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Abstract

This work deals with the problem of perform-
ing rendezvous and capture of a non-cooperative
spacecraft by means of a space free-flyer, i.e. a
satellite base equipped with a robotic manipula-
tor. Though this kind of manoeuvres addresses
the solving of relevant existing problems such as
debris remowal, satellite servicing, orbit chang-
ing, only few spaceborne experiments have been
conducted, all keeping strong working hypothe-
sis. In this work, a few techniques and strategies
to obtain more realistic algorithms, taking into
account relative motion and computational load,
are presented. An orbit and attitude dynamics
simulator has been developed to experiment the
proposed strategies.

1 Introduction

Since the launch of the first artificial satellite,
Sputnik 1, in 1957, more than 6000 satellites
have been put in orbit, 3000 still orbiting Earth
together with 12000 space debris.

Many issues may occur due to this enormous
population of space waste objects. Deorbiting
manoeuvres are not always provided for, or can-
not be executed due to failures, thus causing
hazards or expensive manoeuvres for incoming
spacecraft. Furthermore, satellites may need
simple servicing operations, like refueling or de-
ployment of entangled structures, or recovery
from failed orbit insertions, or orbit changes

that require external help. The main idea that
has inspired the present work is the possibil-
ity of having a robotic space vehicle equipped
with manipulators, a free-flyer, to approach and
grab a spacecraft for executing planned opera-
tions. While autonomous rendezvous and dock-
ing manoeuvres have been developed and real-
ized many times, the use of robotic manipula-
tors in space has always been limited to human-
controlled handling and berthing of structures.
In this paper a study on the autonomous cap-
ture of non-cooperative satellites is presented.
A chaser, equipped with a robotic arm, must
approach a tumbling non-cooperative target en-
dowed with a grapple fixture and capture it, as
shown in Fig. 1.

Figure 1: The free-flyer captures the target
(V-bar and R-bar shown)

The dynamics of the manipulator is quite dif-
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ferent from the dynamics of robotic arms with
a fixed base; in fact in space the motion of a
joint affects the attitude motion of the vehicle
on which the manipulator is attached. Accord-
ing to the concept of the Virtual Manipulator
and the Virtual Ground, the dynamics of the
whole multi-body chaser has to be referred to
the center of mass of the system, which moves
when external forces are applied and when the
capture is executed. Previous works, like [6] and
[5], solved this problem using inertial wheels to
keep the base attitude fixed with respect to an
inertial reference frame, thus simulating a fixed
base but wasting three degrees of freedom. The
dynamics of a space free-flyer also involves heavy
computational loads: an algorithm to reduce the
load has been proposed and tested. The prob-
lem of the trajectory planning to guide a robotic
manipulator to rendezvous and capture a non-
cooperative target satellite is closely related to
the application of the vision in the robotic cap-
ture of moving objects with known dynamics. In
the study, the chaser is supposed to have a cer-
tain quantity of information about the target,
i.e. an estimation of the rotational state and the
geometry, the mass and the moment of inertia
tensor. A fly-around strategy has been imple-
mented, thus simulating the presence of a vision
system apt to get and/or increase the quantity of
information before starting the final capture ma-
noeuvre. Capturing strategies for a free-floating
space robot in grasping of a tumbling target with
model uncertainty are presented. The proposed
strategies take into account the relative orbital
motion between the chaser and the target, thus
dropping the flat-space assumption used in [5].

2 The free-flyer[4]

2.1 Historical Background

Although studied since the early nineties, space
robotics has almost entirely been reduced to
heavy robotic manipulators attached to much
heavier spacecraft (e.g. the RMS onboard the
Space Shuttle or the Canadarm2 on the ISS);
this choice allows to avoid the difficulty concern-
ing the kinematics and the dynamics of a space
free flyer, because due the heaviness of the base,
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this can be regarded as fixed with reference to
the center of mass of the system. Nevertheless
this solution causes two problems: first of all,
heavier payloads mean more expensive launches,
while a free-flyer can be a medium sized satellite;
in addition, large robotic manipulators in space
are always human-operated, being the decisions
left to astronauts and the computational duties
put in the computers’ charge.

