
Department of Economics Working Paper Series

Of Hackers and Hairdressers: Modularity and the Organiza-
tional Economics of Open-source Collaboration

Richard N. Langlois
University of Connecticut

Giampaolo Garzarelli
University of the Witwatersrand

Working Paper 2008-53

April 2008

341 Mansfield Road, Unit 1063
Storrs, CT 06269–1063
Phone: (860) 486–3022
Fax: (860) 486–4463
http://www.econ.uconn.edu/

This working paper is indexed on RePEc, http://repec.org/



Abstract
By employing modularity theory, we study the general phenomenon of open-

source collaboration, which includes, e.g., collective invention and open science
besides open-source software production. We focus on how open-source collab-
oration coordinates the division of labor. We find that open-source collaboration
is an organizational form based on the exchange of effort rather than of products
where suppliers of effort self-identify like suppliers of products in a market rather
than accepting assignments like employees in a firm. Our finding suggests that ac-
tual open-source software (and other) projects are neitherbazaars nor cathedrals,
but hybrids manifesting both voluntary production and conscious planning.
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Introduction. 

We tend to think of decentralized intellectual collaboration as a phenomenon 

of open-source software, the Internet, and the New Economy.  But consider 

the plight of a certain Monsieur Prony, as recounted by Charles Babbage 

(1835, §243).  Gaspard Riche de Prony (1755-1839) was a French civil engineer 

whom the Revolutionary government of 1790 had charged with an 

unenviable assignment:  construct the largest and most accurate set of 

trigonometric and logarithmic tables ever produced.  One day, while 

pondering this seemingly impossible task, Prony wandered into a bookseller’s 

shop and absent-mindedly thumbed through a copy of Adam Smith’s Wealth 

of Nations.  Suddenly it struck him.  He could enlist the division of labor to 

construct the tables – in effect, he could manufacture logarithms like pins.  

Driven by this insight, Prony set up a collaborative project along the 

following lines.  He would begin by enlisting four or five of the most eminent 

mathematicians in France to devise formulas well suited for numerical 

calculation.  The results would then pass to a small team of run-of-the-mill 

mathematicians who would turn the formulas into simple algorithms.  The 

actual calculations would be performed by a large team of 60 to 80, most of 

whom knew no math beyond simple addition and subtraction.  Indeed, in the 

event the calculators came largely from the ranks of unemployed hairdressers, 

a group who had lost their once elaborately coiffed clients to the same 

Revolutionary taste for austerity and reason that had inspired Prony’s 
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commission.  “By 1794, 700 results were being produced each day” (Grattan-

Guinness 1990, p. 180). 

Obviously, this example differs from present-day open-source software 

projects in a number of respects.  For one thing, Prony’s calculators were not 

volunteers, and were presumably paid either as employees or on a per-

calculation basis.1  Moreover, the entire process was “fordist” rather than 

collegial:  the design was top down, with no communication among the 

calculators or feedback from them to the mathematicians above.  And the 

calculators were not creative programmers but deskilled automatons whom 

Babbage had every hope of replacing with his planned difference engine.2  

Nonetheless, like present-day open-source efforts, the Prony Project was an 

attempt to share-out a complex creative task.  Both are examples of what we 

shall call here the intellectual division of labor.3 

This paper seeks to understand the phenomenon of open-source 

collaboration by placing it within this larger context of the intellectual 

division of labor.  In fact, although “open-source” has its original technical 

meanings in software design and law, we intend to more precisely 

                                                 
1  Unfortunately, no information seems to have survived about the actual organization of 

the work (Grattan-Guinness 1990, p. 179). 
2  There is at least one recent analogue to the Prony Project: NASA’s Clickworkers study, 

which enlisted volunteers to engage in well-specified and relatively menial astrometric 
tasks.  See:  ‹http://clickworkers.arc.nasa.gov/top›.  Of course, Babbage’s dream of 
handing off the most menial calculations to computers has long since come true, and 
today Google will help you donate free time on your Internet-connected computer to 
solving a small piece of a large scientific problem.  See:  
‹http://toolbar.google.com/dc/offerdc.html›. 

3  What Babbage (1835, passim Part 3) called the “mental division of labor.” 
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understand the more general open-source production mode.  Examples 

include the phenomenon of “collective invention” (Osteloh and Rota 2004) 

within industrial communities (Allen 1983) and the professions (von Hippel 

1987; Savage 1994); the business of journal editing and refereeing familiar to 

academics (Bergstrom 2001); online open bibliographic databases, such as 

Research Papers in Economics (RePEc) (Krichel and Zimmermann 2005); 

cases of “open-source” collaboration for literary and hobbyist ends rather 

than for software production (like the online encyclopedia Wikipedia and the 

photography site photo.net); and even the modern practice of “open science” 

(David 1998). 

Our primary focus is on how open-source collaboration coordinates the 

intellectual division of labor.  In Prony’s case, the answer was top-down 

design and control.  But the hallmark of many present-day open-source 

efforts is bottom-up coordination.  The Prony Project was fordist; but the 

paradigmatic open-source effort of today mostly seems to be a horizontal 

organization where coordination is more often unplanned rather than 

planned. 

