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Abstract In standard regression analysis the relationship between the (response)
variable and a set of (explanatory) variables is investigated. In the classical framework
the response is affected by probabilistic uncertainty (randomness) and, thus, treated
as a random variable. However, the data can also be subjected to other kinds of uncer-
tainty such as imprecision. A possible way to manage all of these uncertainties is
represented by the concept of fuzzy random variable (FRV). The most common class
of FRVs is the L R family (L R FRV), which allows us to express every FRV in terms of
three random variables, namely, the center, the left spread and the right spread. In this
work, limiting our attention to the L R FRV class, we consider the linear regression
problem in the presence of one or more imprecise random elements. The procedure
for estimating the model parameters and the determination coefficient are discussed
and the hypothesis testing problem is addressed following a bootstrap approach. Fur-
thermore, in order to illustrate how the proposed model works in practice, the results
of a real-life example are given together with a comparison with those obtained by
applying classical regression analysis.

Keywords L R fuzzy data · Regression models · Least squares approach ·
Bootstrap procedure

1 Introduction

In several situations the description of real world phenomena can be done by using
numerical values. However, in some cases, it may happen that the available informa-
tion is affected by imprecision. A possible way to cope with imprecision is represented
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by fuzzy set theory (Zadeh 1965). This allows us to express imprecise information in
terms of fuzzy sets (see, for instance, Näther and Wünsche 2007; Arnold and Stahlecker
2010; Ramos-Guajardo et al. 2010; Arefi et al. 2011). In contrast with the ‘black and
white’ nature of classical sets (given a universe of values U , an element x ∈ U either
belongs or does not belong to the classical set, say A ⊆ U ), fuzzy sets are character-
ized by a ‘gray scale’ nature allowing us to express a degree according to which an
element x belongs to the fuzzy set Ã ⊆ U , where the symbol tilde is used to denote
that a fuzzy set is involved. Such a degree, usually called membership function of
x ∈ U in Ã and denoted by μ Ã(x), ranges from 0 (complete non-membership) to 1
(complete membership). For instance, if we are interested in managing the attribute
“bad” in terms of fuzzy numbers (fuzzy set Ã), we can say that, in the scale [0,100]
(universe U ), the term “bad” corresponds to a fuzzy set in the interval [20, 45]. This
means that, within these values, the membership function takes values strictly higher
than zero. The higher (and closer to one) μ Ã(x) is, the better x ∈ U describes the term
“bad”. For instance, μ

˜A (26) = 0.9 is the degree of truth (0.9) of “bad” concerning
number 26 (26 characterizes “bad” with a degree equal to 0.9).

It should be underlined that there are, at least, two different interpretations of a
fuzzy datum and, therefore, of a fuzzy variable. One point of view consists in look-
ing at a fuzzy datum as a convenient representation of an underlying crisp datum,
whenever one does not have sufficient information for singling it out, therefore being
compelled to describe it with some imprecision. In this case (see, for instance, Kruse
and Meyer 1987), the two components (the ill-known crisp datum and its imprecision)
need a different treatment, due to their distinct nature. An opposite view of fuzzy
datum, followed in this paper, looks at the imprecision embodied in it as an intrinsic
property. In this case the membership function should be considered as a whole and
dealt with as an entity in itself, with reference to both its mathematical representation
and its utilization within a statistical model. This is, for instance, the view hold by
Puri and Ralescu (1986) when they introduced the notion of Fuzzy Random Variable
(FRV). The need for FRVs arises when the data are not only affected by imprecision
but also by randomness. Imprecision and randomness are different sources of uncer-
tainty, which may affect the data. They are not exclusive but can occur together. See,
for more details about the different sources of uncertainty, Klir (2006).

In this work we aim at investigating the linear regression problem when the data
are random and imprecise managing them as FRVs. In the literature, there exist sev-
eral works devoted to the linear regression problem for imprecise data. At least three
approaches can be distinguished. The first one is the possibilistic approach. Origi-
nally introduced by Tanaka et al. (1982), its basic idea is that the regression model
is intrinsically fuzzy because there does not exist a “true” relationship between the
response variable and the explanatory ones. This is done by detecting fuzzy regression
coefficients such that the fuzziness of the estimated response variable is minimized.
Other works about possibilistic regression can be found in, e.g., Tanaka and Watada
(1988); Tanaka et al. (1995) and Guo and Tanaka (2006). Another approach is the
least squares one, in which a suitable dissimilarity measure between the observed
and the estimated response variable must be introduced and the model parameters
are estimated by minimizing such a dissimilarity measure. See, for instance, Celminš
(1987); Diamond (1988); Chang and Lee (1996); D’Urso (2003); Coppi et al. (2006);
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Bargiela et al. (2007); Lu and Wang (2009). Generally speaking, the possibilistic
and least squares approaches could also be used when the fuzzy data are affected by
randomness. Unfortunately, this is simply done by overlooking it. The third line of
research, which we may call fuzzy-probabilistic approach, consists in explicitly taking
into account randomness for estimating the regression parameters and assessing their
statistical properties. Works belonging to this approach can be found in, e.g., Körner
and Näther (1998); Krätschmer (2006a,b); Näther (2006); González-Rodríguez et al.
(2009); Ferraro et al. (2010). Note, however, that a few assignments of the previously
mentioned papers to a given approach could be debatable.