During last twenty years, many articles have
been published about different techniques to
perform operations with a free-flyer, but such
a wide field of study has never been deeply ex-
plored and tested: Japanese satellite ETS-VII
([5]) was the first and up to date the only space-
borne experiment that performed rendezvous
and capture operations with a space free-flyer.
After that, many researchers suggested strate-
gies based on a certain number of hypothesis to
make the study easier, but sometimes losing the
possible advantages of the free-flyer (e.g., the hy-
pothesis of flat space i.e. lack of relative motion
between the free-flyer and the target may lead
not to use this relative motion to get a better
position of the arm with respect to the grapple
fixture).

2.2 Kinematics

To study the motion and the geometry of a space
system, is advisable decoupling the equations
describing the orbital motion, i.e. the motion
of the Center of Mass (CM) of the system, and
the equations describing the attitude motion, i.e.
the motion around the CM. A space free-flyer,
however, is a multi-body system with moving
link: therefore, its CM is not a physical point of
the system; nevertheless, the position of the CM
can be determined as a function of the base atti-
tude and of the joint variables, i.e. the angles of
the revolute joints and the shift of the prismatic
joints.

2.2.1 The Virtual Manipulator

The free-flyer robotic system is represented by
a base whose center of mass C'Mj is identified
by means of the vector “,, with reference to
the CM of the whole system. Similarly, ‘7, is
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the position vector of the center of mass C'M; of
the i-th link of the manipulator. These vectors
are defined with respect to an in-orbit inertial
reference frame RF, centered in C'M.

Figure 2: The free-flyer kinematics

For each link, in addition to the Denavit-
Hartenberg parameters, two more vectors are
introduced: €a@; is the position of C'M; with re-
spect to the origin of the i-th reference frame
RF;, expressed in RF; CI;,- is the position of the
origin of the i+1-th reference frame RF;,1 with
respect to C'M;, expressed in RF,.

As for the platform, RFj is the reference frame
centered in C'My and having its axes along the
principal axes of inertia of the platform.

According to the given definitions of the posi-
tion vectors, the following relations between the
“re, can be written:

67761 = CFCO + by + “dq

CFc- = CFci_l + Cbi—l + cdi (1)

1

c» _ cz cr c=
Tep = Tepoy T+ bp—1+ ‘dn

Such equations are recursive, °re, being the
only unknown quantity.

Let mg be the base mass and m; the mass of
the i-th link; being the 7, referred to the C'M,
the static moment of the whole system is equal
to zero:

mo CFCO—F...—i-mi Cfci—{—...—l-mn CFCn:O (2)

Given the Eq. (1),

Ty = écl(»o) ( °b; + Cf_iiJrl) (3)

being
i=0
(0) _ Yh—o ™M
= —1
o) = it 5)
Calling ‘
o k=0 Mk
G = M (6)
the position of each CM can be calculated as
CFck = chk) < Cgi + Cai+1) (7)
i=0
being
(k) C; 1<k
) — 8
¢ {CEO):Ci_l P>k (8)

Since the position of the end effector (EE) is
‘g = T, + bn, the expression of the direct
kinematics of the space free-flyer is

“Fpp =) _nc ( i + 0‘7”1) )
=0

Comparing the expression of the direct kinemat-
ics with the geometric path given by “fpp =
Fy 4+ Cby + @1+ by 4 ...+ Cadn + by, it
can be noticed that the position of the FE with
respect to the CM of the whole system is equiv-
alent to that of a virtual manipulator with the
base located in C'M and links parallel to that
of the real manipulator, but having the lengths
¢a; and cgi scaled by the coeflicients ¢;. In this
virtual description, the base of the real manipu-
lator is represented by means of a spherical joint.

2.3 Differential Kinematics

The linear velocity of the FE, °“¥g can be ex-
pressed as a function of the linear and angular
velocities of the base, “U., and &y, and of the
velocity of each joint ¢; as follows:

n
T = Uy + o X (Tep — “Tey) + Y JL,Gi

i=1
(10)
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Figure 3: The virtual manipulator

being Jr, column arrays based on the joint
type:

€Zi Pris
= 11
JLZ { €Z; X ( ‘g — 07:;) Rev ( )

where ¢r; is the position of the origin or RF;
with respect to the origin of RF,, i.e. °r; =
“Te,_y + bi—1.
Let be “rfop = “rgrp — °Te and let also be

(%] 0 —U3 V9
= (%) =0 =0UX = V3 0 —V1
V3 —V9 U1 0
(12)

