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This paper presents a low bit rate codec based on an Ergodic 
Hidden Markov Model. A 256 states autoregressive gaussian 
EHMM has been trained on speech uttered by 8 different speakers, 
by mean of the Baum Welch algorithm; initial estimates are 
obtained from vector quantization. The resulting EIlMM is then 
utilized for a Viterbi decoding of incoming speech data. The state 
aequence obtained is frame sincronously encoded. The bit rate is 
gradually lowered by cutting off low probability transitions, and 
thus reducing the destination state encoding hit allocation require- 
ments. The encoded spectra scqucnce is used, on the receiver side 
of the codec, for 1,PC synthesis. Global cntropy and distortion 
measures for different bit ratc arc reported, and compared to vector 
quantization results. Informal listcning tests have been perfhrmed 
by doing a comparison bctwecn the proposed method at various 
bit rate and the same material encoded by VQ. 

I - INI’ROD~ICI‘ION 

Hidden Markov Modcls major application has been found in 
the field of automatic speech recognition systems, where the 
HMM capability to represent both local and temporal features of 
Epeech has allowed very accurate signal modelling, and very high 
recognition rates. 

Initially, IIMM has been rcgarded only as a convenient mech- 
anism to deal with speech recognition substitutions, insertion 
and .deletion events [I]. Subsequently, cxtcntion of the HMM 
parameter estimation algorithm to the continuous observation 
density case [2] [3] has added a more physical meaning to the 
HMM of linguistic units. Interpretation of IfMMs as a gener- 
ation model of the speech proccss taken as whole is reported 
in the pioneering work of Poritz [ 1, in which an Ergodic (fully 
connected) ITMM (EIIMM) of speech is defined as the combina- 
tion of local models (describcd by Autoregessive gaussian densi- 
ties) with the EIIMM transition probabilitics matrix. 

Viterbi alignment of incoming spccch against the EIIMM 
states revealed the capahility of thc model to automatically 
ascribe both broad phonetic classes to the model states, and 
phonotactical constraints to thc transition probability values. 

Since then, the spectrum pnrnmctric rcprcscntation rclated to 
the IIMM states decodcd scqucncc has hccn oltcn utilized to 
check the correctness of IIMM estimates of linguistic units [4] [SI. 
Some ITIIMM based spccch analy ynthcsis schemes have also 
been derived [6] [7], whcrc the dccodcd state spectral parameters 
nequence is used to resynthesise the original speech. 

A major result of such tcchniques is the good perceptual 
quality of this synthesis method, with rcspcct to an equal sue 
memoryless vector quantization technique, due to the “help” the 
transition probabilities give to the decoding of frequently occur- 
ring event sequences. 

.In the 1989 ICASSP proceedings, [8] proposed a very low bit 
rate speech spectra encoding method, named ’A Phonetic Vocoder’. 
It encodes speech at two levels of abstraL3ion: the fust one is the 

after having pruned out many of the le 

that must be replied at the receiver side of the channel. The 
present paper explores the case in which each state has the same, 
fixed, number of outgoing transitions, although a state-dependent 
number of transitions case could be dealt with, by soma minor 
changes at the receiver next state lookup table selection compo- 
nent. 

describes the realization 
procedure adopted for tl r ix  pruning. Scctiod III 
reports some of the I’ cs, e.g. the minimum 
number of transitions ncedrd to rctain thr model ergcrdicity, some 
considerations about the rcsultinp information sourcc entropy, and 
related pcrformances. Section 1V reports a discussion about the bit 
rate achieved during the preliminary experiments. Section 
tains some quality evaluaticin rewlts for thc prqwscd e 
technique, obtained hy subjrctive listening trst and by average dis- 
tortion mcaexms, compared to classical memoryless VQ coding. 
Finally some alternative state scquerice encoding methods are pro- 
posed. 

The rest of the pa as follows. Se 
ts main features, 
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I1 - MO1)P.I. DEPINIIION 
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As foreworded in the introduction, our encoding scheme relies 
on the definition of an MIMM of speech, consisting of a set of N 
states, a set of N autoregressive gaussian observation densities (one 
for each state), an N+N transition probabilities matrix, allowing 
every state pair sequence, and an initial probability vector, giving 
the a priori probability of being in each of the EIIMM states at the 
beginning of the encoding process. 'The cxperiments here reported 
refers to a state cardinality of N = 256. 

The model parameters arc estimated hy means of the Baum 
algorithm [2], on about eight minutes of speech composed by the 
utterance of six hundred different phonemically compact words 
[ 121, by six different speakers. 

The speech is sampled at a frcquency of IO Kllz; linear predic- 
tion analysis has been performed; frame length is of 320 samples, 
and each frame is shifted of RI) samples from the preceeding. 