In this paper we approach the linear regression problem from the fuzzy-probabilistic
viewpoint. Limiting our attention to the so-called L R fuzzy family, this is achieved
by proposing a new linear regression model exploiting the potentialities of FRVs. As
we will see, the parameters can be expressed in terms of the moments of real random
variables. In order to estimate the parameters a closed form solution will be provided
and their statistical properties will be investigated. The paper is organized as follows.
In the next section, the concepts of (L R) fuzzy sets and FRVs are recalled. Section 3
focuses on the proposed linear regression model. In Sect. 4 we discuss the estimation
of the model parameters. In Sect. 5, by using a bootstrap approach, the hypothesis
testing problem is addressed and a simulation experiment is carried out in order to
evaluate the adequacy of the bootstrap tests. Section 6 contains the results of a real-
life application concerning collected fuzzy data about the evaluation of a course by a
sample of students along with a comparison of the performance of the proposed model
with the one of classical regression. Finally, some concluding remarks are made.

2 Preliminaries

We already saw that a fuzzy set ˜A is a subset of the universe U defined through the
so-called membership function μ

˜A (x) ,∀x ∈ U , expressing the extent to which x
belongs to ˜A. Such a degree ranges from 0 (complete non-membership) to 1 (com-
plete membership). A particular class of fuzzy sets is the LR family, whose members
are the so-called LR fuzzy numbers. The space of the LR fuzzy numbers is denoted by
FL R . A nice property of the LR family is that its elements can be determined uniquely
in terms of the mapping s : FL R → R

3, i.e., s(˜A) = s
˜A = (Am, Al , Ar ). This implies

that ˜A can be expressed by means of three real-valued parameters, namely, the center
(Am) and the (non-negative) left and right spreads (Al and Ar , respectively). In what
follows it is indistinctly used ˜A ∈ FL R or (Am, Al , Ar ).

The arithmetics considered in FL R are the natural extensions of the Minkowski
sum and the product by a positive scalar for interval. Going into detail, the sum of ˜A
and ˜B in FL R is the L R fuzzy number ˜A + ˜B so that

(Am, Al , Ar ) + (Bm, Bl , Br ) = (Am + Bm, Al + Bl , Ar + Br )

and the product of ˜A ∈ FL R by a scalar γ > 0 is

γ (Am, Al , Ar ) = (γ Am, γ Al , γ Ar ).
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Fig. 1 Examples of LR fuzzy numbers

The membership function of ˜A ∈ FL R can be written as

μ
˜A(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

L
(

Am−x
Al

)

x ≤ Am, Al > 0,

1{Am }(x) x ≤ Am, Al = 0,

R
(

x−Am

Ar

)

x > Am, Ar > 0,

0 x > Am, Ar = 0,

(1)

where the functions L , R : R → [0, 1] are convex upper semi-continuous functions
so that L(0) = R(0) = 1 and L(z) = R(z) = 0, for all z ∈ R \ [0, 1], and 1I is the
indicator function of a set I (see Fig. 1).
˜A is a triangular fuzzy number if (1) takes the form

μ
˜A (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 x ≤ Am − Al ,

1 − Am−x
Al Am − Al ≤ x ≤ Am,

1 − x−Am

Ar Am ≤ x ≤ Am + Ar ,

0 x ≥ Am + Ar .

(2)

It is convenient to mention that the functions L and R must be chosen in advance by
the researcher and, in general, the same shape functions are fixed for all the available
data. The role of such functions is to take into account suitably the level of impreci-
sion embodied in the data. The α-level set (0 < α ≤ 1) of ˜A can be defined as the
non-empty compact convex subset of R, Aα , such that Aα = {

x ∈ U : μ
˜A(x) ≥ α

}

.
If α = 0, A0 = cl({x ∈ R : μ

˜A(x) > 0}). For more details one can refer to
Zimmermann (2001). With particular reference to fuzzy arithmetics with L R fuzzy
numbers see Hanss (2005).

A distance for L R fuzzy numbers has been introduced by Yang and Ko (1996). It
is

D2
L R(˜A, ˜B) = (Am − Bm)2 + [(Am − λAl) − (Bm − λBl)]2

+[(Am + ρ Ar ) − (Bm + ρBr )]2. (3)
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In (3), the parameters λ = ∫ 1
0 L−1(ω)dω and ρ = ∫ 1

0 R−1(ω)dω play the role of
taking into account the shape of the membership function. For instance, if the mem-
bership function takes the form reported in (2), it is λ = ρ = 1

2 . As it will be clear,
for what follows it is necessary to embed the space FL R into R

3 by preserving the
metric. For this reason a generalization of the Yang and Ko metric has been derived
(see Ferraro et al. 2010). Given a = (a1, a2, a3) and b = (b1, b2, b3) ∈ R

3, it is

D2
λρ(a, b) = (a1 − b1)

2 + ((a1 − λa2) − (b1 − λb2))
2

+ ((a1 + ρa3) − (b1 + ρb3))
2, (4)

where λ, ρ ∈ R
+. The distance in (4) will be used in the following as a tool for

quantifying errors in the regression model we are going to introduce.
The definition of α-level set is connected to that of FRV in Puri and Ralescu’s sense.

Note that in the following we limit our attention to FRVs of LR type (in brief L R FRV).
Let (�, A, P) be a probability space, an L R FRV is a mapping ˜X : � → FL R such
that the α-level set Xα is a random compact convex set for any α ∈ [0, 1] (see, for
further details, Puri and Ralescu 1985, 1986). As for non-fuzzy random variables, it is
possible to determine the moments of a FRV. The expectation of an L R FRV ˜X , E(˜X),
is the fuzzy set in FL R (E Xm, E Xl , E Xr ). With respect to (3) the variance of ˜X is
σ 2

˜X
= var(˜X) = E[(D2

L R(˜X , E(˜X))] (see Ferraro et al. 2010).