Then the linear velocity of the FFE can be writ-
ten as

T = U — “Fopdo + JLq (13)
being
qQ
C . 42
Jo=1JL, .. ‘JLn} q= : (14)
Gn

To calculate  “r,, assuming that no ez-
ternal force is acting on the free-flyer, the
conservation of momentum gives, start-
ing with initial momentum equal to zero,
mg Vg, +my Ve, + ...+ my U, = 0.
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Since for the i-th link
o = g + @0 X Ty — Toy) + JG (15)

where the columns of ch) are

' €Z; 7 <1 and prism
ch)‘ = “Zx (%, — °T) j<i andrev
! 0 j>i
(16)

Due to the conservation of momentum and
setting ©7, = ﬁ S mido X ((Te, — ©Tr,), the
final result is

. 1 & )\ o en cx N\ =
Vg = (JL 7 ZmJéj) q+( Tm — “Tor) o
=1
(17)

As for the angular velocity of the FE,

n

‘Gp= Do+ Y Jagi= “@o+Jaq (18)
i=1

where the columns of J4 are defined as fol-

lows, basing on the joint type:
0 Prism
Ja, = 19
Ai { ¢Z; Rev (19)

Thus, the final expression for the differential
kinematics of the free-flyer is

WE wo

2.4 Dynamics

The equations of the free-flyer dynamics can
be derived using an approach based on the la-
grangian mechanics. Assuming that there is not
any conservative forces acting on the spacecraft
(i.e., neglecting the effects of gravity gradient),
the lagrangian term is only the kinetic energy T'
of the free-flyer:
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T = (@l L @+ mi Tl 5,)  (22)

n
1=0

N =

The expression for “v., is described in Eq.
(15). The angular velocity of the i-th link is
€W; = @+ Jg)ij’, where the columns of JS) are
defined as follows, basing on the joint type:

‘ 0 j<i andprismatic
J(ZJ? =< “% j<i and revolute (23)
0 j>i

Taking into account the equations of differential
kinematics,

1 . H, H, W
_ = R ww wq _0
T [woq][ﬂqw quHJ(m)

being Hrp the generalized inertia matriz of
the space free-flyer.

The blocks H.,, Hu.q, Hg, and Hy, can be
calculated using the equations of the kinematics
and differential kinematics.

The classical lagrangian approach then allows
to calculate the evolution of the dynamics, given
the torques 7 acting on the spacecraft:

However, in the free-flyer dynamics equations
the base angular velocity &y constitutes a non-
holonomic constraint (causing the possibility to
get to a previous configuration without reaching
the previous state), thus not integrable.

A different approach, based on the so-called
quasi-coordinates ([3]) allows to solve the prob-
lem of the derivation of the lagrangian term.

2.4.1 Quasi-Coordinates Lagrangian Ap-
proach

When the equations of motion are not restricted
to true coordinates (e.g., the derivatives of the
joint variables), they use non integrable vari-
ables, called quasi-coordinates, that can be ex-
pressed as

n
Ws = alsq'1+a25¢j2+' . f"ansc_?n = Zais(_?i (26)
i=1

where the coefficients o, are function of the
generalized coordinates ¢. In the matrix form,
Wy = aT(f. Assuming that the matrix « is not
singular, (.j': Buwg with pal =1.

Calculating the relations between the kinetic
energy as function of the true coordinates and
the kinetic energy T as function of the quasi-
coordinates allows to write the equations of dy-
namics in the integrable form

o 4] + [0 (%)
_ [—»T T [aaﬂ oT

where {%%‘.} does not involve summation over

the indices of o while [g—gﬁ} does.

The computational load of such a calculation
is huge, involving inversion of 6-by-6 matrices.

2.5 Inverse Kinematics

When designing a robotic manipulator control
system, there is a fundamental choice between
control in the joint space and control in the task
space; nevertheless, even when choosing a cen-
tralized control based on the whole dynamics of
the system, i.e. in the task space, the desired
trajectory is converted in joint positions, veloc-
ities and accelerations.

The inverse kinematics allow to calculate the
joint variables, given a desired pose of the FF.
While the inverse differential kinematics is based
on a simple inversion of a matrix, the inverse
kinematics is not always easily derivable in an
analytical form; thus, a numeric algorithm has
to be implemented to realize the inverse kine-
matics.