To answer the question of how open-source collaborations coordinate 

the intellectual division we turn to what we may loosely call the modularity 

theory of the firm (Narduzzo and Rossi 2005; Baldwin and Clark 2006; 

Langlois 2006), since, as we will argue, open-source collaboration ultimately 

relies on the institutions of modularity.  Our answer hinges on a tradeoff 

between the benefits (and costs) of modularity and the benefits (and costs) of 
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its opposite, integrality.  This tradeoff determines the extent to which central 

coordination is preferable to decentralized coordination.  In this respect we 

are attempting to make more precise an idea that is already implicit in many 

discussions of the open-source phenomenon in software:  we try to move a 

step beyond the many discussions of open-source production that still reason 

according to the cathedral and the bazaar polar ideal types (Raymond 2001) by 

considering the more nuanced characteristics of actual organizational forms.4  

In effect, we argue that the organizational menu is not polar but 

multidimensional, where forms simultaneously exhibit different degrees of 

modularity (bazaar) and integrality (cathedral).  More specifically, we find 

that open-source collaboration is a hybrid organizational form that, because of 

an innate modularity-integrality tradeoff, permits the exchange of effort 

rather than the exchange of products, and it does so under a regime in which 

suppliers of effort self-identify like suppliers of products in a market rather 

than accepting assignments like employees in a firm.  We point out, 

moreover, that it is the nature and intensity of demand – especially the extent 

to which demand is quality or time sensitive – that can shift the margin 

between modularity and integrality.  And we further suggest that the 

existence of this tradeoff between modularity and integrality can constitute an 

incentive and “focal point” for technological or organizational change 

                                                 
4  For an early statement that the cathedral and the bazaar referred to ideal types rather 

than to concrete organizational forms, see Eunice (1998). 
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(Rosenberg 1976) – change that sometimes, and perhaps typically, shifts the 

margin in favor of modularity. 

 

Modularity and integrality. 

In his famous account of the development of the operating system for the IBM 

360 series of computers, Frederick Brooks (1975) paints a depressing portrait 

of the intellectual division of labor.  Like Prony, Brooks parceled out the tasks 

of mental labor to a large number of workers.  Unlike Prony, however, Brooks 

found himself faced with a daunting problem of coordination.  An operating 

system is an immensely complicated tangle of interconnections, and every 

piece potentially depends on every other piece.  Brooks took this to mean that 

every programmer ought to know what every other programmer is doing, 

and concluded that coordination costs should rise as the square of the number 

of workers – an idea now sometimes called Brooks’s Law.5  The implication, 

he reasoned, is that coordination costs quickly vitiate any benefits from the 

intellectual division of labor. 

At about the same time, however, David Parnas (1972) and other 

researchers were looking at software systems in a different light.  Solving the 

problem of interdependency, they argued, is not a matter of maximizing 

                                                 
5  As open-source guru Eric Raymond observes, Brooks’s dire conclusion rested on the 

implicit “assumption that the communication structure of [a] project is necessarily a 
complete graph” (Raymond 2001, p. 35). 
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 a1 a2 a3 a4 a5 a6 a7 
a1 x x x x x x x 
a2 x x x x x x x 
a3 x x x x x x x 
a4 x x x x x x x 
a5 x x x x x x x 
a6 x x x x x x x 
a7 x x x x x x x 

 
1.  A non-decomposable system. 

 
 a1 a2 a3 a4 a5 a6 a7 

a1 x x      
a2 x x      
a3   x x    
a4   x x    
a5     x x  
a6     x x  
a7       x 

 
2.  A nearly decomposable system 

 
 a1 a2 a3 a4 a5 a6 a7 

a1 x x x x x x x 
a2 x x x     
a3 x x x     
a4 x   x x   
a5 x   x x   
a6 x     x x 
a7 x     x x 

 
3.  A modular system with common interface.  

 
Figure 1. 

communication among the parts but rather of 

minimizing communication.  In this approach, 

which laid the foundations for object-oriented 

programming, one attempts to design systems 

in which not only do the parts not need to 

communicate extensively with one another 

but are actually forbidden from communicating 

with one another.  The basic idea is that 

“system details that are likely to change 

independently should be the secrets of 

separate modules; the only assumptions that 

should appear in the interfaces between 

modules are those that are considered 

unlikely to change” (Parnas et al. 1985, p. 260).  

This is the notion of information hiding or 

encapsulation. 

Software design reveals the logic of 

modularity with particular clarity.  But the 

basic ideas were long ago articulated by 

Herbert Simon (1962) in a more general 

context.  Simon contrasted systems that are non-decomposable with systems 

that are (or are nearly) decomposable.  Brooks’s conception of the 360 operating 
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system created a non-decomposable system:  every part communicates with 

virtually every other part.6  

Consider Figure 1, where an entry of x in location aij means that 

element ai communicates with element aj.  Matrix 1 is a fully non-

decomposable system:  every element communicates with every other 

element.  By contrast, Matrix 2 is a relatively decomposable system.  

Communication is encapsulated within clusters of elements that do not 

communicate with elements “far away.”  Notice, however, that, although a 

nearly decomposable system like Matrix 2 clearly solves the problem of 

coordination, it does so by throwing the baby out with the bath water.  Matrix 

2 is a congeries of autarkic clusters that eliminates the costs of cooperation by 

the expedient of eliminating cooperation. 

The term modular system takes on many meanings in the literature; but 

one important candidate definition, which we adopt here, is that a modular 

system is a nearly decomposable system that preserves the possibility of 

cooperation by adopting a common interface.  The common interface enables, 

but also governs and disciplines, the communication among subsystems.7  In 

terms of Figure 1, an interface would be a set of elements that communicates 

with most or all the other elements.  In Matrix 3, element a1 is the common 

                                                 
6  As Baldwin and Clark (2006) rightly insist, the notion of “communication” should 

involve more than information, and can include the transmission of energy and 
materials as well as symbols. 