3 The linear regression model for L R FRVs

The available information refers to an L R fuzzy response variable ˜Y and p L R fuzzy
explanatory variables ˜X1, ˜X2, . . . , ˜X p observed on a random sample of n statistical
units, {˜Yi , ˜X1i , ˜X2i , . . . , ˜X pi }i=1,...,n . We are interested in analyzing the relationship
between ˜Y and ˜X1, ˜X2, . . . , ˜X p. We consider L and R as fixed functions, so the fuzzy
response and the fuzzy explanatory variables are determined only by means of three
parameters, namely the center and the left and right spreads. The idea is to model the
center and the spreads of ˜Y by means of the centers and the spreads of ˜X1, ˜X2, . . . , ˜X p.
However, in doing so, attention should be paid to the non-negativity of the spreads of
˜Y . To overcome this problem one can either solve a non-negative regression problem
(see, e.g., Lawson and Hanson 1995) or model a transform of the spreads of ˜Y (the new
“response variable”) by means of the centers and the spreads of ˜X1, ˜X2, . . . , ˜X p. The
former choice is a numerical procedure yielding a dependence between the errors and
the explanatory variables (Liew 1976) and not allowing to formalize a realistic theo-
retical model and to obtain a complete analytical solution. For this reason we propose
to consider the latter choice introducing two invertible functions g : (0,+∞) −→ R

and h : (0,+∞) −→ R. The linear regression model can be formalized as

⎧

⎨

⎩

Y m = X a
′
m + bm + εm,

g(Y l) = X a
′
l + bl + εl ,

h(Y r ) = X a
′
r + br + εr ,

(5)
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where X = (Xm
1 , Xl

1, Xr
1, . . . , Xm

p , Xl
p, Xr

p) is the row-vector of lenght 3p of all the
components of the explanatory variables, εm, εl and εr are real-valued random vari-
ables with E(εm |X) = E(εl |X) = E(εr |X) = 0, am = (a1

mm, a1
ml , a1

mr , . . . , a p
mm,

a p
ml , a p

mr ), al = (a1
lm, a1

ll , a1
lr , . . . , a p

lm, a p
ll , a p

lr ) and ar = (a1
rm, a1

rl , a1
rr , . . . , a p

rm, a p
rl ,

a p
rr ) are row-vectors of length 3p of the parameters related to X . The generic at

i j is

the regression coefficient between the component i ∈ {m, l, r} of ˜Y (where m, l and
r refer to the center Y m and the transforms of the spreads g(Y l) and h(Y r ), respec-
tively) and the component j ∈ {m, l, r} of the explanatory variables ˜Xt , t = 1, . . . , p,
(where m, l and r refer to the corresponding center, left spread and right spread). For
example, a3

mr represents the relationship between the right spread of the explanatory
variable ˜X3(Xr

3) and the center of the response, Y m . Finally, bm, bl , br denote the
intercepts. Therefore, by means of (5), we aim at studying the relationship between
the response and the explanatory variables taking into account also the information
provided by the spreads of the explanatory variables, which are usually arbitrarily
ignored.

The covariance matrix of X is denoted by ΣX = E[(X − E X)
′
(X − E X)] and

Σ stands for the covariance matrix of (εm, εl , εr ), with variances, σ 2
εm

, σ 2
εl

and σ 2
εr

,
strictly positive and finite. The population parameters can then be expressed, as usual,
in terms of some moments related to real random variables. We get

a
′
m = {

ΣX
}−1

E
[

(X − E X)
′
(Y m − EY m)

]

,

a
′
l = {

ΣX
}−1

E
[

(X − E X)
′
(g(Y l) − Eg(Y l))

]

,

a
′
r = {

ΣX
}−1

E
[

(X − E X)
′
(h(Y r ) − Eh(Y r ))

]

,

bm = E(Y m |X) − E X
{

ΣX
}−1

E
[

(X − E X)
′
(Y m − EY m)

]

,

bl = E(g(Y l)|X) − E X
{

ΣX
}−1

E
[

(X − E X)
′
(g(Y l) − Eg(Y l))

]

,

br = E(h(Y r )|X) − E X
{

ΣX
}−1

E
[

(X − E X)
′
(h(Y r ) − Eh(Y r ))

]

.

The above expressions are useful to prove some statistical properties of the estimators
introduced in the next section.

Remark 1 When the explanatory variables are real-valued, the model in (5) reduces
to the regression model proposed by Ferraro et al. (2010).

3.1 The determination coefficient

Since the total variation of the response can be written in terms of variances and covari-
ances of real random variables, by taking advantage of their properties it can be decom-
posed in the variation not depending on the model and that explained by the model. In
particular, let ˜Y and ˜X1, ˜X2, . . . , ˜X p be L R FRVs satisfying the linear model in (5)
so that the errors are uncorrelated with X , by indicating Y T = (Y m, g(Y l), h(Y r )),
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we obtain

E
[

D2
λρ(Y T , E(Y T ))

]

= E
[

D2
λρ(Y T , E(Y T |X))

]

+E
[

D2
λρ(E(Y T |X), E(Y T ))

]

. (6)

Based on the decomposition of the total variation (6), it is possible to define the fol-
lowing determination coefficient.

Definition 1 Let ˜Y be the LR FRV of the linear model in (5), the determination coef-
ficient can be defined as

R2 =
E

[

D2
λρ(E(Y T |X), E(Y T ))

]

E
[

D2
λρ(Y T , E(Y T ))

] = 1 −
E

[

D2
λρ(Y T , E(Y T |X))

]

E
[

D2
λρ(Y T , E(Y T ))

] . (7)

This coefficient measures the degree of linear relationship. As in the classical case,
it takes values in [0,1]. Concerning the spreads, model (5) is linear in the transformed
scales represented by functions g and h, so R2 refers specifically to the chosen scales.
When R2 = 0 the regression model is not able to explain the variability of the response
variable (linear independence). Conversely, R2 = 1 implies that the regression model
accounts for the whole variability of the response variable (perfect fit). The closer R2

is to 1, the better the model explains the variability of the response variable.

