximately
106.00 TCID50 ml21 in both cell lines. The titre decreased
slowly after another 12 and 24 h in both cell lines, and
successively declined over the next 3 days.

The cell-associated virus titre exhibited 103.25 and 103.75

TCID50 ml21 6 h p.i. in Hep-2 and Vero cells, respectively,
and rose rapidly until 24 h p.i. in both cell lines. Over the
next 2 days, the titre declined, with no more cell-associated
USUV production in the remaining 48 h.

After establishing that a single cycle of USUV replication in
Hep-2 and Vero cells was completed in about 60 h and that
most of the cycle was already complete after 48 h, the latter

time was chosen to test the antiviral activities of human
types I and III IFN preparations on USUV replication. The
IFN preparations used were leucocyte IFN alpha (Alfa
Wassermann SpA), IFN beta (Rebif Merck-Serono), IFN
omega and IFN lambda 1–2 (PBL interferon source) and
IFN lambda 3 (R&D systems). Briefly, Hep-2 and Vero cells
(66104 cells per well in 96-well plates) were infected at an
m.o.i. of 1 TCID50 per cell. For IFN pre-treatment
experiments, cells were treated with half-log serial dilutions
of IFN (from 106 to 0.6 pg ml21) for 24 h before USUV
infection. In each test, 12 wells were not treated with IFN
and filled with 0.1 ml of minimal essential medium
(Euroclone) before USUV infection to serve as controls.
Supernatants were then collected after 48 h p.i., and cells
were subjected to three consecutive freeze (at 280 uC)–

Fig. 1. CPEs observed 2 days post-infection (p.i.) with USUV at an m.o.i. of 0.1 TCID50 per cell. (a) Control (uninfected) Vero cells
(reference cell line) (i) and corresponding infected cells (ii). (b) Control (C; uninfected) A549 (i), CaCo-2 (ii), HeLa (iii), Hep-G2 (iv),
Hep-2 (v), SW480 (vi), KB (vii), MRC-5 (viii), HT29 (ix) cells and corresponding (i–ix) infected (I) cells. Bar, 1 mm.

1

2

3

4

5

6

7

Time p.i. (h)

0 6 72 1209690846048 54 11410812 7836 66423018 24 102

(a)

1

2

3

4

5

6

7

Time p.i. (h)

0 6 72 1209690846048 54 11410812 7836 66423018 24 102

(b)

U
S

U
V

 t
it
re

 (
lo

g
 T

C
ID

5
0
 m

l–
1

)
U

S
U

V
 t

it
re

 (
lo

g
 T

C
ID

5
0
 m

l–
1

)

Fig. 2. USUV replication cycle. Hep-2 (a) and Vero cells (b) were
infected with USUV at an m.o.i. of 1 TCID50 per cell. At the time of
virus absorption and at 2, 4, 6, 8, 11, 24, 48, 60, 72, 96 and 120 h
p.i., pelleted cells (m) and supernatants (&) were collected
separately and titrated for virus content by using the yield assay.
Each dot represents the means±SD of three separate experiments
run in duplicate.
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thaw cycles. The culture supernatant was then added to the
cell lysate and titrated for USUV yield in Vero cells (Reed &
Muench’s method). For IFN post-treatment experiments,
Hep-2 and Vero cells were infected with USUV, and then
stimulated with IFN at two time points after viral
replication had been initiated (1.5 and 12 h p.i.).
Evaluation of USUV yield was performed 48 h p.i. as
described above. The concentration of IFN that inhibited
50 % of USUV yield (i.e. the IC50) was calculated from a
dose–response curve obtained by plotting the percentage of
viral yield reduction obtained in IFN-treated cells, with
respect to the viral yield from USUV-infected control cells,
versus the IFN dose. IC50 values were calculated for each
IFN triplicate independently, and mean values were
compared using ANOVA followed by a Student’s t-test
with Bonferroni correction; P-values ,0.05 were consid-
ered significant (SPSS version 13.0 for Windows). In order
to better characterize the Hep-2 and Vero cell lines from
the IFN sensitivity point of view, the same experiments
were performed with VSV (Scagnolari et al., 2004, 2011).
The results are shown in Fig. 3(a, b), which demonstrate
that the pre-treatment of cells with types I and III IFN
potently inhibits USUV replication. In particular it can be
seen that the IC50 values of leucocyte IFN alpha, IFN beta,
IFN omega and IFN lambda 1–3 preparations observed in
pre-treated Hep-2 or Vero cells were lower or similar to
those observed for VSV. In addition, the effect of IFN pre-
treatment was indirectly related to virus inoculum, and the
inhibition was significantly greater with infection by a low
dose of USUV (Fig. S1).

However, results showed that treatment of cells with IFNs
as little as 1.5 h after exposure to USUV revealed a marked
loss in the inhibitory effect of IFN on virus production. As
shown in Fig. 3(a, b), the IC50 values observed in Hep-2 or
Vero cells after addition of IFN immediately after the
USUV-cell absorption were significantly higher than those
recovered when cells were treated prior to USUV infection
(P,0.05). At 12 h p.i, the highest concentration used for
each IFN preparation to treat cells was not able to inhibit
the replication of USUV (IC50 .1 mg ml21). Furthermore,
as expected (Faul et al., 2009), the effects of post-IFN
treatment on VSV replication were also completely lost at
1.5 and 12 h p.i. In particular, the concentrations of all IFN
preparations required to inhibit 50 % of VSV replication
were always .1 mg ml21 in both cell lines, except for the
IC50 values recorded in Hep-2 cells for type I IFN
preparations (IC50 ¡3000 pg ml21), which were also
similar or lower compared with those of USUV (P,0.05)
(Fig. 3a, b).