The numeric algorithms are based on the ana-
lytical Jacobian matrix of the direct kinematics

map 7’ = fr(q):

5 (=200 (28)
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The easiest way to calculate the analytical Jaco-
bian matrix, however, is through the geometric
Jacobian Jg, which is the matrix mapping the
derivatives of the joint variables into the linear
and angular velocities of the EF:

| =gl (29)

WE

The Jacobian Matrix Jpp in Eq. (21) maps the
derivatives of the joints variables and the angu-
lar velocity of the base into the linear and angu-
lar velocities of the FE. If we choose a paramet-
ric representation of the attitude of the base, e.g.
by means of a set of Euler angles 5, the relation
between angular velocity and derivatives of the

- =

Euler angles can be expressed as &g = T'(¢)¢

and for the FE &g = T((;EE)(EEE Thus a rela-
tion between Jrp and Jg is given by

7 B il I 0 q
)[4 o )

(30

~—

I 0
0 T |

Similarly, thg relation between Jg and J,. is
function of T'(¢gE). In conclusion

1 0 1 0
R e P e

2.5.1 Newton Method

Thus, Jg = Jrr

The first numeric method to calculate the in-
verse kinematics is the Newton method, based
on the linearization of the evolution of the di-
rect kinematics ¥ = f,(¢) = f-(q%) + J-(¢") (¢ —
) + o(||¢ — @*|?). The step of the algorithm
thus is

¢ =+ - £ 32)

The convergence can be reached only if the ini-
tial guess is close enough to the real solution;
in this case the algorithm has quadratic conver-
gence rate.
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2.5.2 Gradient Method

Another method is based on the minimization
of the quadratic error and the step is

FH =g +adl(@) [r- (@] ©33)

The scalar parameter a has to be chosen so as
to guarantee a decrease of the error function at
each iteration: too large values may lead the al-
gorithm to miss the minimum; on the other side,
if o is too small, the convergence is extremely
slow. This algorithm never diverges and is com-
putational simpler than the other.

An efficient iterative scheme has been devised
by combining initial iterations with Gradient
method, sure but slow, then switch to New-
ton method (quadratic final convergence rate).
Choices to be made concern the initial guess,
the step size in gradient method and the stop-
ping criteria (cartesian error lower than a cer-
tain limit or algorithm increment lower than a
certain limit).

3 Proposed strategies and results

The proposed mission scenario involves a target
and a chaser orbiting on circular LEO orbits on
the same plane at different height; the state of
the chaser free-flyer is supposed to be known.
The free-flyer is equipped with a 3-links robotic
arm.

3.1 Rendezvous Strategy

Faraway operations are similar to those of an
automated rendezvous and docking mission.
Therefore, standard phasing manoeuvres are
used: orbital plane corrections, Hohmann trans-
fers, R-bar transfers ([2]). Nevertheless, the pro-
posed strategy includes two fundamental char-
acteristics that make it quite different from a
standard rendezvous manoeuvre:

e while the first phase of manoeuvres is ex-
ecuted using AGPS, standard homing ma-
noeuvres are not suitable to get closer to
a non-cooperative spacecraft, because there
is no possibility to use relative position-
ing. Such manoeuvres need to be performed
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by means of absolute positioning (knowing
orbital parameters about the object to be
chased) and, when getting closer to the tar-
get, by visual systems;

e the trajectory planner needs to know not
only relative position and velocity (in order
to calculate relative orbital motion), but
also the state of motion of the target, in ad-
dition to the position of the grapple fixture,
when present aboard the target. To achieve
the goal of getting information about the
state of motion, the chaser will perform a
fly-around manoeuvre.

The proposed rendezvous strategy can there-
fore be describes as follows:

1. the chaser performs orbital correction ma-
noeuvres to get the orbital plane of the tar-
get and drifts in order to phase with the
target;

2. the chaser performs height change trans-
fer manoeuvres in order to reach a station
keeping point a few hundreds of meters be-
hind the target;

3. the chaser performs an R-bar transfer or a
V-bar transfer in order to reach a station
keeping point a few meters behind the tar-
get, at a distance suitable to use the motion
estimation visual system;

4. the chaser performs a complete fly-around
manoeuvre in order to get starting informa-
tion about the state of motion of the target.
When come back to the starting point of
the manoeuvre, capture strategies can be
put into execution.

Performing a closing transfer while neglect-
ing the perturbation effects, may lead to a quite
large error, as shown in Fig. 4.