7  This depiction of an interface is only meant to be suggestive.  For one thing, cooperation 
may not require that communication be completely bidirectional in all cases, that is, it 
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interface: a1 communicates with all the aij and all the aij communicate with a1.8  

In other respects, however, Matrix 3 remains sparse off the diagonal. 

Let us refer to a common interface as lean if it enables communication 

among the subsystems without creating a non-decomposable system, that is, 

if it enables communication without filling up the off-diagonal.  As we will 

see, an interface may become standardized; it may also be “open” as against 

“closed.”  But it is the leanness of the interface, not its standardization or 

openness, that makes a system modular.  Baldwin and Clark (2000) suggest 

thinking about modularity in terms of a partitioning of information into visible 

design rules and hidden design parameters.  The visible design rules (or visible 

information) consist of three parts. (1) An architecture specifies what modules 

will be part of the system and what their functions will be.  (2) Interfaces 

describe in detail how the modules will interact, including how they fit 

together and communicate.  And (3) standards test a module’s conformity to 

design rules and measure the module’s performance relative to other 

modules.  Notice that “standards” in this sense doesn’t necessarily imply that 

the architecture or interfaces are standard in the sense of being publicly 

shared or common to many similar artifacts or systems.  A personal 

computer, for example, could be modular in Baldwin-and-Clark’s sense but 

                                                                                                                                            
may not require that row 1 and column 1 be fully populated.  Moreover, many different 
kinds of interface configurations are possible.  On this point see Ulrich (1995). 

8  Think of a1 as M. Prony’s assistant, who must have had to scurry among the calculators, 
each one working in isolation, to gather up the results and arrange them for typesetting. 
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still be a unique design incompatible with the architecture and interfaces of 

other computers.9 

All in all, then, modularity seems a powerful and elegant solution to 

the problem of coordinating the intellectual division of labor.10  No less a 

figure than Linus Torvalds has testified to the value of modularity in the 

arena of open-source software.  

With the Linux kernel it became clear very quickly that we want 
to have a system which is as modular as possible. The open-
source development model really requires this, because 
otherwise you can’t easily have people working in parallel.  It’s 
too painful when you have people working on the same part of 
the kernel and they clash. 

Without modularity I would have to check every file that 
changed, which would be a lot, to make sure nothing was 
changed that would effect anything else.  With modularity, 
when someone sends me patches to do a new filesystem and I 
don’t necessarily trust the patches per se, I can still trust the fact 
that if nobody’s using this filesystem, it’s not going to impact 
anything else. … The key is to keep people from stepping on 
each other’s toes (Torvalds 1999, p. 108). 

Nonetheless, we argue, there can be costs to modularity as well as benefits, 

and there can be benefits to non-decomposability – or integrality, as we will 

call it – as well as costs.  Indeed, the two are opposite sides of the coin.  What 

modularity does well integrality does poorly, and what integrality does well 

                                                 
9  To put it another way, the term “standards” is sometimes used to mean a set of 

normative criteria and sometimes to imply replication.  Although ultimately related, 
these are two quite different things.  On the various meanings of the term, see David 
(1987). 

10  Garud et al. (2003) collects together many of the foundational articles on modular 
systems. 
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modularity does poorly.  The costs of the one are essentially the foregone 

benefits of the other. 

The tradeoff between modularity and integrality. 

The first kind of benefit from modularity has already occupied us extensively:  

the ability of a modular system to obviate widespread communication among 

the modules (or their creators) and to limit unpredictable interactions.  In 

effect, the process of modularization unburdens the system’s elements of the 

task of coordination by handing that function off to the visible design rules.  

Coordination is imbedded or institutionalized in the structure of the system, 

which means that it doesn’t have to be manufactured on the spot by the 

participants. 

A second source of benefits derives from what Garud and 

Kumaraswamy (1995) call economies of substitution.  We can think of these 

economies of substitution as a species of what economists call economies of 

scope.  Economies of scope exist when it is cheaper to make a given product if 

you are already making similar products than if you were to start from 

scratch.  This is possible to the extent that you can reuse existing fixed 

investments (including knowledge) instead of reinventing the wheel.  

Economies of scope are normally discussed as a property of the “production 

function” of a firm.  But as Langlois and Robertson (1995, p. 5) argue, there 

can be external economies of scope in an open modular system, since the 

visible design rules constitute a shared fixed investment that everyone can 



- 11 - 

reuse in creating products through substituting and recombining modules.  

To the extent that the interfaces governing the modular system are sufficiently 

standardized, it may be possible to upgrade a system by piecemeal 

substitution of improved modules without having to redesign the entire 

system.  In large open-source software projects, for instance, the “approach of 

substituting individual components is the norm.”11  It may also be possible to 

optimize a system by choosing the best available modules or to customize a 

system to one’s tastes or needs by selecting only some modules and not 

others12 (Langlois and Robertson 1992). 

A third, and perhaps most important, benefit of modularity is that it 

militates in favor of specialization and the effective use of local knowledge.  If 

we do not subdivide tasks, everyone must do everything, which means that 

everyone must know how to do everything.  But, as Babbage understood, if 

we do subdivide tasks, we can assign workers according to comparative 

advantage.  Why pay a mathematician for those parts of the work that an 

(unemployed) hairdresser could do?  More significantly, however, a modular 

system can do more than use a given allocation of local knowledge effectively 

– it can potentially tap into a vast supply of local knowledge (Langlois and 

Robertson 1992).  This has not been lost on open-source developers, who often 

                                                 
11  Martin Michlmayr, former Debian GNU/Linux Project Leader, personal communication, 

December 31, 2004.  On external scope economies in the case of software, see Baetjer 
(1998, p. 99). 