As shown in previous studies with other flaviviruses
(Diamond et al., 2000; Anderson & Rahal 2002; Samuel
& Diamond 2005), cells respond to IFN by efficiently
inhibiting USUV replication when the IFN treatment
happened prior to but not after virus infection. This
phenomenon is particularly evident for type I IFN
preparations. Several research groups demonstrated that
flaviviruses use several targeted strategies to hinder the

antiviral effects of IFN (Hoenen et al., 2007; Daffis et al.,
2009; Tu et al., 2012; Morrison et al., 2012). Furthermore,
the ability of West Nile virus (WNV) to decrease the
expression of eIF-3 (Pastorino et al., 2009) together with
the observations that other host cell physiological processes
may be altered during flavivirus infections (Westaway et al.,
1997; Su et al., 2002; Yu et al., 2006; Sangiambut et al., 2008;
Pastorino et al., 2009; Colpitts et al., 2011) might suggest
that flaviviruses indirectly affect the response to IFN through
a profound modulation of the cell metabolism. Therefore, in
consideration of the above evidence, it is possible to
speculate that USUV infection might inhibit IFN antiviral
action through an uncharacterized mechanism that allows
USUV to at least partially overcome the IFN response in
order to establish a productive infection. An alternate, non-
mutually exclusive explanation, in part sustained by the
ability of some IFN-stimulated genes to inhibit the early
replication of flaviviruses (Brass et al., 2009), is that IFN
protects against de novo viral infection but cannot restrain
USUV replication in cells in which viral infection has been
previously established because it interferes with an early step
of USUV replication but has little or no effect on later steps.
In line with this consideration, we observed that the IFN-
induced inhibition of USUV replication was essentially lost
after the viral infection had been established.

Looking at differences in antiviral activity between different
IFNs, we observed that, in general, although there was
some variation depending on the cell type, the antiviral
effects of type I IFNs against USUV were comparable
independently of the time of IFN treatment (Fig. 3a, b). By
contrast as reported for influenza A/H1N1, WNV and
hepatitis C virus (Kelly et al., 2011; Marcello et al., 2006;
Meager et al., 2005), the potential of IFN lambda 1–3 to
inhibit USUV replication was lower than that of type I
IFNs (P,0.05) (Fig. 3a, b).

In order to gain insights into the mechanisms of the USUV
natural history of infection we determined the time-course
and amount of IFN produced following USUV infection of
Hep-2 cells. Briefly Hep-2 cells (16106 cells per well in six-
well plates) were infected with USUV or VSV at an m.o.i.
of 0.1 TCID50 per cell. After 3, 6, 10, 24 and 48 h p.i.,
supernatants were collected. The experiment was run in
triplicate. IFN activity was determined evaluating the
reduction of CPE on A549 cells by encephalomyocarditis
virus (Scagnolari et al., 2008). The analyses of the
production of IFN subtypes were performed using ELISA
tests [IFN alpha multi-subtype ELISA kit, IFN beta ELISA
kit, IFN omega ELISA kit, Verikine-DIY IFN lambda 1–3
(PBL interferon source)], following the manufacturer’s
instructions. Mean values were compared using ANOVA
followed by a Student’s t-test with Bonferroni correction;
P-values ,0.05 were considered significant (SPSS version
13.0 for Windows).

Fig. 3(c) shows the IFN yield induced after infection with
USUV. It can be seen that USUV induces a lower yield of
IFN activity than VSV at 24 and 48 h p.i. (P,0.05). No
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detectable IFN antiviral activity was observed at the other
time points analysed for both viruses. Next, we character-
ized the antiviral activity in the supernatant of Hep-2
cultures infected with USUV confirming that types I and
III IFN protein productions could be recorded only after 24
and 48 h p.i. (Fig. 3d). In addition we observed that
comparable IFN beta and IFN lambda 1–3 protein levels
were induced at 24 and 48 h p.i. In contrast, IFN omega
levels were lower compared with IFN beta and IFN lambda
1–3 only at 48 h p.i (P,0.05). Interestingly, results also
showed that USUV induces lower production of IFN alpha
subtypes compared with IFN beta, IFN omega and IFN

lambda subtypes both at 24 and 48 h p.i. (P,0.05). In the
light of these observations it is tempting to speculate that
USUV has evolved by developing countermeasures to
evade or attenuate the IFN antiviral response. There are
several examples in the literature. Flaviviruses are able to
overcome host innate immunity and productively infect
the host by evading the interaction of pathogen-associated
molecular patterns (PAMPs) with the cellular pattern
recognition receptors and by the expression of antagonist
molecules which directly block the intracellular pathways
that lead to type I IFN production and signalling
(Morrison et al., 2012; Daffis et al., 2009). Interestingly,
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regardless of these considerations, our results confirmed
that IFN lambda 1–3, like type I IFNs, are produced after
viral infection (Ank et al., 2006) and showed that USUV
differentially regulates the induction of IFNs.

In summary, the present study demonstrates for the first
time that USUV replicates efficiently in human cell lines
derived from different tissues and organs, and that the
virus induces a weak antiviral response. Furthermore we
show that USUV is highly sensitive to the antiviral actions
of types I and III IFNs only when cells were treated prior to
but not after viral infection, suggesting that an established
USUV infection is able to overcome the antiviral effect of
IFNs.
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