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Abstract The moduli space of curves endowed with a nonzero abelian differential admits
a natural stratification according to the configuration of its zeroes. We give a description of
these strata for genus 3 in terms of root system data. For each non-open stratum we obtain a
presentation of its orbifold fundamental group.
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1 Introduction

The moduli space of pairs (C, ϕ) with C a complex connected smooth projective curve of
genus g ≥ 2 and ϕ a nonzero abelian differential on C, and denoted here by Hg, comes
with the structure of a Deligne-Mumford stack, but we will just regard it as an orbifold.
The forgetful morphism Hg → Mg exhibits Hg as the complement of the zero section of the
Hodge bundle over Mg. A partition of Hg into suborbifolds is defined by looking at the
multiplicities of the zeros of the abelian differential: for any numerical partition k := (k1 ≥
k2 ≥ · · · ≥ kn > 0) of 2g − 2, we have a subvariety H ′(k) ⊂ Hg which parameterizes
the pairs (C, ϕ) for which the zero divisor Zϕ of ϕ is of type k. We call a stratum of Hg

a connected component of some H ′(k). (NB: our terminology slightly differs from that of
[6]).
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1.1 Classification of strata

Kontsevich and Zorich [6] characterized the strata of Hg in rather simple terms. First consider
the case when C is hyperelliptic. Then an effective divisor of degree 2g− 2 on C is canonical
if and only if it is invariant under the hyperelliptic involution. So the type k of such a divisor
has the property that any odd integer appears in it an even number of times. There are two
cases where the support of the canonical divisor is an orbit of the hyperelliptic involution:
one is of type (2g − 2) and the other is of type (g − 1, g − 1) (the two cases corresponding
to a Weierstraß point resp. a pair of points). The authors show that these make up strata and
denote them by Hhyp(2g − 2) and Hhyp(g − 1, g − 1) respectively. Notice that this fully
covers the case g = 2. They show that for g ≥ 3,

H(k) :=

{

H ′(k) − Hhyp(k) for k = (2g − 2), (g − 1, g − 1),

H ′(k) otherwise,

is a stratum unless g > 3 and all the terms of k are even. In that case the canonical divisor is
twice the divisor of an (effective) theta characteristic, which for g > 3 can be even or odd (for
g = 3 it is necessarily odd, as there is no effective even theta characteristic). These loci are
connected and hence define strata: Heven(k) and Hodd(k). This completes the Kontsevich-
Zorich characterization of the strata.

The possible codimension 1 degenerations within each stratum were analyzed by Eskin-
Masur-Zorich in [3].

1.2 Local structure of strata

Each stratum is known to have a ‘linear’ structure: it comes with an atlas of holomorphic
charts whose transition maps lie in GL(d, C), where d is the dimension of the stratum. A chart
of this atlas at (C, ϕ) is defined as follows. Note that ϕ defines an element [ϕ] ∈ H1(C, Zϕ; C),
where Zϕ denotes the zero locus consisting of n distinct points. If we put d := 2g+ |Zϕ|−1 =

dim H1(C, Zϕ; C) and choose an isomorphism H1(C, Zϕ; C) ∼= C
d, then varying (C, ϕ) in a

small neighborhood in its stratum makes the image of [ϕ] vary in C
d. This yields a C

d-valued
chart. In particular dim H(k) = 2g + n − 1.

1.3 Projective classes of abelian differentials

Since every connected stratum S of Hg is invariant under scalar multiplication it defines a
suborbifold PS in the P

g−1-orbifold bundle PHg over Mg. Such a projectivized stratum
parameterizes pairs (C, D) with C a smooth projective curve and D a positive canonical
divisor on C with prescribed multiplicities. Moreover, S has a contractible orbifold universal
cover if and only if PS has: in this case, the orbifold fundamental group of PS is the quotient
of the orbifold fundamental group of S by an infinite cyclic central subgroup. The somewhat
technical price to pay for working with PS is that over the hyperelliptic locus we have to deal
with Z/2-gerbes.

Since S has a linear structure, PS has a projective structure (i.e., it has a holomorphic
atlas which takes values in P

dim S−1 such that the transition maps lie in a projective linear
group).
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1.4 Hyperelliptic strata

The topology of the hyperelliptic strata is familiar and although a bit subtle, essentially well
understood. Consider an affine plane curve C◦

ρ with equation

w2 =

2g+1
∏

i=1

(z − ρi)

where the ρi’s are pairwise distinct. A projective curve Cρ is obtained by adding a point p

at infinity and w−1dz extends over Cρ as an abelian differential ϕρ with a unique zero at
infinity. Notice that ϕρ naturally defines a nonzero element in (T ∗

pCρ)⊗(2g−1).
Performing the above construction in families over

R2g+1 :=

{

ρ ∈ C
2g+1 |

∑

i

ρi = 0, ρi 	= ρj

}

we obtain a diagram

C

f

��

C◦� ��� � � �� R2g+1 × A
2

�����������������

R2g+1

σ

��

where f is a smooth projective curve with a section σ representing the point at infinity and
C◦ is the complement of the divisor D = σ(R2g+1) inside C. Moreover, we also obtain a
Φ ∈ H0(C, ωf) that vanishes along the image of σ of order 2g − 2 and so a nowhere-zero
section of (σ∗ωf)

⊗(2g−1) over R2g+1.
The Gm-action on R2g+1 defined as ζ · ρ := ζ2ρ lifts on R2g+1 × A

2 as ζ · (ρ, z, w) :=

(ζ2ρ, ζ2z, ζ2g+1w) preserving C◦ and σ. Notice that −1 ∈ Gm yields the hyperelliptic
involution. The induced action on Φ is ζ ·ϕρ := ζ1−2g ϕ

ζ2ρ, and so (Cρ, ϕρ) is isomorphic
to (Cρ ′ , ϕρ ′) if and only if ρ ′ = ζ · ρ with ζ ∈ μ2g−1. Moreover, the action of S2g+1 on
R2g+1 that permutes the components of ρ commutes with the Gm-action and so we obtain
an isomorphism of orbifolds

R2g+1/(S2g+1 × μ2g−1)
∼ �� Hhyp(2g − 2)

Now, R2g+1/S2g+1 is a classifying space for the braid group B2g+1 on 2g + 1 strands.
Hence Hhyp(2g − 2) is an orbifold classifying space for a group that is an extension of
μ2g−1 by B2g+1. If we are interested in projective classes of abelian differentials, then we
obtain

R2g+1/(S2g+1 × Gm)
∼ �� PHhyp(2g − 2)

which are Z/2-gerbes over M0,2g+2/S2g+1 (still as orbifolds). We can conclude then that
PHhyp(2g−2) has a contractible orbifold universal cover and its orbifold fundamental group
is a hyperelliptic mapping class group, namely the centralizer in the mapping class group of
a hyperelliptic involution τ of a pointed genus g surface (which preserves the point).

Similarly for Hhyp(g − 1, g − 1), we consider affine plane curves C◦
ρ of equation

w2 =

2g+2
∏

i=1

(z − ρi)
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together with the differential ϕρ = w−1dz. If Cρ is the smooth completion of C◦
ρ obtained

by adding the points at infinity p1 and p2, then ϕρ naturally determines a nonzero element
in (T ∗

p1
Cρ ⊗ T ∗

p2
Cρ)⊗g.

