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Ž .Here the nonlinear ordinary differential equation yy� � S x is investigated.
The interest of the proposed study is twofold: indeed, the high nonlinearity
exhibited by the considered equation does not allow the application of any
linearization method; on the other hand, it turns out, under suitable conditions, to
be equivalent to a nonlinear integral equation arising in extended kinetic theory.
The equivalence between the two nonlinear problems is exploited; in particular,
conditions which need to be prescribed to establish such an equivalence are
considered. Backlund transformations are applied to study the problem of interest.¨
Specifically, it is proved that the nonlinear differential equation enjoys an invari-

Ž .ance property when the ‘‘source term’’ S x is represented by a solution of a
suitable functional equation. The latter is discussed and some solutions are
explicitly written; thus, the corresponding Backlund charts are depicted to show the¨
obtained new invariances. � 2000 Academic Press

Key Words: nonlinear ordinary differential equations; Backlund transformations;¨
invariance properties.

1. INTRODUCTION

Backlund and reciprocal transformations have been applied in investi-¨
gating boundary value problems, as well as initial value problems in
various applications. They have been first introduced in connection with
models mainly in gas dynamics and fluid mechanics: an extensive bibliogra-

� � Ž � �.phy can be found in 15, 16 . Subsequently see Refs. 15, 16 , such
transformations have been proved to represent a powerful tool in investi-
gating mathematical problems arising from applied mathematics.

Indeed, in the case of nonlinear evolution equations, such transforma-
tions have been shown to play a key role in revealing structural properties
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such as Hamiltonian and�or bi-Hamiltonian structure, symmetry proper-
� �ties, etc. 6, 7, 9, 11 .

Here, conversely, Backlund and reciprocal transformations are applied¨
in investigating a nonlinear ordinary differential equation.

The nonlinear ordinary differential equation under investigation is

yy� � S x , 1.1Ž . Ž .

Ž .where S x is a suitably regular given function. The interest of the
Ž .proposed study is twofold: the high nonlinearity exhibited by Eq. 1.1 does

not allow us to apply any linearization method; on the other hand, on
Ž .imposing suitable initial conditions on Eq. 1.1 , the obtained Cauchy

problem turns out to be equivalent to a nonlinear integral equation which
Ž � �.arises in extended kinetic theory see for instance Ref. 4 .

In the opening Section 2, the model is briefly recalled. Specifically, the
particular case under investigation is specified; the connection between the

Ž .nonlinear differential equation 1.1 and a nonlinear integral Boltzmann
equation is considered. The Cauchy problem equivalent to the nonlinear
integral equation is written.

In the subsequent Section 3, Backlund and reciprocal transformations¨
Ž .are employed to study the nonlinear differential equation 1.1 .

Ž .A functional equation is shown to single out those given functions S x
Ž .in 1.1 which correspond to nonlinear differential equations exhibiting an

invariance property. Such a novel invariance is proved on application of
Backlund and reciprocal transformations; the results are depicted in a¨
Backlund chart constructed to summarize the invariance properties as well¨
as all the links among the equations which have been considered.

Section 4 is devoted to the investigation of the functional equation
obtained in the previous section; some solutions of this functional equa-
tion are exhibited as well as the corresponding invariances of the nonlinear
differential equation.

The paper closes with a remark concerning the general solution of the
functional equation in the case when all the real variables of the problem,
namely the independent as well as the dependent variable, are replaced by
complex ones.

2. MODEL EQUATIONS

The nonlinear differential problem to be discussed in this paper origi-
nates from the nonlinear stationary spatially homogeneous, isotropic parti-
cle transport theory. The physics of the problem is exhaustively described

� �in the general case in Ernst’s review paper 8 and this model is studied by
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� �Boffi and co-workers 2�5 ; the relevant goal is the determination of
certain given test particles, diffusing in an unbounded medium by binary
interactions between themselves. The source-removal problem here inves-
tigated is governed by the extended Boltzmann equation,

�
� �f x K x , � f � d� � QS x , S, f : A � � � � Q � � ,Ž . Ž . Ž . Ž .H

0

2.1Ž .