The initial EIlMM paramctcrs are computed by means of the 
binary-splitting version of thc 1 loyd-Max vector quantization algo- 
rithm [IO], utilizing as distancc measure the 1,ikelihood Ratio dis- 
tortion measure, in order to hc consistent with the 
gain-independent autoregressive gaussian dcnsities [ 1 I ]  [7]. uti- 
lized as BIlMM observation densities. 

The choice of I,PC spectral rcprcscntation is motivated by the 
fact that such local modcl is very well suitcd to reprcsent either the 
multivariate continuous obscrvation densities utilixcd by llidden 
Markov Modeling of speech, as well as the parametcrs needed for 
synthetic speech spectral reconstruction. 

A set of prediction coellicicnts is associatcd to each state, as the 
synthesis filter control parameters. Moreover the prediction coeff- 
dents autocorrelation function is needcd for the evaluation of the 
HMM densities value. 

The El-IMM transition matrix is initialized by means of a 
smoothed eo-occurrence count statistics of the VQ labels collected 
for the same training data. Figure 1 reports, in a graphical form, 
the resulting transition prohabilitics aftcr 4 cycles of the Baum rees- 
timation algorithm. 

The periodicity of the rcsulting transition probability estimates 
results from the binary splitting method adopted for the VQ initial- 
ization of the EIIMM. As evident, the initial transitions matrix 
structure is mainly prescnwl, and tlic rcsulting spectral shaps do 
not reveal too many difkrcnccs among the initial and the final 
values. This result is acccptnblc, being thc data utilized for VQ 
initialization and h u m  rccstitnation thc s:imc. As a preliminary 
exprimcnt, thc PI'I<IIMM Iias hccn ohtaincd from the IillMM 
simply by zeroing the lowrst prohahility transitions departing from 
each statcs, and propcrly revnling tlic remaining oncs. 

111 - h101~1~,1. I'EAI'IJRI~S 
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Before the proccss of tmtiritions pruning, a chcck has been done 
looking for the minimum numher of transitions per state which 
preserves model ergodicity. i e. which allows all of the resulting 
PTEIlMM states to he rcachcd form each other state, thus still 
obtaining a fully connected EIIMM. This has been done by multi- 
plication of the pruned incidencc matrix (derived from the transi- 
tion one after substitution of cach non-sero probability value with 
one) for itself for log&- I times, and checking for the absence of 
all-zero columns. This assures that at least one path exists between 
all the states, whose maximum length, (i.e. the number of states 
visited along the path) is N. 'I'hc minimum number of outgoing 
transition for our 256 state I'TEIIMM amounts to seven. The 
same result was obtained in anothcr earlicr experiment where a 
single speaker EIIMM with 128 statcs was uscd. 

We fixed the minimum number of undclcted transitions in the 
maximally pruned case to eight; this number will be referred in the 
following as M. 

Once the PTEIIMM has heen obtained, a given speech utter- 
ance can be encoded by the state sequence labels obtained by e x -  
cution of the traditional full search Viterbi algorithm decoding 
method applied to the resulting EllMM of speech. This sequence 
is then .straigthforward coded by the indexes of the crossed transi- 
tions along the decoded state sequence. 

In the maximally pruned case and without any other coding 
mechanism, 3 bitslframe are needed to completely encode the ori- 
ginal 256 source symbols. This hit (62.5%) coding saving deserves 
some more information theory considerations. Let's first compare 
the bit rate requirements for a memoryless VQ scheme, with the 
effective information rate needed to encode a Markov source. In 
the VQ case, lo@' bitlsymbol arc needed, because the a priori 
symbols probabilities are unknown; a Markov source model allows 
us to define an absolute 11" and conditional If' intrinsic entropies, 
represented by 

( I )  I10 = - CP, log, P, 
N 

i=l 

N - 
(2) If' = - 5 P j  P i / ,  I O & P i / j  

i-l +' 
where Pi and Pi,, are respectively the absolute and conditional prob- 
ability of state S' . It is clear that the true message entropy evalu- 
ation theoretically requires knowledges of an infmite numerable 
order statistics, but yet a simple one-mcmory Markov model allows 
an adcquate reduction of the source information rate, as given h 
the following table . 

I Table I .  I 
Information .Source 

7.40 I .O2 

Ahsolutc ( HD ) and conditional (If' ) cntropies of the i$onnation 

Ixt us now consider the I"lT~IlMM, for which only IogN bits 
sources. 

have to be transmitted for each symbol. I:ormula (2) becomes : 

N 

llere below the If1 values are given for different pruning facton, 
together with the bit rate required for a straightfonvard e n d i n g  
method. 

I Table 2. I 

I 128 1 7  I 1.02 1 
1 6 4  1 6  I 1.02 I 
I 32 I s  I 1.03 

Conditional Entropy Ii' nf PI-FSMQ information source. M 
represents thc maximum numhcr of allorvcd output transitions fionr 
each state. 