Implementing the above construction in families yields a smooth curve f : C → R2g+2 =

{ρ ∈ C
2g+2 |

∑

i ρi = 0, ρi 	= ρj} and a Φ ∈ H0(C, ωf) whose divisor is of the form
(g − 1)D, where D is reduced and projects étale 2 : 1 onto R2g+2. So Φ defines a nowhere-
zero section of det(f∗(ωf ⊗ OD))⊗g. A Gm-action can be defined on R2g+2 × A

2 as
ζ · (ρ, z, w) := (ζρ, ζz, ζg+1w). Observe that ζ · Φ := ζ−gΦ, or equivalently, that under
the isomorphism ζ : Cρ

∼−→ Cζρ, the pull-back of ϕζρ is ζ−g ϕρ. We also have the obvious
action of S2g+2 on this family (which just permutes the ρi’s) and the involution τ which
sends (ρ, z, w) to (ρ, z, −w), and so τ ·ϕρ = − ϕρ. These three actions commute, so that we
have one of S2g+2 ×S2 ×Gm. The stabilizer of Φ is S2g+2 ×μg and it is easy to see that
any isomorphism (Cρ, ϕρ) ∼= (Cρ ′ , ϕρ ′) is the restriction of an element of this stabilizer. So
we obtain the isomorphism of orbifolds

R2g+2/(S2g+2 × μg)
∼ �� Hhyp(g − 1, g − 1)

which exhibits Hhyp(g − 1, g − 1) as an orbifold classifying space of an extension of μg by
B2g+2. It also shows that PHhyp(g − 1, g − 1) ∼= R2g+2/(S2g+2 × Gm) is a Z/2-gerbe
over M0,2g+3/S2g+2 and therefore its orbifold universal cover is contractible. Moreover,
the orbifold fundamental group of PHhyp(g − 1, g − 1) is just a hyperelliptic mapping class
group: to be precise, it is the centralizer in the full mapping class group of a hyperelliptic
involution of a twice pointed genus g surface which exchanges the points.

In their preprint [5] Kontsevich and Zorich conjecture that something similar is true in
general, namely that each projectivized stratum always has a contractible orbifold universal
cover and that its orbifold fundamental group is commensurable with some mapping class
group.

1.5 The other strata in genus 3

In this paper we give rather precise descriptions of all the strata in genus 3. This enables
us to find a presentation of their orbifold fundamental group, at least in principle: we do
this for all the strata, except for the open stratum H(14), where it gets unwieldy, and to
make for these strata the Kontsevich-Zorich conjecture so explicit that it acquires more of
a topological flavor. Concretely, we show that the nonhyperelliptic strata in genus 3 can be
understood as parameterizing del Pezzo surfaces of degree two or one endowed with an
anticanonical divisor of a given type and describe these in turn in terms of combinatorial
(root) data. Such moduli spaces have been investigated by one of us before. It turns out that
they can be given in a somewhat similar spirit as the hyperelliptic strata: some orbifold cover
appears as the complement of a locally finite arrangement in a domain and the in principle
their fundamental group can be computed. For instance, for H(3, 1) resp. H(4) we get the
discriminant complement of the root system of type E7 resp. E6. Its fundamental group
is the Artin group of that type and a highly nontrivial theorem of Deligne [2] asserts that
this complement has indeed a contractible universal cover. But in the other cases this seems
difficult to establish. Questions of that kind are reminiscent, and indeed overlap, with the
Arnol’d-Thom conjecture which states that the discriminant complement of the universal
deformation of an an isolated hypersurface singularity is a K(Γ, 1). They are still the subject
of current research [1].
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We do not know how to make the commensurability conjecture of Kontsevich and Zorich
precise. Our results seem to indicate that the open stratum H(14) has an orbifold fundamental
group which may not be commensurable with a central extension of the mapping class group
of the punctured genus 3 curve. In fact, for none of the strata described here, we were able
to characterize their orbifold fundamental group as a kind of a mapping class group.

2 Genus 3 strata in terms of del Pezzo surfaces

Let C be a nonhyperelliptic nonsingular curve of genus 3. The canonical system on C embeds
in a projective plane PC. A double cover π : XC → PC of this plane which totally ramifies
over C is unique up to the obvious involution. The covering variety XC is a del Pezzo surface
of degree 2, which here amounts to saying that the anticanonical system on XC is ample and
is given by the morphism π: any effective anticanonical divisor on XC is the pull-back of a
line in PC.

We are now going to recall some known results from [7], Section 1.

2.1 Brief review of degree two del Pezzo surfaces

Every effective anticanonical divisor on XC has arithmetic genus one (this is also clear from
the way we defined XC). If L ⊂ PC is a double tangent of C, then its preimage in XC consists
of two exceptional curves (an exceptional curve is a smooth genus zero curve with self-
intersection −1) which intersect each other with intersection number 2. Since there are 28
bitangents we get 2 · 28 = 56 exceptional curves and these are in fact all of them. If we select
7 such exceptional curves E1, E2, . . . , E7 that are pairwise disjoint (geometric marking), then
their contraction yields a map XC → P

2 and the anticanonical system is then realized as the
system of cubics passing through the 7 image points of this P

2. There are however many
ways of picking 7 pairwise disjoint copies and the best way to come to terms with this is to
invoke an associated symmetry group, which is a Weyl group of type E7.

Let us make this precise. The natural map Pic(XC) → H2(XC) is an isomorphism. The
latter is free of rank 8 and {
, e1, e2, . . . , e7} is a basis, where e1, . . . , e7 are the classes of
the exceptional curves E1, . . . , E7 mentioned above and 
 is the pull-back of the class of
a line on P

2. One can easily check that the intersection pairing is diagonal with respect to
such a basis and it has signature (1,7), because 
 · 
 = 1, 
 · ei = 0 and ei · ej = −δij. If
−K = 3
−(e1 + · · ·+ e7) ∈ Pic(XC) stands for the anticanonical class, then (−K)2 = 2. So
the orthogonal complement of −K in Pic(XC), denoted here by Pic◦(XC), is negative definite
and a basis is given by {
 − (e1 + e2 + e3), e1 − e2, e2 − e3, . . . , e6 − e7}. Note that the
intersection matrix of these elements is minus the Cartan matrix of an E7 root system.

A root is an element α ∈ Pic◦(XC) with α · α = −2. Associated to a root α is a reflection
sα in Pic(XC), given by u ∈ Pic(XC) 
→ u + (u · α)α, which fixes −K and preserves the
intersection pairing. These reflections generate a Weyl group W(XC) of type E7 so that the
roots make up a root system R(XC) of the same type.

It is known that the classes of the exceptional curves generate Pic(XC) and that the
roots generate Pic◦(XC). A root can be represented by the difference of two disjoint excep-
tional curves, although not uniquely so. The Weyl group W(XC) is the full stabilizer of
−K in the orthogonal group of Pic(XC). The involution of XC preserves −K and acts
as minus the identity in Pic◦(XC), hence appears here as the central element of W(XC).
But the other nontrivial elements of W(XC) are usually not induced by an automorphism
of XC.
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Denote by Q(E7) a fixed root lattice of type −E7. A marking of XC is an isometry between
Pic◦(XC) and Q(E7). It is well-known (Manin) that all such markings are geometric, i.e.
they are determined as above by a collection of 7 disjoint exceptional curves, and that W(E7)

acts simply and transitively on the markings.

