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Abstract. In this article the general problem of designing high performances 
Transparent Metal structures is deeply discussed. In particular the Genetic Algorithms 
are introduced as useful tool for searching the optimal thicknesses of the layers. The 
article deeply analyses the effect of all parameters of the Genethic Algorithms so to 
optimize the computational time in the optical filter design. As an example the article 
reviews the basic steps for the design of a particular metallo/dielectric multilayer 
structure made of nine layers.    
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1. INTRODUCTION 

The study of novel transparent conductive coatings plays a fundamental role 
in the development of optical filters and devices useful in many different fields of 
nanotechnologies (i.e. photovoltaics, thermovoltaics, low emissivity filters, etc.). 
Recently a great deal of attention has been paid to the study of “transparent 
metals” which are metallo-dielectric coatings, capable to conjugate interesting and 
rare thermo-optical-electric properties: optical transparency, low IR emittance, 
radio frequency shielding, and high electrical and thermal conductance1,2. 

Transparent metals basically are 1D photonic band gap (PBG) multilayers 
which exhibit passband properties in the optical range. This unusual and rare 
property of transparency for metals is achieved by growing an adequate sequence 
of metal thin layers (≈10 nm) and dielectric thick layers (50 ÷200 nm). Thanks to 
the optical tunnelling phenomena in the metal layers, and the interference effects in 
the dielectric layers these structures are able to enhance the transmittance in the 
range of optical wavelengths only3-5. 

It is clearly understandable how the choice of the thicknesses of all these 
layers play a fundamental role to realise optical devices with high performances. In 
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the following we first introduce the problem of the Transparent Metal design, 
showing how it can be treated as an optimization search problem; in the second 
part the Genethic Algorithms are introduced as an efficient tool to find the 
thicknesses of the layers.  

Eventually all these theoretical considerations are applied to the design and 
realisation of real Transparent Metal structures made of nine layers.  

2. TRANSPARENT METAL DESIGN 

In this paragraph the standard procedure to design a nine layers 
metallo/dielectric multilayer, transparent in the spectrum of wavelengths from  
400 nm to 800 nm (visible window) is discussed.  

Concerning the materials, as a metal the choice fell on silver (Ag) because 
the absorbance in the visible range is lower than for the other metals, due to the 
plasma resonance6,7, at 320 nm. Titanium dioxide (TiO2) is chosen as dielectric 
interlayer because it is transparent, compatible with silver, and with high refractive 
index1.  

An earlier study of these structures showed that a structure with n = 9 layers 
deposited on a thick layer of glass (4 layers of silver and 5 layers of titanium 
dioxide. See Fig.1), might already meet the general requirements of the transparent 
metals1,3,5:  

(a) to ensure a high RF shielding (30 MHz to 6 GHz) of up to 40 dB. This is 
satisfied when the total thickness of silver is at least dtot = 68 nm; 

(b) to show a high transparency in the visible spectrum, despite the high 
metal content, thanks to the optical tunneling in the thin metal layers as shown by 
M.Scalora et al3.  

Already with n = 9, the choice of the best thickness for each layer is not 
trivial due to the large number of degrees of freedom of the system, so that some 
constraints should be introduced to reduce the free parameters, meeting the 
requirements (a) and (b).  

The used criterion is the following: the 4 layers of silver have all the same 
thickness dAg=dtot/ 4 = 17 nm so to allow the optical tunneling. The 5 layers of 
titanium dioxide (TiO2) are subdivided into two groups: the outer layers have all 
the thickness dextTiO2, while the inner layers have all the thickness dintTiO2 (see 
Fig. 1). In such a way the degrees of freedom are reduced to 2, making easier the 
optimization in a bi-dimensional domain [dextTiO2, dintTiO2].  

One objective of the optimization is to maximize the optical transmittance at 
λ = 600 nm that is the central wavelength of the visible range [400 nm, 800 nm]. A 
fast optimization can be easily performed by plotting the transmittance in the 2D 
domain [dextTiO2, dintTiO2] so to start the exploration of the 2D space. As one may see 
from the contour lines shown in Fig. 2, there are more combinations to achieve the 
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maximum transmittance of about 88%. All those combinations have been reported 
with the letters A ≡ [54, 100], B≡ [178, 100], C≡ [303, 100], D ≡ [52, 224]. For a 
deeper understanding of the differences among all these cases, Figs. 3 show the 
amplitude of the internal electric field in all the n = 9 layers for all the structures A, 
B, C, and D (in abscissa is reported the order of interface. The scale for the Ag 
layers is expanded for clarity).  