Ž .wherein x denotes the speed modulus, f x the sought isotropic distribu-
Ž . Ž . 1tion function nonnegative valued , and the kernel K x, � is given by

� x��R
K x , � � ug u du; x � 0, � � 0, � � 0; 2.2Ž . Ž . Ž .H R R2 x� � �x	�

Ž .in which � measures the strength of the removal and QS x representsR
Ž .an external source nonnegative valued function of the considered test

Ž . � Ž .particles of intensity Q and shape S x with H S x dx � 1.0
Ž .The specialization of the removal collision frequency g u and, conse-R

Ž .quently, of the kernel K x, � , produces thus a whole series of problems
of physical interest.

Restricting to the case of a one dimensional box of length � 	 � and
adopting the so-called ‘‘maximum’’ approximation to the ‘‘hard sphere’’
model, that is, when the kernel is chosen of the form,

x , � � x
K x , � � 2.3Ž . Ž .½ � , � � x ,

Ž .Eq. 2.1 reads

x QS xŽ .�
f x x f � d� � � f � d� � , 0 � � � � � ��.Ž . Ž . Ž .H H½ 5 �� x R

2.4Ž .

If, furthermore, for sake of simplicity, the parameters Q and � are bothR
set equal to 1, the nonlinear integral equation simplifies to

x �
f x x f � d� � � f � d� � S x 2.5Ž . Ž . Ž . Ž . Ž .H H½ 5

� x

Ž . Ž .in the unknown function f x and where S x is the same given function
Ž . Ž .of Eq. 2.1 which represents the ‘‘source’’ term, and the kernel K x, �

1 Ž .In the following, definition of the kernel K x, � when x or � equal to zero is not
required.
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Ž . � �has been assumed of the form 2.3 . In Refs. 2�5 nonlinear integral
Ž .equations of the form 2.1 have been studied when investigating the

particular case of extended kinetic theory of gases. The mathematical
Ž . � �problem 2.5 models a ‘‘low density’’ 5 gas of particles, which are

annihilated under collision, contained in a one dimensional box of length
� 	 � .

Ž . Ž .On substituting the expression of the kernel 2.3 in Eq. 2.5 the
nonlinear integral problem of interest reads

x �
f x x f � d� � � f � d� � S x 2.6Ž . Ž . Ž . Ž . Ž .H H½ 5

� x

Ž . Ž .in the unknown function f x and where S x is the ‘‘source’’ term. A
corresponding nonlinear differential problem can be constructed on set-
ting

x �
y x � x f � d� � � f � d� , 2.7Ž . Ž . Ž . Ž .H H

� x

which, after derivation with respect to x, in turn, once and twice, gives

x
y	 x � f � d� , y� x � f x . 2.8Ž . Ž . Ž . Ž . Ž .H

�

Thus, the Cauchy problem, which is equivalent to the integral problem
Ž .2.6 , is obtained

� � � �
yy� � S x , S : � , � � � � �Ž .
� �� � �y	 � � 0, y : � , � � � � �Ž . 2.9Ž .

��y � � M , M � � ,Ž . 1 1

Ž . Ž .where S x represents the ‘‘source’’ term which appears in 2.6 .

¨3. BACKLUND CHART

This section is devoted to investigating the nonlinear differential equa-
tion

yy� � S x , S : ��� ��, 3.1Ž . Ž .

in the unknown function y : ��� �� where S is a given function. It
Ž .should be preliminarly remarked that no solution of 3.1 can be deter-

� � Ž .mined via similarity reduction methods 13, 14 since Eq. 3.1 does not
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enjoy any non-trivial symmetry property.2 In this section, Backlund trans-¨
Ž .formations are employed to relate the nonlinear equation 3.1 to other

nonlinear ordinary differential equations.
The idea is to obtain a nonlinear equation which enjoys an invariance

property under some transformations. Since the nonlinear ordinary differ-
ential equation here considered is a non-homogeneous one an invariance
result can be obtained only corresponding to ‘‘suitable’’ given functions
Ž .S x . Accordingly, the applied Backlund transformations induce a func-¨

Ž .tional equation for the function S x . Specifically, it will be shown that,
Ž .provided S x satisfies the mentioned functional equation, the differential

Ž .equation 3.1 is related to a differential equation which is invariant under
the Mobius group of transformations. Such Backlund transformations and¨ ¨
functional equations are explicitly written in the following proposition.