4 The estimation problem

4.1 Estimation of the regression parameters

The estimation problem of the regression parameters is faced by means of the Least
Squares (LS) criterion. Accordingly, the parameters of model (5) are estimated by
minimizing the sum of the squared distances between the observed and theoretical
values of the response variable. However, as already noted, suitable transforms of the
spreads are considered in (5). This allows us to use (4) in the objective function of the
problem. Therefore, the LS problem consists in looking for âm, âl , âr ,

̂bm,̂bl and ̂br

such that

�2
λρ = D2

λρ((Y m, g(Y l), h(Y r )), ((Y m)∗, g(Y l)∗, h(Y r )∗))

=
n

∑

i=1

D2
λρ((Y m

i , g(Y l
i ), h(Y r

i )), ((Y m
i )∗, g(Y l

i )
∗, h(Y r

i )∗)) (8)

is minimized, where Y m, g(Y l) and h(Y r ) are the vectors of length n of the observed
values and (Y m)∗ = Xa

′
m +1bm, g(Y l)∗ = Xa

′
l +1bl and h(Y r )∗ = Xa

′
r +1br are the

theoretical ones being X = (X1, X2, . . . , Xn)
′

the n × 3p matrix of the explanatory
variables. Finally 1 is the unit vector of length n.
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Proposition 1 The solution of the LS problem is

â
′
m = (Xc ′

Xc)−1Xc ′
Y mc

,

â
′
l = (Xc ′

Xc)−1Xc ′
g(Y l)c,

â
′
r = (Xc ′

Xc)−1Xc ′
h(Y r )c,

̂bm = Y m − X â
′
m,

̂bl = g(Y l) − X â
′
l ,

̂br = h(Y r ) − X â
′
r ,

where

Y m c = Y m − 1Y m,

g(Y l)c = g(Y l) − 1g(Y l),

h(Y r )c = h(Y r ) − 1h(Y r )

are the centered values of the response variables,

Xc = X − 1 X

is the centered matrix of the explanatory variables and, Y m, g(Y l), h(Y r ) and X
denote, respectively, the sample means of Y m, g(Y l), h(Y r ) and X.

Proof In order to solve the minimization problem in (8) and to find the parameters
estimators, we follow the usual procedure of equating to zero the partial derivatives of
the objective function with respect to (w.r.t.) the parameters to be estimated, although
we have to take into account that the regression parameters are related to some others.

It is easy to show that the objective function in (8) can be rewritten as

�2
λρ = ∥

∥Y m − (Y m)∗
∥

∥

2 +
∥

∥

∥

(

Y m − λg(Y l)
)

−
(

(Y m)∗ − λg(Y l)∗
)∥

∥

∥

2

+ ∥

∥

(

Y m + ρh(Y r )
) − (

(Y m)∗ + ρh(Y r )∗
)∥

∥

2
,

where ‖·‖2 denotes the squared Euclidean norm. After a little algebra, it can be
exploited as

�2
λρ = 3

(

Y m − Xa
′
m − 1bm

)′ (
Y m − Xa

′
m − 1bm

)

+λ2
(

g(Y l) − Xa
′
l − 1bl

)′ (
g(Y l) − Xa

′
l − 1bl

)

+ρ2
(

h(Y r ) − Xa
′
r − 1br

)′ (
h(Y r ) − Xa

′
r − 1br

)

−2λ
(

Y m − Xa
′
m − 1bm

)′ (
g(Y l) − Xa

′
l − 1bl

)
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+2ρ
(

Y m − Xa
′
m − 1bm

)′ (
h(Y r ) − Xa

′
r − 1br

)

. (9)

Starting from the estimation of bl and br , we equate to zero the partial derivatives w.r.t
bl and br , respectively. It is easy to find that the minimum is attained at

bl = g(Y l) − X a
′
l − 1

λ
Y m + 1

λ
X a

′
m + 1

λ
bm, (10)

br = h(Y r ) − X a
′
r + 1

ρ
Y m − 1

ρ
X a

′
m − 1

ρ
bm . (11)

Since bl and br depend on bm , we have to substitute (10) and (11) in (9) before equating
to zero the partial derivative of the objective function w.r.t. bm . As a result, we obtain

bm = Y m − X a
′
m .

Since the parameters bm, bl and br are expressed in terms of am, al and ar , to go on
with the estimation procedure it is important to take this into account by substituting
bm, bl and br in the objective function.
We consider the centered vectors Y m c, g(Y l)c, h(Y r )c and the centered matrix Xc to
make it simpler to analyze the objective function that can be expressed as

�2
λρ = 3

(

Y mc − Xca
′
m

)′ (
Y m c − Xca

′
m

)

+λ2
(

g(Y l)c − Xca
′
l

)′ (
g(Y l)c − Xca

′
l

)

+ρ2
(

h(Y r )c − Xca
′
r

)′ (
h(Y r )c − Xca

′
r

)

−2λ(Y m c − Xca
′
m)

′ (
g(Y l)c − Xca

′
l

)

+2ρ(Y mc − Xca
′
m)

′ (
h(Y r )c − Xca

′
r

)

. (12)

Following the usual reasoning it is easy to check that

a
′
l = (Xc ′

Xc)−1Xc ′
g(Y l)c − 1

λ
(Xc ′

Xc)−1Xc ′
Y m c + 1

λ
a

′
m, (13)

a
′
r = (Xc ′

Xc)−1Xc ′
h(Y r )c + 1

ρ
(Xc ′

Xc)−1Xc ′
Y m c − 1

ρ
a

′
m . (14)

The last step is the estimation of am . Since this vector appears in (13) and (14) we
need to substitute (13) and (14) in (12). By equating to 0 the partial derivative of (12)
w.r.t. am we get

â
′
m = (Xc ′

Xc)−1Xc ′
Y m c

.
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By making all the appropriate substitutions we also find

â
′
l = (Xc ′

Xc)−1Xc ′
g(Y l)c,

â
′
r = (Xc ′

Xc)−1Xc ′
h(Y r )c,

̂bm = Y m − X â
′
m,

̂bl = g(Y l) − X â
′
l ,

̂br = h(Y r ) − X â
′
r .