 

 
Fig.1 – Sketch of the transparent metal structures. 

 
Fig. 2 – Contour plot of the optical transmittance at λ = 600nm as a function of the thickness  

of the outer layers dextTiO2. and inner layers dintTiO2 of Titanium dioxide. The letters A, B, C, D, 
identifies some local maxima. 
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a) 

 
b) 

Fig. 3 – Amplitude of the internal electric field at the wavelength 600 nm in the nine layers  
of the structure: a) comparison between samples A, B; b) comparison between samples C, D.  

The size of the Silver layers is expanded for clarity. 

In all cases one may observe that the metal layers act as nodes of vibration 
for the electric field; this condition allows the optical tunneling in the metals 
without significant absorption, giving transparency to the whole structure.  
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The inner layers of TiO2 act as resonators which exhibit an integer number m 
of antinodes of the electric field (see in abscissa of Figs.3 the intervals [2, 3] [4, 5] 
[6, 7]). Theoretically this condition is fulfilled when the thickness of the inner 
layers is a multiple of half wavelength (that is λo/2n ≈ 124 nm, where λo=600 nm, 
and n(λo) = 2.409). So for samples A, B, C where dintTiO2=100 nm there is only m = 1 
antinode, while for sample D, where dintTiO2 = 224 nm, one may observe m = 2 
antinodes. Deviations of thickness values from exact theory occur because the 
metal layers are not exactly nodes since the electric field is not zero.  

Analogously in the outer layers of titanium dioxide (see the intervals [0,1] 
[8,9] in Figs. 3) the amplitude of the electric field should switch from high level 
(antinode at the TiO2/air interface) to low level (node at the TiO2/Ag interface) or 
vice versa. Ideally this is obtained when the thickness dextTiO2 is an odd number 
(2k+1) of quarter wavelength (λo/4n ≈ 62 nm). So for A and D the number of 
antinodes is k = 1, while for B one finds k = 2, and for C one finds k = 3.  

Just to summarize the structures A, B, C, D, respond to rules similar to those 
of the resonators, where the modes are represented by the two indexes [k, m] which 
in practice represent the numbers of antinodes in each outer and inner layer, 
respectively.  

Great differences among modes are clearly visible looking at the 
transmittance spectra (see Fig. 4) of A, B, C, D. Although all the modes maximize 
the transmittance at 600nm with similar performances, they exhibit a different 
bandwidth of transparency in the optical range [400 nm, 800 nm]; in particular the 
higher is the mode index (B, C, D), the narrower is the bandwidth, due to the large 
number of oscillations related to sharp resonance conditions. 

 

 
Fig. 4 – Transmittance spectra in the range of wavelengths [300 nm–900 nm]  

for the different samples A, B, C, D. 
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For this reason in order to evaluate the quality of transparency of any 
Transparent Metal structure it is helpful to introduce a parameter which compares 
the transmittance spectra of the filter f(λ), with the ideal objective g(λ) that is a 
perfect pass band filter (g(λ)=100% in the range [400 nm, 800 nm], and g(λ)=0 
elsewhere). The distance between the two spectra is evaluated by both the cost 
function and the fitness function as follows 

 
( ) ( )

( )

2

2

d
cos

d

f g
t

g

Λ

Λ

λ − λ λ

=

λ λ

∫

∫
,            

2

1fitness ,
cos t

=   (1) 

where the integral in Eq.(1) is calculated in the extended domain Λ≡ [300 nm, 
900 nm]; by definition the cost function reaches its minimum value (zero) only if 
the transmittance spectra of the Transparent Metal f (λ) coincides with the 
objective function g(λ). This desirable condition corresponds to the maximum of 
the fitness function, and represents the optimal structure.  
 Figs. 5 show the contour plots for the cost function (Fig. 5a) as well as for the 
fitness function (Fig. 5b) in the same 2D domain [dextTiO2, dintTiO2] of Fig. 2. The cost 
function exhibits in Fig. 5a a series of local minima (i.e. optimal structures) almost 
correspondent to the modes already discussed in Fig. 2. The absolute minimum of 
cost ≈ 0.23 (fitness≈18) is reached for the optimal structure [dextTiO2 = 34 nm, 
dintTiO2 = 72 nm] not too far from the mode A [k = 1, m = 1].  
 

 
a) 
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b) 

Fig. 5 – Contour plots of the cost function (a) and of the fitness function (b) in the 2D domain  
of dextTiO2 and dintTiO2 that are the thicknesses of the outer and inner layers of titania. 