3.2 Capture Strategies

Due to the complexity of the many variables
involved in an autonomous capture mission, a
great number of strategies could be implemented
and experimented; nevertheless, a few cases of
interest have been identified and studied during
the development of this thesis:

ok
Target R-bar (m) k

20 ) L . L
-120 -100 -80 =60 -40 =20 1]
Target V-bar (m)

Figure 4: Closing manoeuvre trajectory with
perturbations

3.2.1 Free-flyer CM and Grapple Fix-
ture at Similar Heights

When the state of motion of target causes the
grapple fixture to be in such a position that ex-
ists a point whence the robotic arm could reach
the grapple fixture without moving the free-flyer
CM out of the target orbit during the final cap-
ture, the best choice is to manoeuvre the free-
flyer as to perform the final capture leaving un-
altered the C'M position with respect to the tar-
get.

Rate Vector Chaser

Figure 5: Direct final capture

3.2.2 Free-flyer CM and Grapple Fix-
ture at a Different Height

When the state of motion of the target causes
the grapple fixture to be in such a position that
the robotic arm cannot reach it without taking
the free-flyerCM out of the target orbit (e.g., the
grapple fixture is on the rotation axis or coning
near it and far from the H-bar - V-bar plane),
the suggested strategy involves a transfer ma-
noeuvre able to exploit the relative motion to
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carry the free-flyer CM to a point whence the
grapple fixture can be reached. The trajectory
planner must take into account the relative mo-
tion to calculate the required pose and velocity
of the EE with respect to the grapple fixture;
during the execution of the relative motion, the
manipulator is controlled in order to reach the
desired goal.

Target Chaser

Figure 6: Final capture with relative motion

3.3 Trajectory Planner

The trajectory planner is activated before the
beginning of the final capture manoeuvre and
whenever the trajectory needs to be recalcu-
lated. The planner needs three inputs:

e current state of the joint variables and of
the attitude of the base: determinable by
means of proprioceptive sensors;

e manoeuvre execution time: function of the
manipulator physical limitations, it must
be long enough to guarantee the possibil-
ity of replanning. It also can be calculated
in function of optimization criteria, taking
into account the grapple fixture motion and
the relative motion between the chaser and
the target;

e final state of the joint variables, of the atti-
tude of the base and of the joint velocities
required to execute the capture; they are
determined as follows: the relative motion
of the spacecraft and the manoeuvre exe-
cution time allows to calculate the position
and velocity of the EE with respect to the
free-flyer CM required to execute the cap-
ture; required velocity of the joints can be
obtained by a simple inversion of the geo-
metric Jacobian matrix, while the required
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joint variables can be calculated through
kinematic inversion.

3.3.1 Kinematic Inversion

As stated in section 2.5, an important stress
must be given to the choice of the numeric algo-
rithm to use to calculate the inverse kinematics
by means of the analytical jacobian: the exper-
iments have in fact shown that the parameter
for the gradient method has to be chosen little
enough as to guarantee convergence of the algo-
rithm, but this entails very slow convergence,
sometimes more than 100 iteration steps and
various minutes of computation, as shown in
Fig. 7

Joint ol ‘.I Required values:
Variables L 0.3
T 0.2
05 e - —— o
-0.5
-1
-1.6

o 5 0 [ E % 0 5 0 45
Iteration steps

Figure 7: Gradient Method

on the other side, the Newton method can
sometimes reach the solution with an error lower
that 107 m in less than 10 steps, but can also
lead to divergence, as shown in Fig. 8

< Desired values:
Joint

Variables

10 0 » @ &

S
Iteration steps

Figure 8: Newton Method

thus, an hybrid algorithm has been used: the
gradient method, slow but assuring convergence,
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is initially used to shift from the current vari-
ables, used as the first guess, to variables closer
to the required solution; at this point, the New-
ton method starting from the last step of the
gradient algorithm, guarantees convergence at
quadratic rate in a few steps (Fig. 9).

0 I'.

i ———— VR Desired values:
Joint as -
variables

'-'-oo
HEHOO .
o naMNw%

Iteration steps

Figure 9: Hybrid Method

3.3.2 Planning

Knowing the initial position and velocity and
the required final position and velocity for each
joint variable, a cubic polynomial represents a
solution for this problem.

3.4 Control Laws

After having calculated the desired trajectory
for the joints, the free-flyer needs a controller
to determine the torques to apply on the base
and on the joints in order to execute the desired
movement and to perform the capture. Two
main families of controllers have been used in
this work.