2.2 Bringing in a canonical divisor

Let D be a positive canonical divisor on C. Then D is the trace of a line LD ⊂ PC on C

and L̃D := π∗LD is an anticanonical divisor on XC. As we noted, the latter is of arithmetic
genus one: if D is general (of type (1, 1, 1, 1)), then L̃D is smooth and in the other cases L̃D

Fig. 1 The non-hyperelliptic strata and the cover XC → PC
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Table 1 Nonhyperelliptic
strata in genus 3 k Kodaira type Type of R(XC,L̃D)

(14) Smooth E7

(2,12) I1 (mult) E7

(22) I2 (mult) E6

(3,1) II (add) E7

(4) III (add) E6

is a nodal curve (D is of type (2, 1, 1)), a bigon (type I2 in the Kodaira classification and
D is of type (2, 2)), a cuspidal curve (type II in the Kodaira classification and D is of type
(3, 1)) or two smooth rational curves meeting in a point with multiplicity 2 (type III in the
Kodaira classification and D is of type (4)). We regard L̃D as a genus one curve endowed
with a polarization of degree 2 (Fig. 1).

The group Pic(L̃D) of isomorphism classes of line bundles on L̃D has as its identity
component Pic0(L̃D) an elliptic curve, is isomorphic to C

× or is the additive group C,
according to whether D is reduced, has a point of multiplicity 2, or has a point of multiplicity
≥ 3.

The orthogonal complement in Pic(XC) of the classes of the irreducible components of
L̃D, denoted here by Pic(XC, L̃D) ⊂ Pic(XC), is generated by the roots contained in it, so
that these roots make up a root subsystem R(XC, L̃D) ⊂ R(XC). We have only two cases:
for L̃D irreducible, we have of course R(XC, L̃D) = R(XC) and otherwise (when L̃D has
two irreducible components interchanged by ι), R(XC, L̃D) is of type E6 (see Table 1).

2.3 The basic invariant

The natural homomorphism Pic(XC) → Pic(L̃D) has an evident restriction

χC,D : Pic(XC, L̃D) → Pic0(L̃D).

It plays a central role in what follows. Let us first observe that no root α ∈ R(XC, L̃D) lies
in the kernel of χC,D. For such a root α can be represented by a difference E − E ′ of disjoint
exceptional curves E, E ′ which meet the same component of L̃D,reg, in p resp. p ′, say. Then
clearly, (p)−(p ′) represents χC,D(α) and since p 	= p ′, it is a nonzero element of Pic0(L̃D).

We now view χC,D as an element of Pic(XC, L̃D)∨⊗Pic0(L̃D). As shown in [7] (Section
1), this last group is a weight lattice of type E6 or E7 tensored with either an elliptic curve,
a copy of C

× or a copy of C (which is like a six- or sevenfold power of the latter but with
a Weyl group symmetry built in); moreover, its isomorphism type is a complete invariant of
the pair (XC, L̃D) and hence of the pair (C, D). To be more concrete, let us identify R(C, D)

with a fixed root system R of type E6 or E7. Two such identifications differ by an element
of the automorphism group Aut(R) of R, which is {±1}.W(R) in the E6 case and W(R)

in the E7 case. We also identify Pic0(L̃D) with a fixed group G, which is either an elliptic
curve, or the multiplicative group C

× or the additive group C. Two such identifications differ
by an automorphism of G. Notice that Aut(G) equals {±1} for G a generic elliptic curve or
G ∼= C

× and is equal to C
× when G ∼= C. As the involution ι of XC acts as −1 both on R

and on G, the choices of a marking and of an identification Pic0(L̃D) ∼= G are permuted by
Aut(R, G) := Aut(R) × Aut(G)/(−1, −1).
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Hence, if we denote by Q(R) the (root) lattice spanned by R, and by Hom(Q(R), G)◦ the
subset of homomorphisms with no root in their kernel, then our χC,D defines an element of

S(R, G) := Aut(R, G)\Hom(Q(R), G)◦

for R and G as listed. This construction also makes sense for families of elliptic curves. In fact,
if C1,1/M1,1 is the universal elliptic curve (an orbifold), then we can form S(R, C1,1/M1,1).
Let us write M0,(4) for the moduli stack of 4-element subsets of P

1 up to projective equiva-
lence, in other words, M0,(4) := S4\M0,4. There is an evident Z/2-gerbe M1,1 → M0,(4)

(a ‘B(Z/2)-fibration’), that makes S(R, C1,1/M1,1) fiber over M0,(4).

Theorem 2.1 The map (C, D) 
→ χC,D induces orbifold isomorphisms

PH(4) ∼= S(E6, C),

PH(3, 1) ∼= S(E7, C),

PH(22) − PH(22)hyp ∼= S(E6, C
×),

PH(2, 12) − PH(2, 12)hyp ∼= S(E7, C
×),

and an M0,(4)-isomorphism of orbifolds

PH(14) − PH(14)hyp ∼= S(E7, C1,1/M1,1).

Here PH(k)hyp ⊂ PH(k) denotes the locus in PH(k) for which the underlying curve is
hyperelliptic.

Proof The result for the non-open strata follows from the above discussion and from [7],
Section 1. Mimicking the strategy followed in that paper, we are going to reverse the above
construction for the open stratum.

Consider the lattice freely generated by {e1, . . . , e7, 
} and endowed with the intersection
pairing 
 · 
 = 1, 
 · ei = 0, ei · ej = −δij and fix an isometry between Q(E7) and the
subspace orthogonal to 3
 − (e1 + · · · + e7), as seen at the beginning of the section.

A point χ ∈ Hom(Q(E7), C1,1/M1,1)◦ determines an elliptic curve (L̃, p) ∈ M1,1 and
a homomorphism χ : Q(E7) → Pic0(L̃). Define the points p1, . . . , p7 on L̃ as p1 := p and
by O

L̃
(pi+1) := O

L̃
(pi)⊗χ(ei+1 − ei). Then the linear system O

L̃
(p1 + p2 + p3)⊗χ(
−

e1 − e2 − e3) of degree 3 provides an embedding of L̃ in a projective plane.
The condition that χ(α) 	= 1 for all roots α ∈ Q(E7) ensures that the image of the points

P1, . . . , P7 are in general position in the projective plane. Blowing them up, we obtain a del
Pezzo surface of degree 2 and its anti-canonical system determines a smooth non-hyperelliptic
genus 3 curve C (its branch locus) and a line L (the image of L̃).

As this construction is W(E7)-invariant and can be performed in families, we have then
obtained the wished map S(E7, C1,1/M1,1) → PH(14) − PH(14)hyp. ��

The main result of Deligne in [2] implies that any variety of the form S(R, C) is an
orbifold classifying space of its orbifold fundamental group. If R has the property that its
automorphism group is {±1}.W(R) or W(R) (which is the case when it is of type A or E),
then the orbifold fundamental group in question equals the quotient of the Artin group of
type W(R) by its natural (infinite cyclic) central subgroup. Hence we find:

Corollary 2.2 The stratum PH(4) resp. PH(3, 1) is an orbifold classifying space for the
Artin group of type E7 resp. E6 modulo its natural (infinite cyclic) central subgroup.

But we do not know how to characterize any of these groups as a kind of a mapping class
group.
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Fig. 2 Hyperelliptic degenerations in the strata (14),(2,12),(22)

3 The hyperelliptic locus

The strata corresponding to k = (14), (2, 12), (22) contain both non-hyperelliptic and hyper-
elliptic curves. Thus, we must know how adding PH(k)hyp to PH(k) − PH(k)hyp can be
expressed in terms of the right hand side in Theorem 2.1. Let us first give each of the
PH(k)hyp a description in the same spirit as the varieties we dealt with (Fig. 2).

Let us first observe that the hyperelliptic involution gives each PH(k)hyp the structure of
a Z/2-gerbe. The following proposition identifies the base:

Proposition 3.1 The hyperelliptic involution yields natural Z/2-gerbes

PH(14)hyp → S(A7, C
×),

PH(2, 12)hyp → W(A6)\Hom(Q(A6), C
×)◦,

PH(2, 2)hyp → S(A5, C
×),

where we note that W(A6)\Hom(Q(A6), C
×)◦ → S(A6, C

×) is a double cover.