12  Kuan (2001) and Bessen (2006) see the benefits of open-source software production in 
terms of its ability to fine tune the product to user needs by making users part of the 
production process.  



- 12 - 

wax poetic on the ability of the open-source model to tap into a larger 

“collective intelligence.”13  Raymond even installs a version of this idea as 

“Linus’s law”: “Given enough eyeballs, all bugs are shallow.” That is to say: 

“Given a large enough beta-tester and co-developer base, almost every 

problem will be characterized quickly and the fix obvious to someone” 

(Raymond 2001, p. 30).  A modular system increases the potential number of 

collaborators; and the larger the number of collaborators working 

independently, the more the system benefits from rapid trial-and-error 

learning14 (Nelson and Winter 1977; Langlois and Robertson 1992; Baldwin 

and Clark 2000). 

Notice here that, unlike the first two kinds of benefits from modularity 

– institutionalized coordination and economies of substitution – the benefits 

of tapping into “collective intelligence” depend not only on the technological 

characteristics of the system itself but also on the way the intellectual division 

of labor is organized.  M. Prony could have set his hairdressers to work under 

one roof or he could have “put out” the calculations to them in their homes; 

he could have paid them by the calculation or by the hour.  Presumably one 

set of alternatives would have worked best, and the economics of 

                                                 
13  For example:  “The power of the commercial open-source business model is that you’re 

tapping into the collective intelligence of your community.” (John Roberts of SugarCRM, 
quote in LaMonica (2004).) 

14  As Raymond further elaborates, “while coding remains an essentially solitary activity, 
the really great hacks come from harnessing the attention and brainpower of entire 
communities.  The developer who uses only his or her own brain in a closed project is 
going to fall behind the developer who knows how to create an open, evolutionary 
context in which feedback exploring the design space, code contributions, bug-spotting, 
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organization might shed light on which set that would be.  But in all cases, the 

modularization into simple calculations obviated communication among the 

calculators and with their handlers.  Similarly, IBM could have – and 

probably did – benefit from economies of substitution in the hardware aspects 

of the 360 series of computers, even though the system was emphatically 

closed to outside collaborators, the so-called plug-compatible vendors.15  But 

for a modular system to take advantage of extended localized knowledge, the 

organization of the intellectual division of labor is no longer immaterial.  In 

order to tap into “collective knowledge,” the system’s interface must be not 

only lean but also relatively standardized and open. 

The economics of networks has taught us that, despite the occasional 

subtlety, standardization is the easy part.  If interfaces are sufficiently lean 

and sufficiently open, there is a tendency for one of them to emerge as a 

dominant standard (Shapiro and Varian 1998).  Openness is the more 

interesting issue.  As the community of open-source software developers 

clearly understands, openness does not mean only unfettered access to 

knowledge of the visible design rules of the system, though that may be a 

necessary condition.  Rather, openness is about the right to take advantage of 

                                                                                                                                            
and other improvements come from hundreds (perhaps thousands) of people” 
(Raymond 2001, pp. 50-1). 

15  Who famously sued IBM under antitrust laws in an attempt to open access to the system.  
United States v. International Business Machines Corporation, 1956 Trade Cas. #68, 245 
(S.D.N.Y. 1956). 
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those design rules.16  More broadly, the degree of openness of a modular 

system is bound up with the overall assignment of decision rights within the 

intellectual division of labor.17  This is an organizational issue and – what may 

be the same thing – a constitutional issue that is taken up in some detail in the 

next section. 

Let us now consider the other side of the coin:  the costs of modularity.  

The first of these is the (fixed) cost of establishing the visible design rules 

(Baldwin and Clark 2000).  A (nearly) decomposable system may solve 

coordination problems in an elegant way, but designing such a system may 

take a considerable amount of time and effort.18  There may also be costs to 

communicating the design rules to participants and securing agreement on 

them. 

Another cost is that, at least in principle, it may not be possible to fine-

tune a modular system as tightly as an integral one.  For many kinds of 

                                                 
16  The question of rights in open-source software is a much-discussed issue, revolving 

around the various kinds of software licenses possible or in actual use.  It would take us 
too far afield to enter this complex area.  But for some distinctions see Wheeler (2007a,b; 
n.d.). 

17  At this point we have in mind the allocation of decision rights within the intellectual 
division of labor – for example, the allocation of decision rights to programmers in the 
process of designing a piece of software.  But the same logic applies at the level of the 
system – e.g., the software – itself.  In that case, we can say that the visible design rules 
themselves are a kind of “constitution” that determines the rights of action that the 
elements of the system enjoy.  And here there is a strong analogy between the idea of 
encapsulation in software design and private property rights in legal systems (Miller and 
Drexler 1988; Langlois 2006).  In both cases, the operative principle is the creation of a 
protected sphere of activity permitting autonomy of action.  The two levels overlap to 
the extent that a particular encapsulated subsystem is the property of a particular 
individual or group within the intellectual division of labor. 

18  Garud and Kumaraswamy (1995) cite evidence that the cost of designing a reusable 
modular software object may be as much as ten times the cost of designing software 
intended to be used only once. 
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software, this may no longer be an important issue in the face of Moore’s 

law.19  But for other kinds of systems, there may be important performance 

losses from building a system out of modules.  Automobiles, for example, 

may have an inherent “integrality” that prevents automakers from taking 

advantage of modularity to the same degree as, say, makers of personal 

computers (Helper and MacDuffie 2002).  One can’t swap engines like one 

swaps hard drives, since a different engine can change the balance, stability, 

and handling of the entire vehicle.  Clayton Christensen and his collaborators 

(Christensen, Verlinden, and Westerman 2002) have argued that integral 

designs, which can take advantage of systemic fine-tuning, have an advantage 

whenever users demand higher performance than existing technology can 

satisfy.  As the fine-tuned system continues to improve in performance, 

however, it will eventually surpass typical user needs.  At that point, these 

authors argue, production costs move to the fore, and the integral system (and 

the integrated organization that designed it) will give way to a network of 

producers taking advantage of the benefits of modularity discussed earlier. 