Ž .PROPOSITION 3.1. Whene�er the function S x is a solution of the func-
tional equation

ad 	 bc ax � b
S x � S ;Ž . 2 ž /cx � d� �cx � d

� � � �S : � , � � � � � ; a, b , c, d � �; ad 	 bc � 0 3.2Ž .
Ž .then the nonlinear equation yy� � S x is in�ariant under all the transforma-

tions defined by

ax � b

x � , ad 	 bc � 0

cx � d�I : 3.3Ž .2cx � dŽ .2 2y x � y x .Ž . Ž .� ad 	 bc

Ž .Proof. Consider the differential equation 1.1 and apply the transfor-
mation

T : � � y2 3.4Ž .

which has an empty kernel since the solution of the differential equation is
looked for in the set of positive valued functions. It follows

1
2�� � 	 � 	 � 2�S x . 3.5Ž . Ž .

2

2 Ž . 	n Ž Ž .The symmetry analysis of the nonlinear equation y� � f x y f x given regular
. � � � �function comprised in 12 does not apply in the present case; indeed, the authors of 12 are

interested in the case n � 2 which they exploit extensively and, in addition, they obtain
further symmetry results for other values of n; however, their analysis does not apply when
n � 1, which is the case considered here.
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FIGURE 1

� �The subsequent application of the reciprocal transformation 15, 16

x � 
 , D � �Dt x
R 3.6Ž .	1½ � �� � D 
 , D � 
 D ,t x t t

wherein

d d d
D � , D � , 
 � 
 , 3.7Ž .t x tdt dx dt

gives

� 4
 ; t � 2
 S 
 , 3.8Ž . Ž .t

� 4where 
; t denotes the Schwartzian derivative

2

 1 
t t t t� 4
 ; t � 	 . 3.9Ž .ž / ž /
 2 
t tt

Ž . Ž . Ž .The links among Eqs. 3.1 , 3.5 , and 3.8 are summarized in the Backlund¨
chart shown in Fig. 1. This shows how a new invariance property is

� 4obtained. Since, as is well known, the Schwartzian derivative 
; t is
invariant under the Mobius group of transformations,¨

a
 � b
M : 
 � � � , a, b , c, d � �; ad 	 bc � 0, 3.10Ž .

c
 � d

Ž .it follows that if also the right hand side of 3.8 enjoys the same property,
namely if

� S � � 
 S 
 , 3.11Ž . Ž . Ž .t t

Ž . Ž .where � is given by 3.10 , then Eq. 3.1 is invariant under the all
transformations,

ax � b

x � , ad 	 bc � 0

cx � d�I : 3.12Ž .2cx � dŽ .2 2y x � y x .Ž . Ž .� ad 	 bc
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FIGURE 2

The latter are induced by the Backlund chart shown in Fig. 2. The thesis is¨
Ž . Ž .readily proved, since on substitution of � in 3.10 into 3.11 , the

Ž .functional equation 3.2 is obtained.

4. FUNCTIONAL EQUATION

This section is devoted to the discussion of the functional equation
which determines those ‘‘source’’ terms such that the invariance property
stated in the previous section holds.

Ž . Ž .Indeed, the invariance property 3.3 is fulfilled by 1.1 whenever the
Ž .function S represents a solution of the functional equation 3.2 , here

rewritten, only for convenience,

ad 	 bc ax � b
� �� �S x � S , S : � , � � � � � ,Ž . 2 ž /cx � d� �cx � d

wherein

0 � � � x � � � ��, a, b , c, d � �; ad 	 bc � 0. 4.1Ž .