 As a conclusion this simple example demonstrates how important is: 
a) to identify the objective function g(λ) capable to achieve the requirements; 
b) to introduce quantitative functions like cost and fitness useful for the 

optimization procedure; 
c) to find tools to explore the domain of the layer thicknesses, and find the 

minimum of the cost function. In the previous example this domain is only 
2D and has been explored by contour plots.  

3. OPTIMIZATION OF THE TRANSPARENT METAL DESIGN  
BY GENETIC ALGORITHMS 

 The previous paragraph clarifies how the procedure to design a transparent 
metal structure basically consists in the minimization of the cost function 
(maximization of the fitness function) as described in Eq.(1).  
 In this paragraph Genetic Algorithms are introduced as a tool for a quick 
inspection of the domain of the layer thicknesses, and for a fast detection of the 
absolute minimum of the cost function, even in multidimensional research domains. 

 Genetic Algorithms (GA) have been introduced in the 60s by John Holland 
and his group at University of Michigan for two purposes: to explain the adaptive 
processes of natural systems, and to design artificial systems software capable to 
emulate the mechanisms of natural systems8,9. In the following years GA have been 
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applied to solve both optimization and inverse problems in many different 
scientific fields: in biology to simulate the evolution of single celled organism 
populations10,11, in computer science for the parallel implementation on Intel 
hardware12, in engineering and physics for recursive adaptive filter design13, in for 
optimization of gas pipeline14, for the VLSI circuit layout15, for aircraft landing 
strut weight optimization16, for communications network link size optimization17, 
for seismic inversion problems18, for inverse problem in synthesis of fiber 
gratings19, for local search for thin film metrology20, in image processing, for 
image registration via GA to minimize image differences21, to search for image 
feature detectors via GA22, for hardness depth profiling in hardened steels with 
photothermal radiometry23-26 
 The mechanic of the GA is always surprisingly simple. Adopting the 
terminology of the biological sciences, the chromosome is an individual that 
represents a possible solution in the research space. In the previous paragraph the 
2D research domain is given by the couple [dext TiO2, dint TiO2], so that the chosen 
chromosome is an array with 2 components (2 genes) representing the thicknesses 
of the outer and inner titania layers respectively. According to this terminology, for 
example the chromosome v = [188, 93] represents the Transparent Metal structure 
obtained with dextTiO2 = 188 nm and dintTiO2 = 93 nm. Each chromosome identifies a 
specific individual who belongs to the population of Npop = 16 individuals. As a 
result of mutual interactions among individuals, the population can evolve and 
adapt to the environment (research domain).  
 Table 1 shows the initial population of Npop=16 individuals. The genes of 
each individual are initially randomly chosen in the intervals 0 < dextTiO2 < 200, and  
0 < dintTiO2 < 200 and reported in columns 2 and 3. Both fitness and cost functions 
are reported respectively in columns 4, and 5. The individuals are sorted in 
descending order of fitness, so that the best individuals can be found at the top of 
the list. The selectivity function is also introduced in column 6. Selectivity 
represents the probability of one particular individual to be randomly selected for 
the reproduction so to transfer its chromosomic string to future generations. 
According to GA philosophy, selectivity is simply chosen proportional to the 
fitness, so to drive the random selection giving more chances for reproduction to 
the best individuals respect to the worst ones that risk the extinction.  