Proof The loci in question are the moduli stacks for the pairs (C, D) for which C is a
hyperelliptic genus three curve and supp(D) is the union of two distinct orbits under the
hyperelliptic involution. The three cases correspond to having 0,1, or 2 Weierstraß points in
supp(D). If we divide out by the hyperelliptic involution, we get a copy of P

1. We make the
identification in such a manner that the supp(D) = {0, ∞}, where in case (2, 12) we let ∞

be the image of the Weierstraß point. This identifies the stratum PHhyp(14), PHhyp(2, 12),
PHhyp(2, 2) modulo the hyperelliptic involution with the configuration space of subsets of
C

× of 8 resp. 7 resp. 6 elements, modulo the obvious C
×-action and, in the first and the last

case, also modulo the involution. These are easily seen to be as asserted. ��
In order to understand how these loci lie in their strata, we need to have a unified picture

that includes both non-hyperelliptic and hyperelliptic curves. While the anti-canonical model
is adequate to discuss the case of a non-hyperelliptic curve, the bi-anti-canonical model is
more suited to analyze what happens near the hyperelliptic locus. The degeneration of the
del Pezzo surfaces using the anti-canonical model only was analyzed in [8].

4 The bicanonical model

In this section we show and investigate how a degeneration of a plane quartic into a hyper-
elliptic curve of genus 3 is obtained by putting its ambient projective plane in P

5 via the
Veronese embedding and let it then degenerate into a quartic cone. The underlying idea
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is borrowed from J. Shah’s approach to the moduli space of K3 surfaces of degree 2 [9].
The same construction was also employed by Hassett [4] to understand limits of del Pezzo
surfaces of degree 2.

Given a curve C of genus 3, then the canonical map

k : C → PC := P̌(H0(C, ωC))

is an embedding in a projective plane unless C is hyperelliptic, in which case it factors through
the hyperelliptic involution (which we will always denote by τ) and has a conic as image.
On the other hand, the bicanonical map

k ′ : C → P ′
C := P̌(H0(C, ω

⊗2
C ))

is always an embedding in a 5-dimensional projective space and this allows us to identify C

with its image in P ′
C. Let

j : PC ↪→ P̌(Sym2H0(C, ωC))

be the Veronese embedding. The multiplication map

m : Sym2H0(C, ωC) → H0(C, ω
⊗2
C )

induces a rational map [m∗] : P ′
C ��� P̌(Sym2H0(C, ωC)) and C will always lie on VC :=

[m∗]−1j(PC). It is therefore of interest to determine what VC is like.

4.1 Non-hyperelliptic case

For C non-hyperelliptic the map m is an isomorphism. Hence so is [m∗] and this shows that
VC is a Veronese surface and naturally isomorphic to PC. We also find that this isomorphism
takes k(C) to k ′(C). Thus, k ′ embeds C in P ′

C as the intersection of VC with a quadric: k ′(C)

appears as a divisor of OVC
(2).

4.2 Hyperelliptic case

The situation is somewhat more complicated for C hyperelliptic. The hyperelliptic involution
τ acts as −1 in H0(C, ωC) and hence trivially in Sym2H0(C, ωC). But it acts in H0(C, ω

⊗2
C )

as reflection. The image of m is the full fixed point hyperplane of this reflection and so m

has 1-dimensional kernel and cokernel. The kernel of m is of course spanned by an element
of Sym2H0(C, ωC), which, when viewed as a quadratic form on H0(C, ωC)∗, defines the
image of k (a conic in PC). And so the hyperplane H∞ ⊂ P̌(Sym2H0(C, ωC)) defined by this
kernel has the property that jk(C) = H∞ ∩j(PC). It also follows that the fixed point set of τ in
P ′

C consists of a hyperplane H and a singleton {v}, that [m∗] establishes an isomorphism H ∼=

H∞ (we will therefore identify the two) and that [m∗] : P ′
C → P̌(Sym2H0(C, ωC)) is the

linear projection with center v onto H followed by the embedding H ↪→ P̌(Sym2H0(C, ωC)).
This implies that VC is the cone with vertex v and base the image of jk(C) ⊂ H. The image
k ′(C) lies in the smooth part of the cone VC and (again) appears as a divisor of OVC

(2).
Notice that the involution τ acts on each ray of VC as the unique nontrivial involution that

fixes its intersection with H and the vertex v. Moreover, the linear projection maps k ′(C)

onto as a double cover branched along an 8-element subset B = k ′(C) ∩ jk(C), whose two
sheets are exchanged by τ.

Incidentally, we remark that there are two distinct types of rays R ⊂ VC (Fig. 3):
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Fig. 3 The quartic cone VC for a hyperelliptic C

(a) an ordinary ray R: one that meets k ′(C) transversely in two points, so that τ acts non-
trivially on R ∩ k ′(C);

(b) a Weierstraß ray R = Rb: one that is tangent to k ′(C) at a point b ∈ B = k ′(C) ∩ H∞ .

We also observe that the minimal resolution of the vertex of VC has as its exceptional set
a rational curve of self-intersection −4. The complement of the vertex in VC is isomorphic
to the total space of the line bundle O

P1 (4) over P
1 ∼= k(C). In other words, VC is obtained

from a Segre-Hirzebruch surface Σ4 by blowing down the (−4)-section. Thus, VC is a simply
connected rational homology manifold with the homology of a complex projective plane and
one can directly check that the restriction map H2(P ′

C; Z) → H2(VC; Z) is an isomorphism.
Indeed, the (−4)-singularity of the cone VC is homogeneous and VC \ H can be obtained

as the quotient of an affine plane A
2 by the diagonal action of μ4. The local Picard group of

a (−4)-singularity is cyclic of order 4 with generator a ray R and 4R is a hyperplane section
of VC and so locally principal. It follows that Pic(VC) is generated by the class of 4R, and
that since (4R) · R = H · R = 1, it follows that R2 = 1/4. Clearly, C · R = 2.

Conversely, the pair (VC, C) is easily reconstructed up to isomorphism from an 8-element
subset B of a projective line P

1, for the double cover of P
1 ramified along B sits naturally in

the total space of O
P1 (4) and that total space can be identified with the complement of the

vertex of a cone as above.

Notation In what follows, we will always identify a curve C with its image through the
bicanonical embedding. For a hyperelliptic C, we will write C̆ for the rational curve jk(C)

sitting inside VC.