At the same time, however, one might also add that sometimes a 

modular system can improve in performance even faster than a fine-tuned 

system.  To the extent that such a system benefits from “collective 

intelligence” and rapid-trial-and-error learning, the improvement in the parts 

can dominate any benefits from fine-tuning.  Personal computers are again a 

                                                 
19  After Gordon Moore, Intel co-founder, who claimed that the number of functions that 

can be crammed on a chip doubles every 12 months (Moore 1965). 
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case in point.  PCs have come to outperform first mainframes, then 

minicomputers, then RISC workstations, all of which, in their day, made their 

money as fine-tuned non-modular systems (at least relative to PCs).  Again, 

the extent to which modular innovation can outperform fine-tuning may 

depend on the degree of inherent integrality in the system. 

A third, closely related, cost of modularity (benefit of integrality) is the 

tendency of modular systems to become “locked in” to a particular system 

decomposition.  At least to the extent that knowledge gained creating one 

modularization of the system cannot be reused in generating a new 

decomposition, it is a relatively costly matter to engage in systemic change of 

a modular system since each change requires the payment anew of the fixed 

cost of setting up visible design rules.  If in addition an interface has become a 

standard, the problems of lock-in are compounded in the way popularized by 

Paul David (1985), since in that case many people would have simultaneously 

to pay the fixed cost of change.  A modular system is good at modular or 

autonomous innovation, that is, innovation affecting the hidden design 

parameters of a given modularization but not affecting the visible design 

rules.  But a modular system is bad at systemic innovation, that is, innovation 

that requires simultaneous change in the hidden design parameters and the 

visible design rules – simultaneous change in the parts and in the way the 

parts are hooked together.20 

                                                 
20  The terms autonomous and systemic are from Teece (1986).  There is a third possibility, 

what Henderson and Clark (1990) call architectural innovation.  Here the modules remain 
 



- 17 - 

The benefits of an integral system in systemic change are related to the 

benefits of fine-tuning to which Christensen points.  Fine-tuning is after all 

systemic change to improve performance.  Thus integral systems may have 

advantages not only when users demand high performance in a technical 

sense but also when they need performance in the form of change and 

adaptability.  This latter may also be a function of how quickly the user needs 

the system to perform; the front-end costs of a modular system may take the 

form of time costs – the output forgone while waiting for the modularization 

to crystallize or the visible design rules to get worked out.  If a 

modularization is already in place, of course, the system can adapt and 

respond quickly by simply plugging in new modules to suit user needs.21  But 

if there is not yet a modularization, or if the user needs a level of performance 

greater than can be achieved even with the best possible assortment of 

available modules, then an integral system may do better. 

                                                                                                                                            
intact, but innovation takes place in the way the modules are hooked together.  (For a 
paradigmatic example of this kind of innovation, visit Legoland.)  The possibility of 
architectural innovation underlies the benefits of economies of substitution discussed 
earlier. 

21  It is for this reason that Figure 3 below grades modular systems as “B” rather than “C” 
on their ability to fine tune performance or adapt systemically.  Modular systems can in 
fact fine tune and adapt systemically to some degree by taking advantage of economies 
of substitution. 
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Spontaneity and design in software production. 

Effort and division of labor. 

Open-source software production is an organizational form that to a large 

extent relies on the institutions of modularity driven by exactly the supply 

side and demand side factors to which Langlois and Robertson (1992) long 

ago pointed.  On the demand side are idiosyncratic user tastes and 

requirements that call for both high quality and fine degree of customization.  

On the supply side are the benefits of specialization by comparative 

advantage and the external economies of a large and diverse talent pool.  

Consider this description of the Debian Project.22 

The Debian design process is open to ensure that the system is 
of the highest quality and that it reflects the needs of the user 
community.  By involving others with a wide range of abilities 
and backgrounds, Debian is able to be developed in a modular 
fashion.  Its components are of high quality because those with 
expertise in a certain area are given the opportunity to construct 
or maintain the individual components of Debian involving that 
area.  Involving others also ensures that valuable suggestions for 
improvement can be incorporated into the distribution during 
its development; thus, a distribution is created based on the 
needs and wants of the users rather than the needs and wants of 
the constructor.  It is very difficult for one individual or small 

                                                 
22  Debian is an association of volunteers who work on an operating system called Debian 

GNU/Linux.  GNU is a recursive acronym that stands for “GNU’s Not UNIX”; it is 
pronounced “guh-NEW” (‹http://www.gnu.org/›).  Linux refers to the kernel – the central 
functions – of the operating system; GNU/Linux is the complete operating system, 
including the Linux kernel along with other software components.  A distribution is 
simply a (usually complete) packaging of the Linux kernel with other software needed to 
complete the operating system.  Debian GNU/Linux is a GNU/Linux distribution that is 
produced entirely by volunteers.  
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group to anticipate these needs and wants in advance without 
direct input from others.23 

But what is the more specific organizational nature of open-source software 

development efforts? 