Table 1 

Summary of the initial population (first generation) of the Genetic Algorithms GA2D.  
Column 1; priority order; column 2: gene dextTiO2; column 3: gene dintTiO2; column 4: fitness function; 

column 5: cost function: column 6: probability of selection 

N° dextTiO2 dintTiO2 Fitness Cost Selectivity 
1° 188.1 93.1 4.69 0.46177 11.77% 
2° 143.5 75.3 4.66 0.46300 11.71% 
3° 121.9 67.1 3.80 0.51303 9.54% 
4° 193.3 111.6 3.56 0.52995 8.94% 
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Table 1 (continued) 

5° 79.7 106.0 2.80 0.59763 7.03% 
6° 161.8 189.9 2.70 0.60832 6.78% 
7° 129.9 90.0 2.45 0.63918 6.15% 
8° 49 125.6 2.20 0.67475 5.51% 
9° 97.5 124.6 2.06 0.69728 5.16% 

10° 1.4 112.9 2.02 0.70286 5.08% 
11° 191.6 140.2 1.79 0.74812 4.49% 
12° 50.9 162.9 1.76 0.75310 4.43% 
13° 61.1 161.4 1.48 0.82336 3.70% 
14° 190.7 157.2 1.47 0.82429 3.70% 
15° 89.3 151.5 1.22 0.90527 3.06% 
16° 80.7 17.4 1.17 0.92432 2.94% 

 
 This selection process is well documented in Table 2, where, after a random 
selection of the initial population, 8 couples are formed for reproduction. It is 
worth noting that the best individuals can be selected more than once as happens 
for individual [142, 75] who is selected three times in Table 2 (No. 5, No. 6, 
No. 11) since in Table 1 he was at the top of the list (No. 2).  
 The reproduction process begins after that the selected individuals are 
grouped into Npop/2=8 couples. Each parent couple (X, Y) generate two sons (S1, 
S2) with the mechanism shown in Table 3. The genes of sons are obtained by a 
weighted average of the parental genes according to the following rule 

 S1 = (1 )X j Y j⋅ + ⋅ −    (Son 1) 

 S2 = (1 )X k Y k⋅ + ⋅ −    (Son 2), 

where j and k are numbers randomly chosen in the interval [0, 1].   
After reproduction a new population of children is generated, which should 

have an average fitness better than the previous one, thanks to the selection rules 
and to the general assumption that good parents generate good children. In 
synthesis the new generation tends to adapt more to the environment. 

But sometimes it happens that after several generations, the individuals 
become too similar to each other. This dangerous phenomenon may produce an 
evolutionary stop (epistasis) which inhibits further improvement of the population. 
To avoid the epistasis, a random mechanism of mutation of the genes should be 
introduced. Accordingly each single gene may be mutated and substituted by a 
random value in the same range [0, 200], but this may happen only with a small 
probability (typically pm = 5%). This mutation  creates a new individual, sometimes 
extremely different from its parents, but anyway useful for the renewal of the 
population. For example in Table 4, the individual No.1 has been subjected to the 
mutation of the second gene, generating by chance a better individual.  
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Last mechanism of GA is the elitism, which allows to clone the best 
individual and keep it unchanged for the next generation. Therefore elitism avoids 
the regression of the evolutionary process that might statistically occur.  

Table 2 

Mechanism of selection of the individuals reported in Table 1 

N° dextTiO2 dintTiO2 Old N° Couple 
1) 129.9 90.0 7° 
2) 49.0 125.6 8° 

1 

3) 89.3 151.5 15° 
4) 161.8 189.9 6° 

2 

5) 143.5 75.3 2° 
6) 143.5 75.3 2° 

3 

7) 1.4 112.9 10° 
8) 49.0 125.6 8° 

4 

9) 193.3 111.6 4° 
10) 1.4 112.9 10° 

5 

11) 143.5 75.3 2° 
12) 97.5 124.6 9° 

6 

13) 121.9 67.1 3° 
14) 89.3 151.5 15° 

7 

15) 97.5 124.6 9° 
16) 121.9 67.1 3° 

8 

Table 3 

Mechanism for coupling of the couple No.1 reported in Table 2 

 Parents Sons 
N° dextTiO2 dintTiO2 dextTiO2 dintTiO2 

1) 129.9 90.0 101.4 109.9 
2) 49.0 125.6 62.0 119.3 

 
j1=0.648 j2=0.441 

X11=129.9 X12=90.0 
Y11=49.0 Y12=125.6 
  
S11=129.9*0.648+49.0*(1-0.648)=101.4 S12=90.0*0.441+125.6*(1-0.441)=109.9 

k1=0.161 k2=0.177 
X21=129.9 X22=90.0 
Y21=49.0 Y22=125.6 
  
S21=129.9*0.161+49.0*(1-0.161)=62.0 S22=90.0*0.177+125.6*(1-0.177)=119.3 
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In conclusion Table 4 summarizes the population of the second generation 
after the whole procedure of selection, reproduction, mutation, elitism and sorting 
by fitness. 