�
Remark 2 Since the L S estimators are written in terms of sample moments and tak-
ing into account the expression of the theoretical values, it can be shown that they are
unbiased and strongly consistent.

Remark 3 Once the parameters of the model are determined, the estimated values of
the response variable can be computed as follows. First of all, the estimated centers are
̂Y m

i = Xi â
′
m +̂bm, i = 1, . . . , n. The estimated transforms of the left and right spreads

are ̂g(Y l
i ) = Xi â

′
l + ̂bl and ĥ(Y r

i ) = Xi â
′
r + ̂br , respectively, from which we get the

estimated spreads ̂Y l
i = g−1(Xi â

′
l + ̂bl) and ̂Y r

i = h−1(Xi â
′
r + ̂br ), respectively,

i = 1, . . . , n. Therefore, the estimated response variable is an L R fuzzy number and
the shape of its membership function is inherited from that of the observed response
variable.

4.2 Estimation of the determination coefficient

In order to estimate the determination coefficient, it is worth introducing the next
proposition about the decomposition of the total sum of squares.

Proposition 2 Let ˜Y and ˜X1, ˜X2, . . . , ˜X p be L R FRVs satisfying the linear model in
(5) observed on n statistical units, {˜Yi , ˜X1i ,

˜X2i , . . . ,
˜X pi }i=1,...,n. The total sum of

squares, SST, is equal to the sum of the residual sum of squares, SSE, and the regression
sum of squares, SSR, that is,

SST = SSE + SS R, (15)

where

SST =
∥

∥

∥Y m − 1 Y m
∥

∥

∥

2 +
∥

∥

∥

(

Y m − λg(Y l)
)

−
(

1 Y m − λ1 g(Y l)
)∥

∥

∥

2

+
∥

∥

∥

(

Y m + ρh(Y r )
) −

(

1 Y m + ρ1 h(Y r )
)∥

∥

∥

2
,

SSE =
∥

∥

∥Y m − ̂Y m
∥

∥

∥

2 +
∥

∥

∥

(

Y m − λg(Y l)
)

−
(

̂Y m − λ ̂g(Y l)
)∥

∥

∥

2

+
∥

∥

∥

(

Y m + ρh(Y r )
) −

(

̂Y m + ρĥ(Y r )
)∥

∥

∥

2
,
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SS R =
∥

∥

∥

̂Y m − 1 Y m
∥

∥

∥

2 +
∥

∥

∥

(

̂Y m − λ ̂g(Y l)
)

−
(

1 Y m − λ1 g(Y l)
)∥

∥

∥

2

+
∥

∥

∥

(

̂Y m + ρĥ(Y r )
)

−
(

1 Y m + ρ1 h(Y r )
)∥

∥

∥

2
,

with ̂Y m, ̂g(Y l), ĥ(Y r ) being the vectors of the estimated values, that is,

̂Y m = Xâ
′
m + 1̂bm, ̂g(Y l) = Xâ

′
l + 1̂bl , ĥ(Y r ) = Xâ

′
r + 1̂br .

Proof The total sum of squares can be written as

SST = 3
(

Y m − 1 Y m
)′ (

Y m − 1 Y m
)

+λ2
(

g(Y l) − 1 g(Y l)
)′ (

g(Y l) − 1 g(Y l)
)

+ρ2
(

h(Y r ) − 1 h(Y r )
)′ (

h(Y r ) − 1 h(Y r )
)

−2λ
(

Y m − 1 Y m
)′ (

g(Y l) − 1 g(Y l)
)

+2ρ
(

Y m − 1 Y m
)′ (

h(Y r ) − 1 h(Y r )
)

. (16)

By subtracting and adding ̂Y m in
(

Y m −1 Y m
)

, we get that
(

Y m −1 Y m
)′ (

Y m −1 Y m
)

is equal to

(

Y m − ̂Y m + ̂Y m − 1 Y m
)′ (

Y m − ̂Y m + ̂Y m − 1 Y m
)

=
(

Y m − ̂Y m
)′ (

Y m − ̂Y m
)

+
(

̂Y m − 1 Y m
)′ (

̂Y m − 1 Y m
)

(17)

+2
(

Y m − ̂Y m
)′ (

̂Y m − 1 Y m
)

. (18)

The two terms of (17) are the first terms of SSE and SSR, respectively. Now we
prove that the term in (18) is equal to 0. Since ̂Y m = Xâ

′
m + 1̂bm where â

′
m =

(Xc ′
Xc)−1Xc ′

Y m c and ̂bm = Y m − X â
′
m , it results

(

Y m − ̂Y m
)′ (

̂Y m − 1 Y m
)

=
(

Y m − Xâ
′
m − 1 Y m + 1 X â

′
m

)′ (
Xâ

′
m + 1 Y m − 1 X â

′
m − 1 Y m

)

=
(

Y mc − Xcâ
′
m

)′ (
Xcâ

′
m

)

= âmXcY mc − âmXcY m c = 0.