3.4.1 Joint Space Decentralized Control

The use of quasi-coordinates to calculate the dy-
namics of the manipulator leads to an expres-
sion having the form H(q)d + C(q,q,w)q = T.
A controller in the joint space will use only the
linear part of the dynamics equations, thus con-
sidering the matrix C, i.e. the contribution due
to the configuration, as a disturbance. Each
joint is controlled as a Single Input Single Out-
put (SISO) system; the lack of the gravity term
allows to use a simple proportional controller,

with position and velocity feedback. The per-
formances of such controllers decay when the
desired trajectory is too fast; derivative of the
desired motion to compensate the disturbance
with a feedforward predictor may lead to im-
provement of this kind of controller. A delay in
the expected trajectory is always present.

3.4.2 Centralized Control

This kind of controller takes into account the
non-linear coupling between the joints, consid-
ering the free-flyer as a MIMO system. The so-
called inverse dynamics control allows to decou-
ple and linearize the original system H(q)G +
C(¢,4,w)q§ = wu, with input v = H(q)y +
C(q,¢,w)q depending on the manipulator state.
Choosing a new input y = —Kpq — Kpg + r,
the resulting system is asymptotically stable and
decoupled if the matrices Kp and Kp are sym-
metric and positive-definite. The desired tra-
jectory following is guaranteed by the choice of
r = Gq+ Kpqs + Kpqq-

Such kind of controllers are suitable to be
made robust or adaptive.

3.5 Execution of Manoeuvres

Since the complete dynamics of the free-flyer
manipulator is computationally hard to handle,
in this work a decoupling between the base at-
titude motion and the joint motion has been
proposed: when the trajectory planner calcu-
lates the desired trajectory, the joint motion is
simulated in absence of platform control; this
technique allows to calculate the base rotation
due to the joint movement. If only the joints
would rotate, the base would get an attitude R,.
The system then computes the over-rotation be-
tween the current attitude of the base and R,
and the base is actuated with such torques as
to get to the desired final attitude minus the
calculated over-rotation. Having the free-flyer
moved as a whole body (the joints were not ac-
tuated during the base motion), the relative po-
sition of the joints with respect to the base has
not changed: thus, realizing the previously simu-
lated joint movement will add the over-rotation,
taking the base to the desired attitude. The to-
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tal manoeuvre time of the joints must be scaled
down to take into account the separate base ro-
tation and it has been experimented that this
scaling does not affect the final attitude of the
base.

3.6 Results

As an example of the obtained results, two tables
containing the position error (centimeters) of the
EFE at the end of the capture manoeuvres are
shown.

Table 1: Decentralized control

Base case Perturb. Fast dyn

Fixed target | 0.3 (delay) | 1.2 (delay) | 0.8 (delay)
V-bar rot | 2.2 (delay) | 2.5 (delay) | 7.1 (delay)
H-bar rot | 2.1 (delay) | 3.8 (delay) | 8.4 (delay)

Table 2: Centralized control with 2 steps

Base case Perturb. Exstim. errs.

no feedback | no feedback
Fixed target 0.1 4.6 0.8
V-bar rot 1.2 5.0 2.0
H-bar rot 1.2 6.1 5.5

3.7 Comparison

Experimental comparison of various algorithms
provides that:

e decentralized algorithms is computationally
the lightest, but requires a sampling dy-
namics faster than the system dynamics
and provides delay;

e centralized algorithms are stable due to
feedback, but the inversion of the complete
dynamics equations (involving inversion of
6-by-6 matrices) are impossible to be used
in real-time.

e centralized algorithms with the proposed 2-
step manoeuvre are computationally lighter
than the complete dynamics inversion (in-
volving two 3-by-3 matrices inversion) and
achieve good results; such kind of manoeu-
vres are more sensible to rapid dynamics
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than the previous algorithm, since they re-
duce the capture manoeuvre time.

4 Conclusion

In conclusion, a rendezvous and capture mission
with a free-flyer has been studied, designed and
tested with a newly implemented orbit and at-
titude dynamics multisatellite simulator. A few
problems of previous studies and mission have
been addressed to and solved, such as kinematics
inversion, use of relative motion, dynamics com-
putational load. Future studies will involve op-
timization criteria for the strategies, robust and
adaptive control and multiple-arms free-flyers,
e.g. as proposed in [1] and [4].
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