Table 4 

Summary of the second generation of the Genetic Algorithms GA2D. Column 1: priority order; 
column 2: gene dextTiO2; column 3: gene dintTiO2; column 4: fitness function; column 5: cost function: 

column 6: probability of selection 
N° dextTiO2 dintTiO2 Fitness  Cost Selectivity 

1° 35.6 68.4 13.1532 0.28 23.77% 
2° 188.1 93.1 4.68978 0.46 8.48% 
3° 143.5 75.3 4.66491 0.46 8.43% 
4° 143.5 75.3 4.66491 0.46 8.43% 
5° 121.3 69.0 3.69587 0.52 6.68% 
6° 91.2 70.3 2.53808 0.63 4.59% 
7° 103.8 112.2 2.52022 0.63 4.56% 
8° 14.8 111.7 2.49074 0.63 4.50% 
9° 114.2 84.6 2.47740 0.64 4.48% 

10° 107.4 86.0 2.38645 0.65 4.31% 
11° 112.3 86.3 2.36972 0.65 4.28% 
12° 140.2 181.7 2.35029 0.65 4.25% 
13° 62.0 119.3 2.32723 0.66 4.21% 
14° 106.9 95.5 2.20920 0.67 3.99% 
15° 48.5 31.4 1.47359 0.82 2.66% 
16° 96.3 156.2 1.31313 0.87 2.37% 

 
 Fig. 6 shows the initial population (first generation) made of 16 individuals 
randomly chosen (symbols □) together with the second generation (symbol ●). 
From the contour lines of the fitness function one may see a general improvement 
of the second generation respect to the first one, thanks to the GA postulate. Figs. 7 
show, with more details, the improvements from the 5th (Fig. 7a) to the 44th 
generation (Fig. 7b), demonstrating how the population collectively moves towards 
the absolute maximum of the fitness (≈18). The evolution of the best individual is 
shown generation by generation in Fig. 8; from this graph a quasi optimal solution 
around [35, 72] has already reached already after 5 generations. Additional 
improvements, still visible up to 38th generation, are convergent towards the 
absolute maximum around [34, 72]. Finally Fig. 9 shows the transmittance spectra 
of the best individual at some generations (at 1st, 2nd, 5th, 38th, and 50th generation). 
As one may see the improvements in the transmittance spectra from generation 38th 
to generation 50th are hardly recognized, and in practice the transmittance is 
already optimized before the 38th generation!  
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 One fundamental question is now how the evolutionary process can be 
speeded up so to reduce the computation time needed for finding the optimal 
Transparent Metal structure. One way may be obtained by reducing the size of the 
population Npop so to lower its inertia, making faster the collective movements of 
the population towards the local maximum of fitness. A simple comparison on the 
performance of GA by changing Npop is shown in Fig. 10a; the cost function of the 
best individual is here plotted as a function of the number of generation. Each 
curve refers to a particular value of Npop (6, 16, 20) and has been selected over a 
large set of curves obtained by running 10 times the GA with different initial 
conditions. By a first inspection of Fig. 10a the choice of the small value Npop=6, 
on one hand guarantees the quickest computational time to find the local maximum 
of fitness (minimum of cost), but, on the other hand makes the population poor of 
individuals (poor complexity) preventing the exploration of the research domain, 
and failing to find the absolute maximum otherwise obtained for Npop=16 or 20. 
Obviously for each particular problem of optimization there is an optimal size of 
the population Npop (connected to the degrees of freedom/genes) which conjugates 
the right complexity with the reasonable computational time to find the best 
solution (in our case Npop=16). 
 

 
Fig. 6 – Map of the population in 2D domain [dextTiO2 ,dintTiO2 ] at the fist (□) and second (●) 

generation. Symbols are used to localize the individuals in the research domain. 
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a) 

 
b) 

Fig. 7 – Magnified map of the population in the 2D domain [dextTiO2 ,dintTiO2 ]: a) at the 5th generation;  
b) at the 44th generation. Symbols (●) are used to localize the individuals in the research domain. 
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Fig. 8 – Map in 2D domain [dextTiO2, dintTiO2 ] of the best individual of the population at the generations 

2nd, 5th 21st, 29th, 38th . 

