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Abstract: The future interplanetary missions will probably use the conventional chemical rockets to leave the 

sphere of influence of the Earth, and solar electric propulsion (SEP) to accomplish the other maneuvers of the 

mission. In this work the optimization of interplanetary missions using solar electric propulsion and Gravity 

Assisted Maneuver to reduce the costs of the mission, is considered. The high specific impulse of electric 

propulsion makes a Gravity Assisted Maneuver 1 year after departure convenient. Missions for several Near 

Earth Asteroids will be considered. The analysis suggests criteria for the definition of initial solutions demanded 

for the process of optimization of trajectories.  

Trajectories for the asteroid 2002TC70 are analyzed. Direct trajectories, trajectories with 1 gravity assisted from 

the Earth and with 2 gravity assisted from the Earth and either Mars are present. An indirect optimization method 

will be used in the simulations.   
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1.  INTRODUCTION 

 

The solar electric propulsion could be the best option for the transports of the future due to its high specific 

impulse when compared to the chemical propulsion. Electric propellants are being extensively used to assist the 

propulsion of terrestrial satellites for the maneuvers of orbit correction and as primary propulsion in missions 

toward other bodies of the solar system. 

Both NASA and ESA have launched spacecrafts which used SEP (Solar Electric Propulsion) as the primary 

propulsion system; NASA's DS1 and ESA's Smart-1 to the moon to comet Borrelly.    

Indirect optimization methods are suitable for the low thrust trajectories that are used in simulations. A finite force 

is applied during a finite interval of time and it is necessary to integrate the state equation along the time to know 

its effect. Several results exist in literature, starting with the works of Tsien (1953) and Lawden (1955). Other 

results and references can be found in Prado (1989), Prado and Rios-Neto (1993), Casalino and Colasurdo [1], Santos [2]. 

The most used method in this model is the so called "primer-vector theory", developed by Lawden (1953 and 1954) [4], [5], 

according to Prado [6], [7], Santos [8], [9]. In this paper, theory of optimal control is applied and a procedure based 

on the Newton Method to decide the boundary problems is developed. The Pontryagin's Maximum Principle 

(PMP) is used to maximize the Hamiltonian associated to the problem and evaluates the optimal structure of the 

"switching function".  

The spacecraft leaves the Earth's sphere of influence with a hyperbolic velocity whose optimal magnitude and the 

direction will be supplied by the optimization procedure. The initial mass is directly related to the magnitude of 

the hyperbolic velocity, assuming that a chemical thruster is used to leave a low Earth orbit (LEO). Out of the 

Earth's sphere of influence, the electric propellants is activate and the available power is proportional to the square 

of the distance from the sun; the propulsion is provided by one or two "PPS 1350 ion thrusters and Phall1 

thrusters (UNB)". 
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2.  DESCRIPTION OF THE PROBLEM  

 

The spacecraft will be considered a point with variable mass m and trajectory will be analyzed using the patched-

conics approach. The time required by the spacecraft to leave the Earth's sphere of influence is neglected and, in 

this formulation, only equations of motion in the heliocentric reference system will be considered. The spacecraft 

is influenced by the Sun gravitational acceleration  and the propulsion system of the vehicle implements a 

thrust T. With this formulation, a maneuver of Earth flyby can be used to gain energy and velocity, that provokes 

a discontinuity in the relative state variables in the velocity.  

The variables are normalized using the radius of the Earth's orbit, the corresponding circular velocity, and the 

mass of the spacecraft in stationary orbit as values of reference. The solar electric Propulsion will be considered, 

therefore, the available power and thrust varies with the square of the distance from the sun.      

In the problem, the thrust is the only control during the heliocentric arcs, and it will be optimized to get the 

minimum consumption, that is measured by the final mass of the spacecraft. Since the thrust appears linearly in 

the equation of motion, a bang-bang control, that consists of alternating ballistic arcs with arcs of maximum thrust 

will be required. The trajectory is composed by a succession of ballistic arcs (zero-thrust) and arcs of maximum 

thrust, where the optimal direction will be supplied by the optimization procedure. 

The boundary conditions are imposed in satisfactory way at the junctions between trajectory arcs.  

The integration initiates when the spacecraft leaves the Earth's sphere of influence, at the position )( ii trr 


 
that 

coincides with the Earth is position, considering the velocity iv


 free. The hyperbolic velocity is given by 

)( iii tvvv  


, assuming that a rocket thruster is used to leave the Low Earth Orbit (LEO) with an impulsive 

maneuver; the vehicle mass on LEO is specified. The increment of velocity (∆V) demanded to provide the 

hyperbolic velocity is cei vvvV  
22 , where ve and vc are the escape and circular velocity at the LEO radius 

[1].  