To answer this question, we present a taxonomy of production models 

by reasoning along the following lines.  Markets are about the exchange of 

products or outputs; such exchange is coordinated spontaneously, in the 

sense that relative prices rather than fiat direct resources.  A firm stands in 

contrast to both of these aspects of markets:  it replaces contracts for products 

with employment contracts, effectively substituting a factor market for a 

product market (Cheung 1983); at the same time, it replaces spontaneous 

coordination with some kind of central design or direction.  Notice that this 

leaves two unexamined alternatives:  product markets governed by central 

direction and factor markets coordinated spontaneously.  Inside contracting 

and outsourcing are examples of the former.  Open-source collaboration is an 

example of the latter.  In the final analysis we find that open-source 

collaboration manifests both spontaneity (self-selection in terms of which 

input to contribute) and design (conscious direction). 

As Jensen and Meckling (1992, p. 251) point out, economic organization 

must solve two different kinds of problems:  “the rights assignment problem 

(determining who should exercise a decision right), and the control or agency 

problem (how to ensure that self-interested decision agents exercise their 

                                                 
23  ‹http://www.debian.org/doc/manuals/project-history/ap-manifesto.en.html›. 
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rights in a way that contributes to the organizational objective).”  All other 

things equal, efficiency demands that the appropriate knowledge find its way 

into the hands of those making decisions.  There are basically two ways to 

ensure such a “collocation” of specific knowledge and decision-making:  “One 

is by moving the knowledge to those with the decision rights; the other is by 

moving the decision rights to those with the knowledge” (Jensen and 

Meckling 1992, p. 253).  These two choices – as well as possible variants and 

hybrids – are “constitutions” that set out the assignment of decision rights.  

Such assignments can take place within firms or within wider networks of 

independent collaborators.24 

In the case of the Prony Project, and of fordist production generally, 

decision rights remain centralized.  This is because there is very little 

knowledge that needs to be transmitted; tasks have been made exceedingly 

simple, and the important knowledge – that involving design – is already at 

the center.  The agency problem can be addressed either through investments 

in monitoring or by aligning incentives using a suitable piece rate.  Even 

when the subdivided tasks are far more complicated – and require far more 

skill and creativity – it is still possible to organize the intellectual division of 

labor in more-or-less the same way.  In this model – which we call corporate – 

the ultimate decision rights remain centralized, even as many de facto 

decision rights are parceled out to employees at various levels of the 

hierarchy.  Clearly, such an arrangement complicates the agency problem, 

                                                 
24  On the idea that firms are constitutional systems, see Gifford (1991). 
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since keeping everyone on the same page is no longer a simple matter of 

monitoring or incentive alignment in a narrow pecuniary sense. 

Many would argue that, even within the corporate context, effective 

management of high-human-capital projects requires recourse to more 

“participatory” or collaborative models (Minkler 1993).  Does this mean that 

there is really no difference between the corporate model and more 

decentralized ones?  The answer is no, for two reasons.  First, as we have seen, 

even a large organization is bounded in the capabilities on which it can draw, 

and this limitation may be important in many cases.  Second, the location of 

the ultimate decision rights matters.  For any division of intellectual labor we 

choose, behavior and performance will be different if we assign decision 

rights to some central authority rather than to the individual collaborators.25 

The opposite of a corporate model would be a fully decentralized one 

in which the collaborators retain the ultimate decision rights.  But just as the 

central holder of decision rights in a corporation must in practice cede de 

facto decision rights to others, so in a decentralized system the collaborators 

must give up some pieces of their rights in order to collaborate.  In a classic 

market narrowly understood, the collaborators do this through contract.  In 

                                                 
25  Oliver Williamson (1985, p. 136) traces this effect to the phenomenon of “selective 

intervention,” the tendency of the central holder of decision rights to meddle in the 
decisions of the collaborators.  Henry Hansmann (1996) reminds us that those who 
possess de facto decision rights will be constrained in their exercise of those rights if they 
lack the ultimate or “formal” decision rights (which Hansmann equates with 
ownership).  The modern corporation, he points out, is precisely an example in which it 
pays to assign the formal ownership rights to parties (the stockholders) who may 
actually be in a poor position to exercise effective control – in part because such an 
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return for compensation from you, I choose to exercise my right to make 

shoes by producing the kelly green golf shoes you have contracted for.26  In 

the limit, however, I may not even know who “you” are, and I exercise my 

decision rights in the direction of kelly green golf shoes in the hope that you, 

or someone like you, comes along.  A classic market of this sort is an example 

of what we call the spontaneous model – spontaneous in the sense that the 

division of labor itself emerges (in the limit) from the choices of the 

collaborators rather than from a central designer. 

This is a perspective on the firm/market dichotomy somewhat 

different from what one usually encounters in the economics of organization.  

More typically, one hears the following kind of story:  markets are good at 

exchanging products for compensation, whereas firms are good at exchanging 

effort for compensation.  The economics of organization can be understood 

from this perspective as a set of stories about why it is often costly to 

cooperate by trading products and often necessary to cooperate by trading 

effort.27  Ever since Coase (1937), it has been more-or-less taken for granted 

that the only way to trade effort is through an employment contract:  I pay for 

your time and the right to direct your effort within agreed limits (Simon 

1951).  In other words, the only way to trade effort is by setting up a firm.  

                                                                                                                                            
allocation keeps the rights out of the hands of other parties (notably the managers) who 
would abuse them. 