4.3 Near the hyperelliptic locus

Let C0 be hyperelliptic of genus 3. It has a semi-universal deformation whose base is a smooth
germ (S, o) of dimension 6 with ToS naturally identified with the dual of H0(C0, ω

⊗2
C0

).
The universal property implies that the hyperelliptic involution τ extends to this universal
deformation. The identification ToS ∼= H0(C0, ω

⊗2
C0

)∗ is τ-equivariant. As we have seen τ
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acts as a reflection on H0(C0, ω
⊗2
C0

) and so τ also acts as such on ToS. The action of τ on (S, o)

can be linearized in the sense that we can choose coordinates for (S, o) in terms of which τ

is a reflection. The (+1)-eigenspace then parametrizes hyperelliptic deformations. But our
interest concerns rather the (−1)-eigenspace, or more invariantly put, a transversal slice to
the hyperelliptic locus invariant under τ (it is not unique). In other words, we consider a
one-parameter deformation f : C → Δ of C0 such that Ct is non-hyperelliptic for 0 	= t ∈ Δ,
that the Kodaira-Spencer map is nonzero at t = 0 and that the hyperelliptic involution τ

extends to our family and takes Ct to C−t.
The above construction carries over in families and we obtain a factorization of the relative

bicanonical embedding over Δ

C/Δ ↪→ V/Δ ⊂ P ′/Δ

through a surface V over Δ with central fiber V0 a cone over a rational rational normal curve
and general fiber a Veronese surface and we obtain C as divisor of a section s of OV (2). We
incidentally notice that V0 \ H deforms to the complement of a hyperplane section of Vt,
and so the Milnor fiber of this degeneration has the homotopy type of the complement of a
conic in P

2, that is, of a real projective plane.
We note that Pic(V) ∼= Pic(V0) is generated byOV (1). But onVt, t 	= 0,OVt (1) represents

twice the generator and so the image of the specialization map Pic(V0) ∼= Pic(V) → Pic(Vt)

has index two. This corresponds (dually) to the fact that a line on the generic fiber of V/Δ

(that is, a line in P |Δ∗ under the image of Veronese map) may only extend as a Weil divisor
with specialization to the sum of two rays (only four times a ray is a divisor of OVt (1)).
For example, each bitangent of C|Δ∗ specializes to the sum of two Weierstraß rays Rb + Rb ′
and this establishes a bijection between the 28 bitangents of C|Δ∗ and the collection of all
2-element subsets of B.

We deduce that the monodromy action of π1(Δ∗) on the cohomology of the general
fiber of V/Δ is trivial. Indeed, the bundle P ′

Δ is trivial and H∗(P ′
t; Q) → H∗(Vt; Q) is an

isomorphism for all t ∈ Δ. For essentially the same reason, the “half-monodromy” action
τ : H∗(Vt; Z) → H∗(V−t; Z) is also trivial (after identifying H∗(V−t; Z) with H∗(Vt; Z) via
a path in Δ∗).

4.4 The double cover construction

The action of τ on the family C/Δ and so on the total space of the vector bundle f∗(ω⊗2
f )

induces an action on the total space of OV (1), which in particular fixes the fibers over C̆0.
It acts as minus the identity on the fiber over v and as plus the identity on its restriction to
H ∩ V0. Hence, upon replacing s by s + τ∗s, we may assume that s is τ-invariant. As s is a
divisor for C, we can construct the double cover π : Y → V branched over C inside the total
space of OV (1) as the set of points whose square is a value of s. By construction it comes
with an action of τ. If we identify V with the zero section of this total space, then we see
that C is also the ramification locus of π. We denote by ι the natural involution of Y/V . We
remark that the actions of ι and τ commute.

For t 	= 0, Yt is clearly isomorphic to the del Pezzo surface XCt , whereas Y0 has two
isolated singular points v+, v− mapping to the vertex v of V0. Notice that besides the inclusion
C0 ⊂ C there is another copy of C0 embedded inside Y0, namely preimage π−1(C̆0) and
that the two meet each other in the 8 Weierstraß points. The involution ι fixes C0 pointwise
and acts as the hyperelliptic involution on π−1(C̆0), whereas τ fixes π−1(C̆0) pointwise and
acts nontrivially on C0.

Denote by R̃ be the preimage inside Y0 of a ray R ⊂ V0 (Fig. 4).
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Fig. 4 The double cover Y0 of the quartic cone V0

(a) If R is an ordinary ray, then R̃ is a smooth rational curve that doubly covers R. There
are six special points on R̃: the ramification points r1, r2, the singularities v+, v− of Y0

and the preimages h+, h− of R ∩ H∞ . The involutions ι and τ on R̃ are characterized
by the property that their fixed point pairs are {r1, r2} and {h+, h−} respectively (so
ι, τ and ιτ permute the 6 points respectively as (v+ v−)(h+ h−), (v+ v−)(r1 r2) and
(h+ h−)(r1 r2).

(b) If Rb is a Weierstraß ray through b ∈ B, then R̃b = R
+
b ∪ R

−
b , where R

±
b is a smooth

rational curve passing through v± and isomorphically mapping to Rb and R
+
b ∩R

−
b = {b}

(b an ordinary double point of R̃b). Both ι and τ act on R̃b by exchanging v+ and v− and
fixing b, and so exchanging R

+
b and R

−
b ; but their action is different: in fact, ιτ preserves

each component and acts on R
±
b as the only nontrivial involution that fixes v± and b.

The variety Y0 is a rational homology manifold too, and indeed the specialization map
H∗(Y0; Q) → H∗(Yt; Q) is an isomorphism, so that Poincaré duality with Q coefficients
holds and all divisors are Q-Cartier.

The intersection pairing of the liftings of Weierstraß rays satisfy R
+
b ·R−

b = 1 and (R±
b )2 =

−3/4 for every b ∈ B and that for b, b ′ ∈ B distinct, R
+
b · R

−
b ′ = 0 and R

±
b · R

±
b ′ = 1/4. So

R
±
b −R

±
b ′ is a Cartier divisor of self-intersection −2, whereas R

±
b +R

±
b ′ is only a Weil divisor

and has self-intersection −1.

4.5 Limits of exceptional classes

As anticipated before, the 28 double tangents appear in the limit in the central fiber of VΔ

as the
(
8
2

)
couple of Weierstraß rays. The corresponding pairs of exceptional curves on the

general fiber have a decent limit on the central fiber of Y → Δ and this limit can be described
as follows. For every 2-element subset β = {b, b ′} ⊂ B, denote by E

+
β resp. by E

−
β the Weil

divisor R
+
b +R

+
b ′ resp. R−

b +R
−
b ′ inside Y0. This describes the 56 limits of the exceptional curve

on the general fiber: we get a flat family E±
β/Δ whose general fiber is an exceptional curve on

a del Pezzo surface of degree 2. Notice that the involutions ι and τ interchange E+
β and E−

β .

123



Geom Dedicata

The intersection numbers of these exceptional classes, insofar they are not self-intersections,
take their values in {0, 1, 2} and we have (compare [8], Lemma (6.4) for a different model):

(i) if β ∩ β ′ is a singleton, then E
±
β,t · E

±
β ′,t = 0 and E

±
β,t · E

∓
β ′,t = 1,

(ii) if β ∩ β ′ = ∅, then E
±
β,t · E

±
β ′,t = 1 and E

±
β,t ∩ E

∓
β ′,t = 0 and

(iii) E
+
β,t · E

−
β,t = 2.

Since the Picard group of the general fiber of Y/Δ is spanned by the exceptional classes, we
see how that group specializes in the central fiber. We also see that on the central fiber, roots
are still represented as differences of disjoint exceptional curves.

Notice that this construction leaves a trace on the relative Picard group of the generic fiber
Y∗/Δ∗ (the superscript ∗ refers to restriction over Δ∗), for it divides the exceptional curves
of the generic fiber in two subsets that are interchanged by the involution ι. These are in fact
separated by the character ε : Pic(Y∗/Δ∗) → {±1} which takes the value ±1 on E±

β . In fact,
we may identify Pic(Y/Δ) with the kernel of ε.

We can be more explicit if Y∗/Δ∗ is given as a projective plane P
2
Δ∗ blown up in 7

numbered Δ∗-valued points. This yields another basis of Pic(Y∗/Δ∗), namely 
, e1, . . . , e7 ,
where 
 is the preimage of the class of a line in P

2
Δ∗ and ei denotes the class of the exceptional

divisor over the i-th point. Then −K = 3
 −
∑7

i=1 ei is the anticanonical class and we can
number the elements of B: B = {b0, . . . , b7} in such a manner that

ei = E−
b0,bi

, 1 ≤ i ≤ 7,

−K − ei = E+
b0,bi

, 1 ≤ i ≤ 7,


 − ei − ej = E+
bi,bj

, 1 ≤ i < j ≤ 7,

−K − (
 − ei − ej) = E−
bi,bj

, 1 ≤ i < j ≤ 7.