By using the same procedure for the other terms in (16), namely by subtracting and
adding the corresponding estimate in each term, the thesis follows. �
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Definition 2 Let ˜Y and ˜X1, ˜X2, . . . , ˜X p be L R FRVs satisfying the linear model in
(5) observed on n statistical units, {˜Yi , ˜X1i , ˜X2i , . . . , ˜X pi }i=1,...,n . The estimator of
the determination coefficient R2 is

̂R2 = 1 − SSE

SST
= SS R

SST
.

It represents the part of the total sum of squares explained by the regression model,
so it can be considered as a goodness-of-fit measure and it takes values in [0, 1].
Furthermore, it can be shown that ̂R2 is a strong consistent estimator.

5 Hypothesis testing

5.1 Hypothesis testing on the regression parameters

The parameters am, al and ar express the strength of the relationship between the
response variable and the explanatory ones. Testing the explicative power of X con-
sists in testing that the vectors of coefficients am, al and ar are equal to 0. In general
it is possible to test the null hypothesis

H0 :
⎛

⎝

a
′
m

a
′
l

a
′
r

⎞

⎠ =
⎛

⎜

⎝

k
′
m

k
′
l

k
′
r

⎞

⎟

⎠

against the alternative

H1 :
⎛

⎝

a
′
m

a
′
l

a
′
r

⎞

⎠ �=
⎛

⎜

⎝

k
′
m

k
′
l

k
′
r

⎞

⎟

⎠
,

where km, kl , and kr are real-valued vectors. Starting from Ferraro et al. (2010), the
test statistic to be used is Tn = V ′

n Vn , where

Vn = √
n

⎛

⎜

⎝

â
′
m − k

′
m

â
′
l − k

′
l

â
′
r − k

′
r

⎞

⎟

⎠
.

It is important to stress that, since there are not generalized models for FRVs that
can be used in practice and an asymptotic test works suitably for large size sam-
ples, the hypothesis testing problem is approached by bootstrapping (see, for more
details, Efron and Tibshirani 1993). The non-parametric bootstrap test is based on the
following algorithm:
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Bootstrap algorithm

Step 1: Compute the estimates âm, âl , âr and the value of the statistic

Tn = V ′
n Vn .

Step 2: Compute the bootstrap population fulfilling the null hypothesis,

{

(Xi , Zm
i , Zl

i , Zr
i )

}

i=1,...,n
, (19)

where

Zm
i = Y m

i − Xi â
′
m + Xi k

′
m,

Zl
i = g(Y l

i ) − Xi â
′
l + Xi k

′
l ,

Zr
i = h(Y r

i ) − Xi â
′
r + Xi k

′
r .

Step 3: Draw a sample of size n with replacement

{

(X∗
i , Zm

i
∗
, Zl

i
∗
, Zr

i
∗
)
}

i=1,...,n
,

from the bootstrap population (19).
Step 4: Compute the bootstrap estimates â∗

m, â∗
l , â∗

r and the value of the bootstrap
statistic

T ∗
n = V ∗

n
′
V ∗

n .

Step 5: Repeat Steps 3 and 4 a large number B of times to get a set of B estimators,
denoted by

{

T ∗
n1, . . . , T ∗

nB

}

.
Step 6: Compute the bootstrap p-value as the proportion of values in

{

T ∗
n1, . . . , T ∗

nB

}

being greater than Tn .

5.2 Hypothesis testing on a single parameter

A particular case of the above hypothesis test on the regression parameters is referred
to testing the significance of a single regression parameter. In this way it is possible
to check if a given component of the explanatory variables is significantly related
to the L R fuzzy response variable. For example, let ˜Y and ˜X1, ˜X2, . . . , ˜X p be L R
FRVs satisfying the linear model in (5), to test the significance of the left spread of
the explanatory variable ˜X1 w.r.t. the center of the response variable ˜Y , it is tested the
following hypothesis

H0 : a1
ml = 0
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against the alternative

H1 : a1
ml �= 0.

As for the previous hypothesis test, according to the bootstrap approach, the above
described algorithm can be adopted. The most relevant difference consists in consid-
ering a bootstrap population

{

(Xi , Zm
i , Zl

i , Zr
i )

}

i=1,...,n fulfilling the null hypothesis
which is now

Zm
i = Y m

i − â1
ml Xl

1,

Zl
i = g(Y l

i ),

Zr
i = h(Y r

i ).

The significance of the intercepts can also be tested by suitable modifications of the
bootstrap population fulfilling the null hypothesis and of the test statistic.

5.3 Linear independence test

In this section a bootstrap linear independence test is introduced on the basis of Ferraro
et al. (2011). To test the null hypothesis H0 : R2 = 0 against the alternative H1 : R2 >0,
the test statistic Tn = n ̂R2 is used. Once again, a bootstrap algorithm can be adopted.
To obtain a bootstrap population fulfilling the null hypothesis, the residual variables
Zm = Y m − X â

′
m, Zl = g(Y l)− X â

′
l and Zr = h(Y r )− X â

′
r must be considered. A

sample of size n with replacement
{

(X∗
i , Zm

i
∗, Zl

i
∗
, Zr

i
∗)

}

i=1,...,n
from the bootstrap

population is drawn and the bootstrap statistic to be used is

T ∗
n = n

∑n
i=1 D2

λρ(
̂Z∗

i
T , Z∗T )

σ 2
Y T

,

where Z∗T
i = (Zm

i
∗, Zl

i
∗
, Zr

i
∗).