As it can be seen, II' only sligthly grows as the number of 
output transitions M decreases. The above figures demonstrates 
that the performed transitions pruning technique does not cause 
substantial changes of the intriaic source entropy. 
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I V  - NEI'R11'Rh'l'P 

As discussed in [SI, the time continuity properties of the speech 
spectral features permit to encode the decoded state sequence in a 
more eflicient way than simply emitting the index sequence of the 
undertaken transitions. The method relies on the consideration 
that frequently occurring statcs exhibit greater loop probability, 
resulting in longer runs of thc decoded scqucnce. This suggest the 
use of a variable rate encoding for the transition sequence, using 
one bit to flag state changcs, plus log2A4 hits for the transition 
index in the case of an inter-statc transition. Such a technique 
permits to reach the encoding rates given in table 3, which have 
been computed from 60 seconds of cxpcrimcntal data. 

FSMQ 

PI-I'SMQ 128 

CONCI AJSIONS 

305 

283 

I 1nrorinntion ~oiirce I bit I sec I 

PT-FSMQ 16 

PT-FSMQ 8 

I VY I 544 I 

220 

205 

I 260 I 
I PI'-FSMQ 32 I 239 I 

Eneodinf hitlrate for different iflormation sources. 

As evident, the variable ratc encoding method permits a remark- 
able bit economy also for VQ encoder, giving a better approxi- 
mation of the intrinsic conditional entropy of the underlying 
Markov source. The diNercnt state probabilities suggest that a 
further bit rate reduction could bc achicvcd hy variable length state 
coding, using a lower numhcr of bits for the higher probability 
states, with a Iluffman like coding technique. 

V - PRRFORMANCPS EVA1 IJATION 

At first, let us visually examine the quality of the proposed 
coding technique. Figure 2 reports the sonogram of a spcech utter- 
ance (the word "massimo",maximum), with its P'I'EIIMM and VQ 
versions. 

Some subjective and ohjcctivc quality evaluation measure have 
then been performed on a sprccli data haw consisting of 20 wotds 
(not belonging to the training list) uttcrcd by 4 speakers (2 of 
which are in the training set and two arc not). The objective 
results are given as the avcragc distortion ratc, computed by means 
of the log likelihood distortion mcasurc, for various pruning rates. 
As it can be noted, there arc not significant quality differences for 
pruning factors greater thcn I6 transitions per statc(4igure J). 

The distortion figures, even if obtained For a diffcrent prediction 
order, compared with those givcn by [ 3 , sccm to reveal a little 
advantage for the here discussed p1'131 IMM encoding method. 
The advantages are more relevant if we consider also the values 
given in table 3, which report the effectivc hit rate of the encoder. 

Subjective quality asscssment have been performed by 
listening test, where 5 listencrs arc rcqucstcd to express a pref- 
erence opinion when comparing synthetic speech obtained by 
PT-OIIMM versus VQ cncodcd words. As can be seen from figure 
4, PT-MIMM subjectively pciforms bctter than VQ. Lowering the 
number of output transitions (M) from each state of the 
PI'-BIIMM reduces the prcfcrrncc score, that results close, for an 
M value of eight, to that of the VQ. 

In this paper we pmposctl a novel tcclinique for very low bit 
speech signal coding. Ilxprrimrntal evaluation of thc model has 
shown that it is competitivr with classical VQ approach, in tcms 
of bit rate requirements ant1 pcrccptual quality. In our opinion this 
is mainly duc to the FIIMM statistical framework used. In fact the 
EIIMM states tends to assumc phonctic identitics; the relevant 
spectras are estimated from contjguous scgmcnts of signal, and the 
probability transition matrix rcflccts the language dependent 
phonotactical constraints. Some improvements can be made to the 
proposed method. First trf all a beam search [I31 decoding tech- 
nique can substitute the Viterbi algorithm. A continuous back- 
tracing procedure [ 141 can bc applied, removing the present strong 
time delay limitation of the encoder. Obviously dependencies of 
the search width on the encoder delay and on the resulting dis- 
tortion rate should be analyxd. As a second issue, a variable 
number of state outgoing trasitions can be considered. The lower 
bound of 7 can not be general for all the states; in fact we observed 
that more stationary events are relatcd to states which exibits a 
lower number of output transitions. This way a further bit rate 
reduction can be obtained at the expcnse of a slightly more 
complex receiver architecture. Some iterations of the Raum Welch 
estimation EIIMM parameters can be performed periodically 
during the transition pruning phase, allowing a continuous adapta- 
tion of the model features. I'inally an alternative transition pruning 
method can be proposed. It comes from the examination of (3), 
where it can be noted that each transition gived its own (diffemt) 
contribution to the source model conditional entropy. As a conse- 
quence the transition pruning procedure can be executed iteratively, 
deleting at each time the transitions j l ,  it for which : 

(4) j1, i' = argmin(P, P, , ,  lox2 Pi,,) 

discarding this way the lcss informative connections. Periodic 
Baum re-estimation will still mantain thc EllMM parameters 
updated. 
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