26  Apologies to Deirdre McCloskey (1995). 
27  This is not a denial that effort is ultimately a product.  It is merely a claim that effort is a 

particular kind of product, one whose properties make it costly to trade using only the 
relatively rudimentary institutional support that an anonymous spot market offers. 
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Perhaps the most intriguing aspect of the open-source model is that it flies in 

the face of this assumption:  under the right circumstances, it is possible to 

cooperate spontaneously on the effort margin, not just the product margin.28  

Rather than giving up their decision rights to others, open-source 

collaborators combine effort “voluntarily.”  Voluntarily here means not that 

the collaborators do not receive pecuniary compensation (though that may 

often be true) but rather that the collaborators choose their own tasks.  

Assignment of individuals to tasks – and, to an extent we will explore, even 

the overall design of the division of labor itself – arises from these voluntary 

choices, in much the same way that assignment of sellers to products in a 

classic market arises from self-selection. 

                                                 
28  As pointed out earlier, of course, this model actually antedates software.  Notably, it has 

been the normal mode of organization in the professions (Savage 1994), including those 
that produce science (David 1998).  But only with the prominence of open-source 
software development has the phenomenon begun to gain the attention of the economics 
of organization. 
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We can distinguish four possibilities.  Consider Figure 2.  Along the 

vertical dimension is the issue of design:  is assignment to task (and maybe 

even the division of labor itself) generated through a centralized process or 

does it arise from the self-identification of collaborators with tasks?  Along the 

horizontal dimension is the problem of information and agency:  are we 

talking about products cleanly measured and priced or are we taking about 

exchanges of effort that involve costs of measurement and agency?  In the 

upper left-hand box, the division of labor is centrally designed, but the 

products of that labor are easily measured and priced.  This is the world of 

inside or outside contracting.  It is the Prony Project, as well as the 

outsourcing of intellectual activities like call centers, back-office work, or the 

reading of X-rays.  In the lower left-hand box, the division of labor remains 

centrally designed, but the cost of measuring and pricing transactions makes 

it cheaper to purchase the effort of collaborators directly.  This is the classic 

firm.  In the upper right-hand box, participants self-select their contributions; 
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but measurement and pricing costs are not prohibitive, and those 

contributions take the form of products offered on spec.  This is the classic 

market.  Finally, in the lower right-hand box, participants self-select their 

contributions; but those contributions come directly in the form of effort 

rather than of effort embodied in a product.  That is, we do not have, for 

instance, a spot market in day labor where day laborers don’t choose what 

they work on; rather, we have a division of labor where programmers do 

sometimes produce specific products in the end, but in the context of 

spontaneously adding effort to a larger product not making a product on 

spec.  This is the model of voluntary production, the model that most closely 

resembles the bazaar ideal type. 

Rules and division of labor. 

This two-dimensional schema has advantages, we argue, over the tripartite 

distinction Benkler (2002) offers among markets, hierarchies, and what he 

calls peer production.  Benkler argues that a perceptible trend toward the 

increased importance of human capital in production is leading toward peer 

production and away from both markets and hierarchies.  It may well be that, 

with economic growth and an expanding extent of the market, there is a 

general trend rightward in Figure 2, what Langlois (2003) calls the 

phenomenon of the Vanishing Hand.  But an increased importance of human 

capital and greater spontaneity of production is consistent with markets as 

well as with decentralized collaboration through direct effort.  Even apart 
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from the likes of books, musical scores, or screenplays, there are a plethora of 

“consulting” services – from legal representation to brain surgery – that are 

priced on markets. 

The most extreme form of a voluntary arrangement would occur when 

the self-selection of the collaborators itself actually creates the division of 

labor.  This is far from unimaginable:  it is exactly what happens in “the 

market” in the largest sense – including the market for software in the large.  

It also arguably happens in the context of academic open science, where the 

pattern of knowledge emerges from the self-selected research choices of the 

participants.  If we cast our gaze down to a less lofty level, however, there 

almost always seems to be some pre-existing structure of possible tasks from 

which the participants choose.  If Thomas Kuhn (1970) and others are right, 

even scientific researchers are often – and maybe always – guided in their 

choice of problem by the constraints of earlier models and approaches.  And 

at the level of any particular software project, the self-selection of workers to 

tasks takes place within the context of an established architecture or (at the 

very least) an established technological trajectory.29 

Why is this so?  Consider the experiments conducted by Kevan Davis, 

a British software engineer (Thompson 2004).  Davis set up a website on 

which visitors could vote, pixel by pixel, on the design of a type font.30  The 

                                                 
29  The idea of a technological trajectory is an application to technology of Kuhn’s idea of a 

scientific paradigm (Dosi 1982). 
30  ‹http://www.typophile.com/›.  
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results were quite presentable and, at least when cleaned up a bit, looked 

“like a mildly punk version of Helvetica, with occasional flashes of creative 

weirdness, such as the jaunty serif on the foot of the letter ‘J’” (Thompson 

2004).  But when Davis asked people to draw a face or a television set by 

voting on pixels, the result was a shapeless mess.  Efforts at drawing a goat 

looked mildly goat-like for a while, then collapsed into a jumble after 7,000 

votes.  The difference between a type font and a goat, of course, is that we 

come prepared with structural preconceptions that are far tighter in the 

former case than in the latter.  For the font problem, there is something much 

closer to a pre-existing design architecture to guide individual contributions.  

This shouldn’t be surprising in view of our discussion of modularity.  

Modularity enables large-scale cooperation; but it requires agreed-upon 

visible design rules (which, as in the case of letters, may even be tacitly 

known design rules). 