Ž .Hence, a brief discussion concerning solutions of 3.2 is convenient,
� � Ž .indeed, the general solution 1 of Eq. 3.2 . In what follows the Backlund¨

charts which correspond to particular choices of the parameters a, b, c, d
� � are depicted.

Ž . �1 Let a � � , b � c � 0, d � 1; namely the functional equation
Ž .3.2 reduces to

S x � aS ax , 4.2Ž . Ž . Ž .
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FIGURE 3

which admits solution

1
S x � . 4.3Ž . Ž .

ax

Correspondingly, the Backlund chart takes the form shown in Fig. 3 where¨
R̃ denotes the transformation obtained when the transformations T and

Ž . Ž .R, defined, in turn via 3.4 and 3.6 , are combined.
Ž . Ž .2 Let d � a � 0, b � c � 1 in 3.2 ; then the functional equation

reads

1 1
S x � 	 S . 4.4Ž . Ž .2 ž /xx

The latter admits the solution

1
S x � 	 ln x . 4.5Ž . Ž . Ž .

x

Hence, the Backlund chart can be specialized in this case, shown in Fig. 4.¨

FIGURE 4
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FIGURE 5

Ž .3 Let a � d � 0, b � 	1, c � 1; namely the functional equation
Ž .3.2 reduces to

1 1
S x � S , 4.6Ž . Ž .2 ž /xx

� � 3which 1 admits the general solution

�
�S x � , � � � . 4.9Ž . Ž .

x

Correspondingly, the Backlund chart takes the form shown in Fig. 5 which¨
Ž .can be obtained from the Backlund chart first examined in case 1¨

provided � � a	1, on use of the invariance 
 � 	
 enjoyed by equation


t� 4
 ; t � 	2 . 4.10Ž .



3 Ž . 	2Equation 4.6 , letting y � x , can be equivalently written in the form

S xy � y	1S x , 4.7Ž . Ž . Ž .

which represents a special case of the family of functional equations, in the unknown
function �,

� xy � y k� x , 4.8Ž . Ž . Ž .

Ž . k Ž .whose general solution is given by � x � � x . Equation 4.6 corresponds to choosing
Ž .k � 	1 in 4.8 ; thus, the solution in the present case is readily written recalling that those

solutions of interest are S : ��� ��.
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Ž . Ž .4 The case d � a � 0, b � 	1, c � 1 in 3.2 ; then the functional
equation reads

1 1
S x � S . 4.11Ž . Ž .2 ž /xx

The latter admits the solution

1
� �S x � ln x . 4.12Ž . Ž .

x

Hence, the Backlund chart can be specialized in this case, shown in Fig. 6.¨
Note that this invariance can be obtained directly combining the solution

Ž .of the functional equation which has been obtained in case 2 with the
Ž .invariance 
 � 	
 which is enjoyed by the function 	2 
 �
 .t

5. REMARK

The functional equation

az � b
F z � F , F : � � �; a, b , c, d � �, 5.1Ž . Ž .ž /cz � d

� �when ad 	 bc � 1, characterizes the automorphic functions 10 . Hence, if
Ž .analytic solutions are looked for, in the case when in 5.1 the parameters

a, b, c, d � � are chosen so that ad 	 bc � 0, the general solution is
represented by the set of the rescaled automorphic functions.

FIGURE 6
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The analyticity of automorphic functions implies that, when both sides
Ž .of 5.1 are derived with respect to z, the following functional equation is

obtained

ad 	 bc az � b
F	 z � F	 ,Ž . 2 ž / 5.2cz � d Ž .� �cz � d

F	 : � � �a, b , c, d � �; ad 	 bc � 0.

Ž . Ž .The latter, on introduction of the analytic functions f z � F	 z , takes
the form

ad 	 bc az � b
f z � f , f : � � �; a, b , c, d � �; ad 	 bc � 0.Ž . 2 ž /cz � d� �cz � d

5.3Ž .