The initial mass at the exit from the Earth's sphere of influence is, 
2
  cVbVami                                         ( 1 ) 

where,   

 im1  is the jettisoned mass of the exhausted motor, which is proportional to the propellant mass. The 

spacecraft intercepts the Earth and accomplishes Gravity Assisted Maneuvers [6], [9]. The position of the vehicle 

)(   trr


 is constrained and the magnitude of the hyperbolic excess velocity )(   tvvv


 
is 

continuous
22
  vv  [1]. 

If the minimum height constraint on the flyby is requested, a condition on the velocity turn angle is added: 

      22cos   vvvT 


                                      ( 2 ) 

where, 
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                                       ( 3 ) 

vp is the circular velocity at the low distances allowed for a planet. 

        4vvv i


                                                                   ( 4 ) 

At the final point (subscript f ), the position and velocity vectors of the spacecraft and the asteroid coincide,  

 rf = rA(tf )                                                                         ( 5 ) 

 vf = vA(tf )                                               ( 6 ) 

The theory of optimal control provides the control law and necessary boundary conditions for optimality.  
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3. OPTIMIZATION PROCEDURES 

The objective is to use the theory of optimal control to maximize the spacecraft final mass.  

Dynamical equations are, 
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                                                            ( 7 ) 

Applying the theory of optimal control, the Hamiltonian function is defined as (Lawden, 1954) [3, 4]: 
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An indirect optimization procedure is used to maximize the payload. According to Pontryagin's Maximum 

Principle the optimal controls maximize H. 

The nominal thrust To at 1 AU, and the electrical power are [1], 
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Optimal control theory provides differential equation for the adjoint equations of the problem (Euler-Lagrange).  

Adjoint equations are, 
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where,
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Thrust direction and Switching Function (Sf) are, 

                                                                                       

                            

                                                                                           ( 13 )

           

 

 

where, 

c'  -  is the effective exhaust velocity of the rocket thruster; 
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The necessary optimal conditions [1], [9]. 
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Where: 

: the vector collecting the constraining boundary conditions (see eq. 15 - 18)  

φ = mf              

At the initial point: 

1. 
 rr


0
;  

2. 21   cVbVmo  

3.   2

0

2

0   vvv


;  

4. Equations 16 and 18 provide optimal control with λro and Tro free; 

5. the necessary condition optimal of the state is
0v


(primer vector) be parallel to the hyperbolic velocity;  

At  flyby [2]: 

1. the equations (15 and 16) are used to obtain the transversality conditions, that implicates in determining the arc 

time used; 

2. at the equations (17 and 18) the
vi


is parallel to the hyperbolic velocity, before and after of free flyby 

maneuver; the magnitude is continuous; 

3. the states of Hamiltonian remain continuous through the flyby maneuvers; 

4. when the minimum height constraint of the flyby is requested, a condition on the velocity turn angle is added 

(Eq. 2 and 3). 

At the final point:  

1. 
vf


 is parallel to the hyperbolic velocity, 
rf


is parallel to the radius and 0 gv t

vff

t

rf


 ; 

2. the final values of 
mf


 and fH  depends on the control model that was considered in the maneuver; 

3. the adjoint variable
v


is zero during the whole trajectory. 

 

4. MISSION ASTEROID 2002TC70  

 

The following types of missions had been simulated: 

1. without flyby; 

2. Earth Gravity Assisted - EGA mission 

3. Earth and Mars Gravity Assisted  - EMGA mission 

 

Using the optimization procedure we can find optimal trajectories, with the maximization of the spacecraft final 

mass (i.é., minimum fuel consumption). These trajectories depend on the mission objectives, for example, the 

performance depends on the mission time length. It is possible to reduce the time with some more spend of 

propellant.  
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The Keplerian elements of the asteroid 200TC70, are shown, 

 

Name 2002TC70 

Epoch 54200 

a 1.369831 

e 0.19691574 

i 2.13932 

 161.89427 

 134.84892 

M 351.6336031 

ra 1.10009 

rp 1.639572 

 

Table 1 – Keplerian Elements 

  

4.1  NUMERICAL ANALYSIS WITH PPS1350 (ESA) 

The characteristics of the spacecraft propulsion system that have been assumed are [9]: 

1. the mass of the spacecraft with an altitude of 200 km in circular LEO is 2133.3 Kg; 

2. specific impulse Is = 1550s : 

3. specific energy  = 0.06; 

4.  = 2 70mN (thruster PPS 1350 used for the SMART-1 mission to the moon); 

5. nominal thruster To=1 UA; 

6. The time: time = 0 corresponds to the date 01/01/2000.  

The necessary optimal condition were formulated in agreement with the problem; the bang-bang control was used 

in the formularization with limited power and constraint in the time of flight.  