In a typical well-run open-source project, design structure takes the 

form both of conscious direction and of anonymous rules.  It is the first of 

these elements that makes the development process ultimately a “hybrid” 

form of organization.  Conscious direction is most important in the early and 

relatively inchoate stages of a project – when design issues remain systemic in 

important respects.  As Ian A. Murdock, creator of Debian, for example 

recalls: 

Debian’s biggest organizational achievement was its emphasis 
on project management and infrastructure.  It’s one thing to 
have a great idea that generates interest;  it’s another to have the 
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necessary infrastructure in place so that, when the masses show 
up to lend a hand, they can contribute. 

In the early days of Debian, the package system and packaging 
standards we put together ensured that independently 
developed pieces came together into a cohesive whole.  Later, as 
the number of Debian developers swelled from dozens to 
hundreds to more than 1,100, a project management 
infrastructure took shape to handle this massive task. 

This, by the way, is why most open-source projects never get 
beyond the idea phase (just browse through any 20 random 
projects on SourceForge [‹http://sourceforge.net/›] to see what I 
mean).  No matter how great the idea, there has to be a 
framework in which to contribute, or critical mass can never be 
reached.  And without critical mass, open development projects 
are not sustainable (Murdock 2003). 

As a result, Debian volunteers now follow the rules contained in the Debian 

Social Contract31, the Debian Free Software Guidelines (aka, DFSG)32, and the 

Constitution33.  These visible design rules assure that “each package can be 

dropped into the system independently without damaging or interfering with 

programs from other packages.  By working with a set of consistent rules and 

with identical tools, the volunteers can and do create a truly modular system” 

(Murdock 1994a).  Indeed, over time, design becomes increasingly a matter of 

impersonal rules, sometimes explicit, sometimes tacit. 

But projects almost always retain important elements of conscious 

direction even as they mature.  Like the impersonal design rules, however, 

these elements of conscious direction involve design at the highest – most 

                                                 
31  ‹http://www.debian.org/social_contract›. 
32  Ibidem.  Incidentally, from the DFSG derives the Open Source Definition. 
33  ‹http://www.debian.org/devel/constitution.en.html›. 
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abstract – levels of the design hierarchy.  Because it takes place at an abstract 

level, direction in this kind of project plays the role of a (lean) interface among 

the modular parts rather than of a systemic meddler in an interconnected 

system.34  This direction often rests with Project Leaders and core groups of 

programmers.  “The Debian leadership,” for instance, “checks to ensure that 

each package is assembled correctly and that system as a whole is solid; the 

end result is a set of packages that, though developed and maintained by 

many different individuals, are as consistent and as professionally 

constructed as if they were developed by a single person or closely-knit 

group, but without the limitations imposed by centralized development” 

(Murdock 1994b). 

In terms of our earlier distinction between the corporate model and the 

spontaneous model, the need for performance and rapid adaptability would 

tend to militate in the direction of the corporate (Langlois 1988).  But, as 

pointed out, this does not mean that unsatisfied needs for performance and 

rapid systemic adaptation therefore call for central planning in the socialist 

sense.  In Christiansen’s account, unmet performance needs do always call for 

an integrated corporate structure.  But the network theorist Duncan Watts 

(2004) reminds us that a decentralized structure, with its ability to utilize 

“collective intelligence,” can sometimes be marshaled even in the service of an 

emergency response.  His example is the way the Toyota Corporation 

                                                 
34  For a more general argument that the degree of abstractness of rules is the fundamental 

difference between designed and spontaneous orders, see Langlois (1995). 
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responded in 1997 when the sole plant supplying a crucial component burned 

to the ground, threatening to bring production of an entire model to a halt.  

Rather than attempting to create centrally a new plant to make the 

component, Toyota instead tapped the knowledge and capabilities of a large 

number of its divisions and outside supplier with the intent of generating 

rapid trial-and-error learning.  “More than 200 companies reorganized 

themselves and each other to develop at least six entirely different production 

processes, each using different tools, different engineering approaches, and 

different organizational arrangements. Virtually every aspect of the recovery 

effort had to be designed and executed on the fly, with engineers and 

managers sharing their successes and failures alike across departmental 

boundaries, and even between firms that in normal times would be direct 

competitors” (Watts 2004).  Within a week, production of the component was 

back to pre-fire levels. 
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Clearly, of course, this response was not spontaneous in our sense.  It 

was centrally directed and coordinated to a large extent.  But neither was it 

the standard corporate model.  Rather, it is an example of what we call a 

hybrid model – one that has elements both of spontaneous, self-selected 

production and of central design.  In essence, a hybrid model is an attempt to 

get around the tradeoffs summarized in Figure 3.  Such hybrid models are 

 
 Modularity Integrality 

Communications costs A C 

Economies of 
substitution A C 

“Collective intelligence” A C 

Set-up costs C A 

Fine tuning B B 

Systemic adaptation A B 

 
Figure 3.  Grading the alternatives. 
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actually far more typical of open-source software development than are 

genuinely voluntary or spontaneous ones.  Indeed, perhaps all models of 

open-source software development are hybrid models. 

Conclusion. 

The organizational economics of open-source collaboration (collective 

invention, the professions, open science, etc.) are not simple.  In light of this, 

we propose that an understanding of such collaboration requires reasoning 

according to the principles of the emerging economic theory of modularity.  

These principles allow us to clarify under which circumstances, and in what 

quantities, central design is necessary, and when a genuinely decentralized 

design can lead to a well-ordered and effective structure.  Such clarification 

leads us to suggest that open-source collaboration, including the software 

one, is a hybrid form of organization that presents elements of both the bazaar 

and cathedral ideal types.  More precisely, we argue that open-source 

collaboration is a type of intellectual division of labor based on the exchange 

of effort rather than of products where suppliers of effort self-identify like 

suppliers of products in a market rather than accepting assignments like 

employees in a firm. 
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