The elements 
 − e1 − e2 − e3 and {ei−1 − ei}
7
i=2 make up a root basis of R(Y∗/Δ∗). The

roots in ker(ε) are ei − ej, 1 ≤ i < j ≤ 7 and ±(−K − 
 + ei)=±(2
 − e1 · · · − êi · · ·−e7),
i = 1, . . . , 7. This is in fact a root subsystem of type A7 for which (−2
 + e2 · · ·+e7, e1 −

e2, . . . , e6−e7) is a root basis.
We rephrase this for purposes of record in the following.

Proposition 4.1 Any root α ∈ R(Y∗/Δ∗) can be written either as a difference E±
β − E±

β ′
(the roots in Ker(ε)) or as E±

β − E∓
β ′ (the remaining ones), depending on whether β ∩ β ′ is

a singleton or empty. The roots of the first type are precisely the ones that lie in the image
of Pic(Y/Δ) and make up a root subsystem R0(Y/Δ) of R(Y∗/Δ∗) of type A7. Moreover,
the permutation action of S(B) on the collection of E±

β ’s defines an isomorphism of S(B)

onto the Weyl group of R0(Y/Δ) and identifies S(B) × 〈ι〉 with the W(Y∗/Δ∗)-stabilizer of
Ker(ε). Both τ and ι act on R(Y∗/Δ∗) as minus the identity.

Now let be given a family of conics Lt ⊂ Vt degenerating into L0 = R ′ +R ′′ ⊂ V0.
There are three cases:

• R ′ and R ′′ are ordinary rays, accounting for PH(14)hyp,
• R ′ is ordinary and R ′′ is Weierstraß, accounting for PH(2, 12)hyp,
• both R ′ and R ′′ are Weierstraß rays, accounting for PH(2, 2)hyp.

We think of L as defining a relative canonical divisor D/Δ on the degenerating family C/Δ

and we need to understand how the basic invariant χC,D specializes over 0 ∈ Δ. This is the
subject of the following two sections.
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5 The open stratum

This concerns the stratum PH(14). We focus on the limiting behavior near the hyperelliptic
locus and so we assume that we are in the situation of Sect. 4 and that L0 is the sum of two
ordinary rays R ′ and R ′′. Then the preimage of L0 in Y0 (denote it L̃0) consists of two smooth
rational components R̃ ′ and R̃ ′′ that meet at v+ and v−. This is the central fiber of a genus
one fibration L̃/Δ with smooth general fiber: it is a degeneration of type I2; in particular,
the central fiber is of multiplicative type. The j-function of such a degeneration has a pole of
order two at 0 ∈ Δ. In fact, the involution τ nontrivially acts on the family L̃ interchanging
the fibers with the same j-invariant.

Lemma 5.1 Let α ∈ R(Y/Δ) be a root. Then χC,D(α) ∈ Pic(L̃/Δ) specializes as an element
in the identity component of Pic(L̃0) if and only if α ∈ R0(Y/Δ).

Proof Let Ŷ be obtained by blowing up Y at v+ and v−. Then Ŷ0 is the union of a double
cover Σ̃4 of a Segre-Hirzebruch surface and two copies Σ

±
0 of P

1 × P
1 glued along the

two (−4)-sections σ± of Σ̃4. Denote by R̂ ′, R̂ ′′ the strict transforms of R̃ ′, R̃ ′′ and by L̂∗ the
preimage of L̃∗ inside Ŷ∗. Then its closure L̂ is a degeneration of type I4 as L̂0 is the union
of R̂ ′, R̂ ′′, σ+ and σ−.

If R̂
±
b is the strict transform of R

±
b for some b ∈ B, then R̂

±
b meets L̂0 in the smooth locus

of σ±. Hence, if Ê±
β ⊂ Ŷ denotes the strict transform of E±

β , then the locus L̂ ∩ Ê±
β defines a

relative divisor δ
±
β on L̂/Δ of degree 2.

Let α ∈ R(Y/Δ) be represented by E±
β −E±

β ′ resp. E±
β −E∓

β ′ . Then χC,D(α) ∈ Pic(L̂∗/Δ∗)
specializes to δ

±
β(0) − δ

±
β ′(0) resp. δ

±
β(0) − δ

∓
β ′(0) on L̂0. This specialization lies in the

identity component of Pic(L̂0) precisely if ε(α) = 1. The conclusion follows because the
pull-back induces an isomorphism between the identity components of Pic(L̂0) and Pic(L̃0).

��
This describes in a rather concrete manner how the restriction homomorphism Pic(Y∗/Δ∗)

→ Pic(L̃∗/Δ∗) specializes over the central fiber, for we also find that the limit χC,D(α)

exists precisely if α ∈ R0(Y/Δ). Indeed, if ε(α) = −1, then after identifying Pic0(L̃0) with
C

×, the value of χC,D(α) tends to 0 or ∞ (depending on the identification). The involutions
ι and τ act on Pic0(L̃0) as the inversion and ι ◦ χC,D(α) = τ ◦ χC,D(α) = χC,D(−α).

This gives rise to the following extension of S(E7, C1,1/M1,1). We begin with what may
be considered as a reconstruction of L̃/Δ. We start out with the algebraic torus T = (C×)2 and
the automorphism u of T defined by u(z1, z2) = (z1, z1z2). This automorphism preserves
the open subset T := Δ∗ ×C

× and generates a group uZ thats acts properly and freely on T .
So the orbit space F∗ is a complex manifold of dimension two. It maps homomorphically to
Δ∗ and this realizes F∗ as the Tate curve over Δ∗. We construct an extension F of F∗ over
Δ by means of a familiar construction from toric geometry.

The coordinates give the lattice NT of one parameter subgroups of T a natural basis
(e1, e2). The rays in NT ⊗ R spanned by the vectors e1 + ne2 with n ∈ Z, and the sectors
spanned by two successive rays define a partial polyhedral decomposition Σ of NT ⊗R. This
decomposition is clearly invariant under u. The associated torus embedding T ⊂ TΣ is a
complex manifold of dimension two. Let TΣ ⊃ T be the interior of the closure of T in TΣ.
Then uZ acts properly and freely on TΣ. We let F be the orbit space of TΣ with respect to
the subgroup u2Z. This is also a complex manifold and it is the total space of a degeneration
F/Δ of curves of genus 1 of type I2. We denote by F0 (resp. by F) the complement of the two
punctual strata in the central fiber inside F0 (resp. inside F). The section σ0(z1) = [z1, 1]
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of F/Δ makes it into a relative abelian variety, which we denote by J /Δ. We remark that
J0

∼= Pic0(F0) × {±1} ∼= C
× × {±1}.

The automorphism u induces in F/Δ an order two translation. We have also natural
commuting involutions ι and τ on F/Δ, which are defined as ι[z1, z2] = [z1, z

−1
2 ] and

τ[z1, z2] = [−z1, −z
−1
2 ], so that the “half-monodromy” acts on Ft as [z2] 
→ [−z

−1
2 ].