 
Fig. 9 – Transmittance spectra of the best individual of the population at at the generations  

1st 2nd, 5th , 38th , 50th . 
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a) 

 
b) 

Fig. 10 – Cost function and Fitness function vs order of generation: a) the curves refer to different 
values of the size of the population Npop; b) the curves refer to different values of the probability  

of mutation pm. 
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 An analogous study can be done by changing the probability of mutation pm 
of the GA in the range [1%,10%]. Even in this case an optimal value of pm exists 
that is able to speed up the evolutionary process. Fig.10b shows the cost function of 
the best individual vs the number of generation (computational time) for different 
values of pm (1%, 5%, 10%). On one hand the choice of low values of pm (1%) 
inhibit the mutation, increasing the risks of epistasis which slows down the 
research in the domain. On the other hand, the choice of large values of pm (10%), 
due to the continuous mutation of genes, are particularly indicated for a quick 
initial search in large domains rather than for an accurate final search when at last 
the domain has been restricted. Fig. 10b shows that a trade off of these different 
features is obtained for the optimal value of pm=5%.   
 In the previous part Genetic Algorithms are used  to optimize the choice of 
two parameters (2D) which represent the outer and inner layers of titania 
(respectively dextTiO2 and dintTiO2). But GA are much more powerful and can be 
applied for the optimization of all the layers of the Transparent Metal 
simultaneously: in our case the 5 layers of titania and the 4 layers of silver, with or 
without the additional constraint on the total thickness of silver (dtot = 68nm). With 
this large number of degrees of freedom (8D or 9D) the optimal size of the 
population becomes Npop = 20, the optimal probability of mutation is pm = 5.5%, 
while the expected number of generations to find a solution can easily reach the 
value of one thousand.  
 In the particular case of 8 degrees of freedom (with the constraint of a fixed 
total amount of silver dtot = 68nm), after about 1000 generations, the Genetic 
Algorithms, here called GA8D, converge towards an optimal solution not really 
different from the one already explored in Figs. 8 and 9 where GA2D used 2 degrees 
of freedom only. Figs. 11 show at each generation the thicknesses of the layers for 
the best individual. As one can see the thicknesses of the layers of silver (Fig. 11b) 
substantially don’t differ each other, while the thicknesses of titania (Fig. 11a) tend 
to split spontaneously into two groups: the outer layers (No.1 and No.5) and the 
inner layers (No. 2, No. 3, and No. 4). As told before, the chromosomic string 
obtained after thousands of generations [34, 19, 73, 16, 70, 16, 73, 17, 34] is very 
similar to simple one shown in Fig. 9 [34, 17, 72, 17, 72, 17, 72, 17, 34]. 
Consequently the transmittance spectra is only marginally improved. 

In the particular case of 9 degrees of freedom (without any constraint on the 
amount of silver) the Genetic Algorithms, here called GA9D, are able to improve 
substantially the fitness. Fig. 12 shows how the performances of GA9D are much 
better with respect with GA8D and GA2D. In particular after 1000 generations the 
fitness of GA9D reaches the value of 100. Fig. 13 shows the evolution of the 
transmittance spectra obtained with GA9D after 100, 200, 500, 1000, 2000 
generations. By comparing the GA9D final spectra in Fig.13 with GA2D final spectra 
in Fig. 9, the bandwidth of the Transparent Metal is clearly increased according to 
the requirements defined by the ideal objective filter. 
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a) 

 

b) 

Fig. 11 – Evolution of the optimized thickness vs the order of generation for GA8D:  
a) thickness of the 5 layers of titania; b) thickness of the 4 layers of silver. 
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Fig. 12 – Comparison among cost and fitness functions vs order of generation. The curves refer to the 
different Genetic Algorithms GA2D, GA8D, GA9D, respectively with 2, 8 and 9 degrees of freedom. 

 

Fig. 13 – Transmittance spectra calculated by GA9D for the best individuals at generation  
100th, 200th, 500th, 1000th, 2000th. 
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a) 

 

b) 

Fig. 14 – Evolution of the optimized thickness vs the order of generation for GA9D:  
a) thickness of the 5 layers of titania; b) thickness of the 4 layers of silver. 
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Figures 14 eventually show the thicknesses of the titania layers (Fig.14a) and 
of the silver layers (Fig.14b) as a function of the order of generation. The graphs 
become stable after about 1000 generations giving rise to the optimal Transparent 
Metal structure [32, 14, 63, 12, 62, 11, 64, 11, 33]. Again note how the thicknesses 
of the titania layers tend to split spontaneously in the same two groups as below. 
Note also that the average transparency of the structure is increased because the 
total amount of silver decreases to about 48 nm.  