By construction, its general solution is given by the set of all analytic
functions which represent derivatives of the rescaled automorphic func-
tions.

Ž . Ž .Now, the functional equation 5.3 can be obtained if in 3.2 the real
Ž .variable x and the real valued function unknown S x are replaced, in

turn, by a complex variable z and by the complex unknown function
f : � � �.

ACKNOWLEDGMENTS

The author expresses her gratitude to Professor Vinicio Boffi who brought the problem to
be studied to her attention. She is also sincerely in debted to Professor Giovanni Gallavotti
who suggested exploring possible connections with automorphic functions. Thanks are also
due to G.N.F.M.�I.N.D.A.M. for partial financial support.

REFERENCES

1. J. Aczel, ‘‘Lectures on Functional Equations and Their Applications,’’ Academic Press,
Boston, 1966.

Ž .2. V. C. Boffi and G. Spiga, Phys. Fluids 25 1982 , 1987.
Ž .3. V. C. Boffi and G. Spiga, J. Math. Phys. 24 1983 , 1625.

Ž .4. V. C. Boffi, G. Spiga, and J. R. Thomas, Z. Angew. Math. Phys. 37 1986 , 376.
Ž .5. V. C. Boffi and D. H. Zanette, Nuo�o Cimento D 14 1992 , 429.

6. S. Carillo and B. Fuchssteiner, The abundant symmetry structure of hierarchies of
Ž .nonlinear equations obtained by reciprocal links, J. Math. Phys. 30 1989 , 1606�1613.

7. S. Carillo and B. Fuchssteiner, Non commutative symmetries and new solutions of the
Harry Dym equation, in ‘‘Nonlinear Evolution Equations: Integrability and Spectral

Ž .Methods’’ A. Degasperis, A. P. Fordy, and M. Lakhshmanan, Eds. , pp. 351�366,
Manchester Univ. Press, Manchester, 1990.



NONLINEAR DIFFERENTIAL EQUATIONS 839

Ž .8. M. H. Ernst, Phys. Rep. 78 1981 , 1.
9. A. S. Fokas and B. Fuchssteiner, Backlund transformations for hereditary symmetries,¨

Ž .Nonlinear Anal. 5 1981 , 423�432.
10. L. R. Ford, ‘‘Automorphic Functions,’’ Chelsea, New York, 1957.
11. B. Fuchssteiner and S. Carillo, Soliton structure versus singularity analysis: Third order

Ž .completely integrable nonlinear equations in 1 � 1 dimensions, Phys. A 152 1989 ,
467�510.

Ž .12. E. Herlt and H. Stephani, J. Math. Phys. 33 1992 , 2966�2971.
13. N. H. Ibragimov, ‘‘Elementary Lie Group Analysis and Ordinary Differential Equations,’’

Wiley, Chichester�Boston, 1999.
14. P. J. Olver, ‘‘Invariant Theory and Differential Equations,’’ Lecture Notes in Math., Vol.

1278, Springer-Verlag, Berlin�New York, 1987.
15. C. Rogers and W. F. Ames, ‘‘Nonlinear Boundary Value Problems in Science and

Engineering,’’ Academic Press, Boston, 1989.
16. C. Rogers and W. F. Shadwick, ‘‘Backlund Transformations and Their Applications,’’¨

Mathematics in Science and Engineering, Vol. 161, Academic Press, New York, 1982.
Ž .17. G. Spiga, R. L. Bowden, and V. C. Boffi, J. Math. Phys. 25 1984 , 3444.


	1. INTRODUCTION
	2. MODEL EQUATIONS
	3. BACKLUND CHART
	FIGURE 1
	FIGURE 2

	4. FUNCTIONAL EQUATION
	FIGURE 3
	FIGURE 4
	FIGURE 5

	5. REMARK
	FIGURE 6

	ACKNOWLEDGMENTS
	REFERENCES