The induced actions of ι and τ on J /Δ, given by ι[z1, z2] = [z1, z
−1
2 ] and τ[z1, z2] =

[−z1, z
−1
2 ], generate the automorphism group of J /Δ. We incidentally notice that the “half-

monodromy” acts on Jt as the inverse (for the group operation on Jt).
If J (Δ) denotes the group of sections of J /Δ, then we have a natural surjective homo-

morphism

c : J (Δ) → J0 → {±1}.

The group of homomorphisms χ : Q(E7) → J (Δ) is represented by a Δ-scheme that
we shall denote by Hom(Q(E7), J /Δ). Concretely, a basis α1, . . . , α7 of Q(E7) identifies
this Δ-scheme with a sevenfold fiber product J ×Δ J × · · · ×Δ J . Its central fiber has 27

connected components and these are canonically labeled by the group Hom(Q(E7), {±1}).
It follows from our discussion of the hyperelliptic limit that we must consider only some of
these components, namely those that correspond to χ for which cχ : Q(E7) → {±1} has as
kernel a root sublattice of type A7. At this point we recall that the root subsystems of type
A7 of E7 are transitively permuted by the Weyl group W(E7) and that the sublattice spanned
by such a subsystem has index 2 in Q(E7).

Let us denote by Hom(A7)(Q(E7), J /Δ) the locus in Hom(Q(E7), J /Δ) defined by
the χ with the above property. This subset is open and W(E7)-invariant. By the preceding
remark, W(E7) is transitive on the connected components of the central fiber, the stabilizer
of a connected component being a Weyl group of type A7 times the center {±1} of W(E7).
Removing the fixed point loci of reflections yields an open subset Hom(A7)(Q(E7), J /Δ)◦
and we then put

S(A7)(E7, J /Δ) := Aut(E7, J /Δ)\Hom(A7)(Q(E7), J /Δ)◦ .

If we fix a root subsystem of type A7 inside E7, then we see that the central fiber of
S(A7)(E7, J /Δ) is identified with the component of S(E7, J0) ∼= S(E7, C

××{±1}) that maps
A7 to C

× × {1}. Restriction to A7 identifies this in turn with S(A7, C
×). We also observe that

S(A7)(E7, J /Δ) maps to the quotient of Δ∗ by the involution z1 
→ −z1. So if we ignore the
orbifold structure, then we have attached a copy of S(A7, C

×) to S(E7, C1,1/M1,1). Now
notice that the orbifold S(A7, C

×) is the moduli space of 8-element subsets of C
× given

up a common scalar and up to a (common) inversion. This is also the moduli space of 10-
element subsets of a projective line endowed with a distinguished subset of 2 elements. If we
pass to double covers ramifying over the remaining 8 points, we see that this is nothing but
P(H(14)hyp). With this interpretation, the added locus is even identified with P(H(14)hyp)

as an orbifold.
In order to make the construction global it is best to pass to a level two structure: con-

sider the universal elliptic curve with a level two structure
◦
J

[2]

/M[2]
1,1 (a Deligne-Mumford

stack). It comes with an SL(2, Z/2)-action. We extend this to across the completed modular

curve J [2]
/M[2]

1,1 with curve of type I2 added as singular fibers. Denote by J [2]/M[2]
1,1 the

associated abelian stack and define the stack Hom(A7)(Q(E7), J [2]/M[2]
1,1) in an evident
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manner. We then put

S(A7)(E7, J /M1,1) := Aut(E7, J [2]/M[2]
1,1)\Hom(A7)(Q(E7), J [2]/M[2]

1,1)◦ .

where Aut(E7, J [2]/M[2]
1,1) = W(E7) × SL(2, Z/2)/(−1, −1).

The right hand side contains S(E7, J /M1,1) which fibers over M0,(4) ⊂ M0,(4),
where the point added to M0,(4) (the cusp) is represented by a divisor on P

1 which is twice
a positive reduced divisor of degree two. Its complement is a Z/2-gerbe over S(A7, C

×) and
we conclude:

Theorem 5.2 We have a natural isomorphism PH(14) ∼= S(A7)(E7, J /M1,1) over M0,(4)

which identifies PH(14)hyp with the fiber over the cusp (which, as we noted, has the structure
of a Z/2-gerbe over S(A7, C

×)).

This theorem gives us, at least in principle, access to the homotopy type of PH(14),
although we admit that this may be hard in practice. A computation of its orbifold fundamental
group looks feasible, however.

6 The remaining strata

6.1 The stratum PH(2, 12)

We return to the limiting discussion in Sect. 4. But now we assume here that Lt is tangent
to Ct at one point and Lt limits to L0 = R + Rb0

, where R is an ordinary ray and Rb0
is

a Weierstraß ray. The construction of the previous section now produces a family L̃/Δ for
which L̃∗/Δ∗ is a nodal curve of genus 1, whose closed fiber L̃0 has three components: R

±
b0

and R̃.
The exceptional curves meeting L̃0 at the singular point v± are E±

bi,bj
, 1 ≤ i < j ≤ 7. The

roots that are differences of two disjoint members taken from this collection make up a root
subsystem R0 ⊂ R of type A6 having (e1 − e2, . . . , e6 − e7) as a root basis. Moreover, the
analogous of Lemma 5.1 holds, namely: if α ∈ R, then χC/D(α) specializes to an element
of Pic0(L̃0) ∼= C

× if and only if α ∈ R0.
This suggests the following construction (taken from [8]). Consider the torus Hom(Q(R),

C
×). Its lattice of one parameter subgroups can be identified with the weight lattice

Hom(Q(R), Z) and hence its tensor product with R with Hom(Q(R), R). The indivisible
elements in Hom(Q(R), Z) whose kernel is root lattice of a subsystem of type A6 make up
a W(R)-orbit O of a fundamental weight. Each of these elements spans an oriented ray in
Hom(Q(R), R) and the collection of such rays defines a toric extension

Hom(Q(R), C
×) ⊂ Hom(A6)(Q(R), C

×).

To every subsystem R0 ⊂ R of type A6 are associated two R+-rays and hence two copies
of Hom(Q(R0), C

×). So if λ ∈ O spans of one of the rays and if we let C
× act on P

1

in the usual manner: ζ[z0 : z1] = [ζz0 : z1], then we can form P
1 ×λ Hom(Q(R), C

×)

(which is isomorphic to P
1 × (C×)6) and this glues the two copies of Hom(Q(R0), C

×) on
Hom(Q(R), C

×). Notice that W(R) acts on Hom(A6)(Q(R), C
×). The W(R)-stabilizer of

the boundary torus defined by λ ∈ O is the Weyl group of the A6-subsystem defined by λ.
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Let Hom(A6)(Q(R), C
×)◦ be obtained by removing from Hom(A6)(Q(R), C

×) the fixed
point loci of the reflections in W(R) and put

S(A6)(E7, C
×) := Aut(E7, C

×)\Hom(A6)(Q(R), C
×)◦ .

This contains S(E7, C
×) as an open subset. Since the Aut(E7) = W(E7) and the W(E7)-

stabilizer of a toric stratum in Hom(A6)(Q(R), C
×) is a Weyl group of type A6, the added

locus is isomorphic to a Z/2-gerbe over W(A6)\Hom(Q(A6), C
×)◦. Arguing as before (see

also [8]), we find

Theorem 6.1 We have a natural isomorphism of orbifolds

PH(2, 12) ∼= S(A6)(E7, C
×)

which extends the Z/2-gerbe PH(2, 12)hyp → W(A6)\Hom(Q(A6), C
×)◦ of Proposi-

tion 3.1.