 

4.2 NUMERICAL ANALYSIS WITH PHALL 1 (UNB) 
 

The researchers of the Plasma Laboratory of the Physics Institute of the Brasilia University (UNB), since 2002, 

pledge in the study and development of a propellant that uses a plasma propulsion system produced by current 

Hall, based on Stationary Plasma Thrusters (SPT). In this project uses permanent magnets with generating the 

magnetic field, reducing the electricity consumption. 

The characteristics of the spacecraft propulsion system are: 

1. the mass of the spacecraft with an altitude of 200 km in circular LEO is 2133.3 Kg; 

2. specific impulse Is = 1607s : 

3. specific energy  = 0.06; 

4.  = 2 126mN (thruster Phall 1 - UNB); 

5. nominal thruster To=1 UA; 

6. The time: time = 0 corresponds to the date 01/01/2000. 

Diverse missions can be implemented with the optimization algorithm used in this work, of which the main ones 

are: transference with free time (to change to space vehicle orbit without restrictions to the necessary time the 

execution maneuver); “Rendezvous” (one desires that the space vehicle if finds and remains to the side of as a 

space vehicle); “Flyby” (desires to intercept one another celestial body, however without the objective to remain 

next); “Swing-By” (is used of a next ticket to a celestial body to gain or to lose energy, speed and angular 

moment), etc. 

Been verified resulted better in comparison to the results gotten with PPS 1350 (Table), therefore, Phall 1 possesss 

a bigger specific thrust and the truster (t) is bigger in magnitude. 
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Asteroid 2002TC70 

PPS 1350 (Is= 1550s) (2 x 70mN) Hall (UNB)  (Is= 1607s) (2 x 126mN) 

Duration 

(days) 
mf Data 

∆Vel 

(electric) 

(km/s) 

V 

(km/s) 

Duration 

(days) 
mf Data 

∆Vel 

(electric) 

(km/s) 

V 

(km/s) 

Flyby: 0 Flyby: 0 

1052.85 0.7768 

Departure: 

14/07/2013 

Arrival: 

01/06/2016 

3.83917757 1.25579628 
748.24 0.7846 

Departure: 

06/07/2013 

Arrival: 

24/07/2015 

3.820898907 1.117814179 

Flyby: 1 – Earth (EGA) Flyby: 1 – Earth (EGA) 

883.40 0.8684 

Departure: 

13/05/2016 

Flyby - Earth: 

30/07/2017 

Arrival: 

13/10/2018 

2.14480657 0.8376562 
845.23 0.8789 

Departure: 

12/05/2027 

Flyby - Earth: 

01/08/2028 

Arrival: 

03/09/2029 

2.034274163 0.870011798 

Flyby: 2  - Earth – Mars (EMGA) Flyby: 2  - Earth – Mars (EMGA) 

1081.15 0.8739 

Departure: 

11/02/2017 

Flyby - Earth: 

11/05/2018 

Flyby - Mars: 

17/11/2018 

Arrival: 

28/01/2020 

2.04883921 0.58081769 
1035.51 0.8886 

Departure: 

31/01/2017 

Flyby - Earth: 

08/05/2018 

Flyby - Mars: 

18/11/2018 

Arrival: 

02/12/2019 

1.86129921 0.647333385 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 exhibits a comparison of time and final mass of the vehicle with the use of the optimized maneuver 

without flyby e with flyby at the Earth, and, Earth and Mars. 

 

5.   CONCLUSION 

The search for the best initial parameters for a mission is facilitated if the transfer orbit with free time is optimized 

first. The ideal asteroids for EGA missions should possess low orbit energy, perihelion close to 1 UA, low 

inclination per EGA.  

Indirect optimization methods based on optimal control theory supply accurate solutions. The use of Gravity 

Assisted Maneuver (EGA, EMGA or EVGA) in this mission reduces the fuel consumption and the time of the 

maneuver, demonstrating that this important formulation is viable and useful.  

Orbits with Phall 1 had been analyzed using gravity assisted maneuvers and verified resulted optimistical for the 

implantation of probes using this technology, also being able to use this formularization in the future missions that 

use launch vehicle that is in development/improvement (VLS-2, Brazil), which can inject in LEO (low earth orbit) 

a satellite medium sized, thereafter, use the solar electric propulsion (SEP) or nuclear (NEP) to dislocate the 

vehicle for desired orbits, maximizing them with the maneuver that use assisted gravity. 

The present analysis favor a guess at the tentative solution as the Earth's positions as departure and flyby are a 

priori known. The ideal asteroid has perihelion radius which is close to 1AU, a low-energy orbit and low 

inclination with relation to the ecliptical axis.  

The performance parameters of Phall are competitive with known electromagnet Hall thrusters found on the 

literature. 

The fuel consumption for a mission with multiples flyby's follows the criterion of the asteroid orbit.  
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