5.4 Simulation study

Several bootstrap algorithms have been proposed to obtain bootstrap p-values for
testing hypotheses about the determination coefficient and the regression parameters
of (5). By means of a simulation experiment we aim at investigating whether the
obtained p-values work as such, that is, if we find a bootstrap p-value equal to 0.05
we would like to conclude from this that the true p-value (i.e., that obtained if we
knew the distribution function) is 0.05. The simulation study concerns the test on a
single regression parameter and the linear independence test. During the experiment
we employ B = 1,000 replications of the bootstrap estimator and we carry out 10.000
iterations of the test at three different nominal significance levels (α = 0.01, 0.05, 0.1)
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Table 1 Empirical percentages
of rejection under the hypothesis
H0 : a1

mm = 0

n \ α × 100 1 5 10

30 0.75 4.13 8.81

50 1.06 5.67 10.14

100 1.28 5.55 10.85

200 1.28 5.42 10.57

300 1.16 5.62 10.12

Table 2 Empirical percentages
of rejection under the hypothesis
of linear independence

n \ α × 100 1 5 10

30 0.31 2.6 6.87

50 0.79 4.74 9.59

100 1.13 5.65 10.63

200 1.31 5.35 10.77

300 1.09 4.92 10.01

for different sample sizes (n = 30, 50, 100, 200, 300). We consider the case of two
L R fuzzy explanatory variables ˜X1 and ˜X2. We deal with the following real random
variables: Xm

1 and Xm
2 , behaving as N (0, 1) random variables, Xl

1 and Xl
2 as χ2

1 , Xr
1

and Xr
2 as χ2

2 , Ym as N (0, 1), Y2 = g(Yl) and Y3 = h(Yr ) as N (0, 0.5).
With respect to the hypothesis testing on a single parameter, we want to test H0 :

a1
mm = 0 against the alternative H1 : a1

mm �= 0. The empirical percentages of rejec-
tion under H0 are given in Table 1. With respect to the linear independence test
(H0 : R2 = 0 against H1 : R2 > 0), the empirical percentages of rejection under
H0 are reported in Table 2. All in all, from Tables 1 and 2 we can conclude that the
bootstrap p-values are fairly good approximations of the true p-values in most cases.
As one may expect, this especially holds for increasing values of n (n > 30).

6 A real-case study

In order to evaluate the students’ satisfaction of a course their subjective judgements/
perceptions are observed on a sample of n = 64 students. To formalize the problem
we define � = {sets o f students that attend the course} endowed with the Borel
σ -field. Since the observations are arbitrarily chosen, P is the uniform distribution
over �. For any i ∈ �, four characteristics are observed. These are the overall assess-
ment of the course, the assessment of the teaching staff, the assessment of the course
content and the average mark (single-valued variable). We assume that the students’
judgements/perceptions (first three variables) are intrinsically imprecise. Therefore,
we manage them in terms of fuzzy variables, in particular of triangular type (hence
λ = ρ = 1/2). We obtain membership functions by collecting them in a direct way.
In fact, to represent the subjective judgements/perceptions, the students are invited
to draw a triangular fuzzy number for every characteristic on a segment from 0 (dis-
satisfaction) to 100 (full satisfaction). More specifically, the students are informed to
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Table 3 Overall assessment of the course (Y m , Y l , Y r ), assessment of the teaching staff (Xm
1 , Xl

1, Xr
1),

assessment of the course content (Xm
2 , Xl

2, Xr
2) of the course, average mark (X3)

Y m Y l Y r Xm
1 Xl

1 Xr
1 Xm

2 Xl
2 Xr

2 X3

93 7 7 87 9 7 75 10 8 27

90 10 10 80 10 10 60 10 30 26

80 20 10 80 10 20 40 20 13 27

76 18 14 77 17 15 50 15 15 28

52 11 12 75 10 5 88 18 2 28.5

90 10 10 86 12 11 80 13 17 28.5

90 10 10 94 7 6 67 10 14 27.5

80 10 20 90 10 10 81 16 19 28

80 10 10 80 10 10 80 10 10 28

70 10 15 80 10 20 50 10 10 28.7

80 3 3 93 4 7 72 6 8 29

.. .. .. .. .. .. .. .. .. ..

choose the support of the fuzzy datum (0-level set) as the set of all values that the
student considers to be compatible with her/his subjective judgement/perception and
the center as the most compatible one (1- level set). One may wonder whether it is
fruitful drawing a fuzzy set rather than simply choosing a single value expressing the
compatibility with the individual judgement/perception. In our way of thinking there
does not exist a single value able to well characterize the individual judgement/per-
ception. In fact, the students may not feel that a single value is capable to fully capture
her (his) judgement/perception. Also note that this way of fuzzifying has been already
suggested by González-Rodríguez et al. (2011).

For analyzing the linear relationship of the overall assessment of the course (˜Y )
on the assessment of the teaching staff (˜X1), the assessment of the course contents
(˜X2) and the average mark (X3) (see Table 3), the proposed linear regression model
is employed.