6.2 The stratum PH(2, 2)

Here we need to deal with the case when Lt tangent to Ct in two points and Lt limits to the
union L0 = Rb0

+Rb7
of two Weierstraß rays. Then L̃/Δ is such that L̃∗/Δ∗ is s bigon curve

and the closed fiber L̃0 has four irreducible components: R
±
b0

and R
±
b7

. If Y∗/Δ∗ is given

by blowing up 7 numbered points p1, . . . , p7 in P
2
Δ∗ as before, then the root system R ′ :=

R(Y∗/Δ∗, L̃∗/Δ∗) is of type E6 and has root basis (
 − e1 − e2 − e3, e1 − e2, . . . , e5 − e6).
Via the identification described in Sect. 4 we find that the exceptional curves through v± and
without common components with L̃0 are E±

bi,bj
with 1 ≤ i < j ≤ 6. The roots that are

differences of two disjoint members taken from this collection, and meeting both v+ or both
v−, make up a root subsystem R ′

0 ⊂ R ′ of type A5 having (e1 − e2, . . . , e5 − e6) as root
basis. If α ∈ R ′, then χC/D(α) specializes to an element of C

× if and only if α ∈ R ′
0.

A construction similar to the one for the PH(2, 12)-stratum then yields:

Theorem 6.2 We have a natural isomorphism of orbifolds

PH(2, 2) ∼= S(A5)(E6, C
×)

which extends the Z/2-gerbe PH(2, 2)hyp → S(E6, C
×) of Proposition 3.1.

6.3 Orbifold fundamental groups

The orbifold fundamental groups of an orbifold of the type S(R0)(R, C
×), where R is an

irreducible and reduced root system and R0 ⊂ R is a saturated root subsystem of corank one
has essentially been determined in [8]. It is best described in terms of the extended (affine) root
system, or rather, of the associated affine Coxeter system. We briefly recall the construction.
Although much of what follows holds in greater generality, let us confine ourselves here to
the case when Γ is an affine Coxeter diagram of type Ê7 (resp. Ê6): this is T -shaped tree
whose arms have edge length 3,3,1 (resp. 2,2,2). So the automorphism group Aut(Γ ) of Γ

is a permutation group of a set of 2 (resp. 3 elements). Denote its vertex set by I. Then we
have defined an associated Artin group ArtΓ given in terms of generators and relations: the
generators are indexed by I: {ti}i∈I and ti commutes with tj unless i and j span an edge of
Γ in which case we have a braid relation titjti = tjtitj. The group Aut(Γ ) acts on ArtΓ by
permuting its generators.
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To Γ is associated a Coxeter group WΓ (the quotient of ArtΓ by putting t2
i ≡ 1 for all

i ∈ I) and a (Tits) representation of the Coxeter group on a real affine space A on which
WΓ acts properly as an affine reflection group. The generating set I defines a fundamental
simplex K ⊂ A. The group Aut(Γ ) acts as a symmetry group on K and this action extends
affine-linearly to A. Thus WΓ � Aut(Γ ) (a quotient of ArtΓ � Aut(Γ )) acts on A. Let A

◦
C

denote the complexification of A with all its (affine) reflection hyperplanes removed. Then
A

◦
C

can be identified with a WΓ � Aut(Γ )-covering of S(R, C
×) and ArtΓ � Aut(Γ ) can be

identified with the orbifold fundamental group of S(R, C
×) in such a manner that the covering

projection A
◦
C

→ S(R, C
×) is given by the natural map ArtΓ � Aut(Γ ) → WΓ � Aut(Γ ) ([8],

Cor. 3.7).
The inclusion S(R, C

×) ⊂ S(R0)(R, C
×) induces a surjection on fundamental groups

and essentially amounts to introducing one new relation: a loop around the added divisor
gets killed in the fundamental group. The question is therefore how to represent that loop
in ArtΓ � Aut(Γ ). This was addressed in [8] (Lemma 3.8 ff.). Let us describe this in some
detail.

For every i ∈ I, the subgraph Γi ⊂ Γ obtained by removing i and the edges connected to it
is the graph of a finite Coxeter group WΓi

which maps isomorphically onto the WΓ -stabilizer
of a vertex vi of K. The homomorphism ArtΓi

→ ArtΓ is known to be an embedding. We
denote by Δi the image of the Garside element (see op. cit.) of ArtΓi

. Its image in WΓi
is

the longest element wi of WΓi
and wi takes K to a simplex opposite vi. The opposition

symmetry si : A � a 
→ vi − (a − vi) ∈ A with respect to vi composed with wi is
represented by an automorphism of Γi and siwi preserves K if and only if this automorphism
is the restriction of some gi ∈ Aut(Γ ). Let us call i ∈ I quasi-special if that is the case.
Then for a quasi-special i ∈ I we have giΔi = Δigi in ArtΓ � Aut(Γ ) and this element
acts on A as si. If we have two distinct vertices i, j ∈ I that are quasi-special, then sjsi

acts in A as translation over 2(vj − vi). Now 2(vj − vi) defines a one parameter subgroup
γ : C

×
→ Hom(Q, C

×) and under the identification of ArtΓ � Aut(Γ ) with the orbifold
fundamental group of S(R, C

×), the lift (Δjgj)(Δigi)
−1 of sjsi represents the conjugacy

class of a simple loop in S(R, C
×). This is the loop can be obtained by taking the γ-image

of a circle |z| = ε of small radius in Hom(Q, C
×), applying a translate under the torus

Hom(Q, C
×) so that the circle lies in Hom(Q, C

×)◦ and then mapping that circle to S(R, C
×).

We have (Δjgj)(Δigi)
−1 = Δjgjg

−1
i Δ

−1
i and so, if we have a toric extension in which such

loops become contractible, then in this extension we have the relation Δ
−1
j Δi = gjg

−1
i . Let

us now treat the two cases separately.
Assume Γ of type Ê7. We take as quasi-special vertices one for which Γi is of type E7 (then

the associated element of Aut(Γ ) is the identity) and the unique one for which Γj is of type
A7 (then the associated g ∈ Aut(Γ ) is not the identity). The loop in question is associated to
the translation vj − vi and so we are imposing the identity Δ

−1
Γ(A7)

ΔΓ(E7) = g. Hence we
can eliminate g and we find:

Theorem 6.3 The orbifold fundamental group of PH(2, 12) is the largest quotient of
the affine Artin group ArtÊ7

for which Δ
−1
Γ(A7)

ΔΓ(E7) is of order 2 and conjugation by

Δ
−1
Γ(A7)

ΔΓ(E7) permutes the generators (indexed by I) according to the nontrivial involu-
tion.

Assume now Γ of type Ê6. We let i ∈ I be a terminal vertex (so that Γi is of type E6) and
let j ∈ I be the unique vertex 	= i connected with i (so that Γj is of type A5 + A1). Both are
quasi-special, define subgraphs Γ (E6) and Γ (A5 + A1) (here the notation indicates the type)
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and define the same element of Aut(Γ ) (namely the unique involution which fixes i). Then
the loop in question is represented by Δ

−1
Γ(A5+A1)

ΔΓ(E6) and hence:

Theorem 6.4 The orbifold fundamental group of PH(2, 2) is the quotient of the semidirect
product of the affine Artin group ArtÊ6

with the symmetry group Aut(ΓÊ6
) of the Ê6-graph

defined by the relation ΔΓ(A5+A1) ≡ ΔΓ(E6).

We may also write this as a semidirect product of Aut(ΓÊ6
) and a quotient of ArtÊ6

. The
quotient is then obtained by imposing three such relations: one for every terminal vertex, so
that Aut(ΓÊ6

) still acts on it.
Needless to say that we don’t know whether any of these has a contractible orbifold

universal cover.
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