4. CONCLUSIONS 

In this article the general problem of the design of high performances 
Transparent Metal structures is deeply discussed. It is also shown how Genethic 
Algorithms represent useful tool for searching for the optimal thicknesses of the 
layers. All the theoretical considerations have been applied for the design of 
Transparent Metal structure made of 5 layers of titania and 4 thin layers of silver, 
but obviously the same method can be extended to any multilayer structure. 

Acknowledgments. The author is indebted with S. Gaetani for very useful discussions.  

REFERENCES 

1. M.S.Sarto, R. Li Voti, F. Sarto, M.C. Larciprete, IEEE Transactions on Electromagnetic 
Compatibility, 47, 602–611 (2005).  

2. M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, J. Appl. Phys., 93, 
5013–5017 (2003). 

3. M. Scalora, M. J. Bloemer,A. S. Manka, S.D. Pethel, J. P. Dowling, and C.M. Bowden, J. Appl. 
Phys., 83, pp. 2377–2383, 1998. 

4. M.J. Bloemer and M. Scalora, Appl. Phys. Lett., 72, 1676 (1998); 
5. M. Scalora, M.J. Bloemer, and C.M. Bowden, Opt. Photon. News, 10, 23 (1999);  
6. W. Steinmann, Phys. Rev. Lett., 5, 470–472 (1960). 
7. M. Bender, W. Seelig, C. Daube, H. Frankeberger, B. Ocker, and J. Stollenwerk, Thin Solid Films, 

326, 67–71, 1998. 
8. Holland, J.H., Journal of the Association for computing machinery, 3, 297–314 (1962). 
9. Holland, J.H., Adaptation in natural and artificial systems, Ann Arbor, The University of Michigan 

Press.  
10. Rosenberg R.S., Mathematical Biosciences, 7, 223–257 (1970). 
11. Rosenberg R.S., Mathematical Biosciences, 8, 1–37 (1970). 
12. Pettey, C.B., Leuze M.R., GrefenstetteJ.J., Second International Conference on Genetic 

Algorithms, 151–161 (1987). 
13. Etter, D.M., Hicks M.J., & Cho K.H., IEEE International Conference on Acoustics, Speech and 

Signal Processing, 2, 635–638 (1982). 
14. Goldberg D.E., Dissertation Abstracts International, 44, 10, 3174b (1983). 
15. Davis, L., Adaptive design for layout synthesis, Texas Instrument report, Dallas, 1985.  
16. Minga A.K., Presented at AIAA Southeastern Regional Student Conference, Huntsville, 1986. 
17. Davis, L., Genetic Algorithms and simulated annealing, Pitman, London, 1987. 



 Roberto Li Voti 21 

 

466 

18. Sushil, J.L., Li Li Serdar Ozalaybey, Genetic Algorithms for seismic travel-time inversion. 
19. Skaar J., Risvik K.M., Journal of lightwave technology, 16, 1928–1932 (1998).  
20. Lienert B.R., Porter J.N., Sharma S.K., Applied Optics, 40, 3476–3482 (2001). 
21. Fitzpatrick J.M., Grefenstette J.J., & Van Gucht, D., IEEE Southeast Conference, 460–464 (1984). 
22. Gillies A.M., Machine learning procedures for generating image domain feature detectors. 

Doctoral dissertation, University of Michigan, 1985. 
23. R. Li Voti, in: Advances in Signal Processing for Nondestructive Evaluation of Materials, Vol. 6 

Ed. X: Maldague, ASNT, 2002, p. 31. 
24. R. Li Voti, C. Melchiorri, C. Sibilia, M. Bertolotti, Analytical Sciences, 17, 410 (2001).  
25. R. Li Voti, C.Sibilia, M. Bertolotti,  Rev.Sci. Instrum., 74, p. 372 (2003). 
26. R. Li Voti,  C.Sibilia,  M.Bertolotti, International Journal of Thermophysics, 26, 1833 (2005). 