To overcome the problem about the non-negativity of spreads estimates, we use
the logarithmic transformation (that is, g = h = ln). Through the L S procedure we
obtain the following estimated model

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

̂Y m = 1.08Xm
1 + 0.13Xl

1 − 0.07Xr
1

−0.17Xm
2 − 0.89Xl

2 + 0.66Xr
2 − 1.12X3 + 34.06

̂Y l = exp(0.01Xm
1 + 0.02Xl

1 + 0.02Xr
1

+0.00Xm
2 + 0.03Xl

2 + 0.01Xr
2 − 0.00X3 + 0.67)

̂Y r = exp(0.00Xm
1 + 0.03Xl

1 − 0.02Xr
1

−0.01Xm
2 + 0.03Xl

2 + 0.01Xr
2 + 0.04X3 + 1.01)

(20)

For the estimated model it results ̂R2 = 0.77, hence approximately 77% of the total
variation of the overall assessment of the course is explained by the model. Fur-
thermore, by applying the bootstrap procedure to test the linear independence (with
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Table 4 Hypothesis testing on each regression parameter

p−value p−value p−value

a1
mm 0 a1

lm 0.094 a1
rm 0.630

a1
ml 0.721 a1

ll 0.386 a1
rl 0.203

a1
mr 0.753 a1

lr 0.088 a1
rr 0.234

a2
mm 0.036 a2

lm 0.852 a2
rm 0.026

a2
ml 0.0001 a2

ll 0.017 a2
rl 0.091

a2
mr 0 a2

lr 0.149 a2
rr 0.099

a3
m 0.227 a3

l 0.915 a3
r 0.233

bm 0.213 bl 0.419 br 0.334

The underlined values are significant at α = 0.05

B = 1,000) a p-value equal to 0 is obtained, so the null hypothesis should be rejected.
We then test the significance of every single regression parameter by computing the
bootstrap p−values (B = 1,000) given in Table 4.

With respect to the model for the center of ˜Y , we can see that, considering a sig-
nificance level α = 0.05, both the centers of ˜X1 and ˜X2 are significant. As one may
expect, the center of X1 is positively related to the center of the response (a1

mm = 1.08).
Surprisingly, this is not the case for the center of X2(a2

mm = −0.17), namely, as the
assessment of the course contents increases, the overall assessment of the course
decreases. Furthermore, also the spreads of ˜X2 significantly affect the response Y m .
In details, higher values of the left spreads (that is, in case of more imprecision on
the lower values of the assessment of the course content) lead to lower values of the
center of the response (a2

ml = −0.89). The opposite comment holds for the right
spread (a2

mr = 0.66). The models for the left and right spreads of the response provide
additional information about the imprecision of the predicted values. From Table 4 we
can observe that only some of the components of ˜X2 are significantly related to the
transformed spreads of ˜Y . In particular, there exists a significant positive relationship
between the left spread of ˜Y and the one of ˜X2 (a2

ll = 0.03). As the imprecision on the
lower values of ˜X2 increases, the one of ˜Y also increases (in the logarithmic scale).
Moreover, a significant negative relationship between Y r and Xm

2 is found. All in all,
we can conclude that the spreads information of the explanatory variables, which is
usually arbitrarily ignored, plays a relevant role in explaining the response variable ˜Y .
This holds for the model for the center of ˜Y as well as for the models for the spreads.
Therefore, in case of imprecise data, the use of the spreads information seems to be
advisable.

To further investigate the potentialities of our model, we compare the above-
described results with those obtained by applying classical regression. In other words,
we aim at studying whether considering the imprecision of the explanatory variables
makes the proposed model more powerful than the classical regression model, which
ignores the embodied imprecision. We think that the latter is inappropriate since the
analysis of the intrinsic data complexity would be missed, hence leading to conclu-
sions that may be incomplete at best. We now corroborate this claim by inspecting
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the predictive power of the here-proposed regression model in comparison with the
one of classical linear regression. Specifically, in order to check it, we compare the
predicted power of the model related to the center Y m (the first model in (5)) with the
one of the classical regression model with “explanatory variables” Xm

1 , Xm
2 and X3.

We obtain the following estimated model

̂Y m = 1.21Xm
1 − 0.26Xm

2 − 1.59X3 + 41.02

and, by means of classical t-tests, we find that all the explanatory variables are signif-
icant (considering α = 0.05). It is interesting to stress that, once again, the estimated
coefficient of Xm

2 (−0.26) indicates that the assessment of the course contents is nega-
tively related to the overall assessment of the course. In order to evaluate the predictive
power of the models the K -fold cross-validation procedure is performed (see, for more
details, Hastie et al. 2009), where only the significant variables for each model are
considered. It consists in splitting the data into K roughly equal-sized parts. For the
k-th part we calculate the predicted values of the response considering the regres-
sion parameters estimated by using the remaining K − 1 parts. By indicating with
̂Y m(−k(i))

i the fitted response, computed with the kth part of the data removed, the
cross-validation estimate of the prediction error is

CV = 1

n

n
∑

i=1

(

Y m
i − ̂Y m(−k(i))

i

)2
.

We set K = 8 (obtaining 8 subsamples of size 8) and it results that the CV of the
proposed model (39.05) is lower than the CV of the classical one (62.76). We can thus
conclude that, in this application, the proposed model works better than the classical
one for predictive purposes.

7 Concluding remarks

In this work a new linear regression model for data affected by different sources of
uncertainty has been introduced. In particular, through a formalization in terms of
FRVs, we have coped with the imprecision and the randomness embodied in the data.
In order to handle the non-negativity of the spreads of the response we have considered
suitable transformation functions allowing us to get analytic estimators of the regres-
sion parameters according to a least squares approach. Some inferential procedures
for such estimators have been developed. In particular, tests on their significance have
been developed by bootstrapping. The goodness of fit of the model has been evaluated
by proposing a suitable determination coefficient and the corresponding estimator
together with a bootstrap linear independence test. An application to real data affected
by imprecision and randomness has shown the capability of the proposed regression
model. In fact, we found that it is more powerful than the classical regression tech-
nique for predictive purposes. Therefore, if imprecise and random data occur, our
regression model seems to be a valuable choice. On the basis of these good results, in
the near future, it will be interesting to develop a suitable selection procedure to obtain

123



A multiple linear regression model for imprecise information 1067

the appropriate number of explanatory variables and to address the multicollinearity
problem. Future research may also focus on proposing a linearity test in order to check
the linearity of the relationship between the response and the explanatory variables.
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