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Abstract. In this paper problem
⎧⎪⎪⎨
⎪⎪⎩

ut − div(|x|−pγ |∇u|p−2∇u) = λ
up−2u

|x|p(γ+1)
in Ω × (0,∞), 0 ∈ Ω,

u(x, t) = 0 on ∂Ω × (0,∞),

u(x, 0) = ψ(x) ≥ 0

(0.1)

is studied when 1 < p < N , −∞ < (γ + 1) < N
p

, and under hypotheses on the initial data.
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1. Introduction. The results by Baras and Goldstein in [7] concerning a blow-
up for the solution to the heat equation with a critical potential of the type⎧⎪⎨

⎪⎩
ut − ∆u = λ

u

|x|2 in Ω × (0,∞), 0 ∈ Ω,

u(x, t) = 0 on ∂Ω × (0,∞),

u(x, 0) = ψ(x) ≥ 0

(1.1)

have attracted in recent years the interest of research on some related problems.
Roughly speaking, apparently, the main ingredient of the problem studied by Baras
and Goldstein is a classical Hardy inequality,∫

Rn

|u|2
|x|2 dx ≤ CN

∫
Rn

|∇u|2 dx,(1.2)

where CN = ( 2
N−2 )2 is the optimal constant that is not achieved in the Sobolev space

D1,2(Rn). For problem (1.1) Baras and Goldstein have proved that if λ ≤ C−1
N , then

there exists a global solution if the initial datum is in a convenient class, while if
λ > C−1

N , there is no solution in the sense that if we consider the solutions un of the
problems with truncated potential Wn(x) = min{n, |x|−2}, then

lim
n→∞

un(x, t) = +∞ for all (x, t) ∈ Ω × R
+.
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We will call this behavior spectral instantaneous complete blow-up. On the other hand,
we have the following extension of Hardy’s inequality:∫

Rn

|u|p
|x|(γ+1)p

dx ≤ Cn,p,γ

∫
Rn

|∇u|p
|x|γp dx, −∞ < γ <

N − p

p
.(1.3)

This is a particular limit case of the following Caffarelli–Kohn–Nirenberg inequalities
which are proven in [13] (see also [14], [4], and [11]).

Proposition 1.1. Assume that 1 < p < N . Then there exists a positive constant
CN,p,γ,q such that, for every u ∈ C∞

0 (RN ),(∫
Rn

|u|q
|x|δq dx

)p/q

≤ CN,p,γ,q

∫
Rn

|∇u|p
|x|γp dx,(1.4)

where p, q, γ, δ are related by

1

q
− δ

N
=

1

p
− γ + 1

N
, γ ≤ δ ≤ γ + 1,(1.5)

and δq < N , γp < N .
Remark 1.2.

(i) Inequality (1.3) holds a fortiori in every open set Ω.
(ii) One can take

Cn,p,γ =

(
p

N − p(γ + 1)

)p

(1.6)

in (1.3). This choice of Cn,p,γ is optimal in every open set Ω containing 0. (The
arguments are similar to those in [19] for γ = 0.)

(iii) If 0 ∈ Ω, the optimal constant is never attained in (1.3).
Remark 1.3. The other limit case for inequality (1.4) is for δ = γ, and then one

obtains a weighted Sobolev inequality

(∫
Rn

|u|p∗

|x|γp∗ dx

)p/p∗

≤ Sn,p,γ

∫
Rn

|∇u|p
|x|γp dx,(1.7)

where p∗ = pN
N−p .

It is quite natural to study the parabolic equations associated to inequality (1.3);
namely, for the same values of p and γ we consider the problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut − div

(
|∇u|p−2∇u

|x|γp

)
= λ

|u|p−2u

|x|(γ+1)p
, (x, t) ∈ Ω × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = ψ(x), x ∈ Ω,

(P)

where we assume that Ω is a bounded domain in R
n such that 0 ∈ Ω and ∂Ω is a C1

submanifold.
It is clear that the constant (1.6) will play an essential role in what follows, since

the behavior of the problem (P) will deeply depend on whether the parameter λ is
smaller or greater than the value

λn,p,γ =
1

Cn,p,γ
=

(
N − p(γ + 1)

p

)p

.(1.8)
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Fig. 1.1. Summary of the existence and nonexistence results for λ > λN,p,γ:
Region A: Global existence of energy solutions.
Region B: Global existence of entropy solutions.
Region C: Global existence of very weak solutions.
Region D: Local existence of solutions.
Region E: Instantaneous complete blow-up.

It could be expected that the behavior for problem (P) should be similar to the
one obtained by Baras and Goldstein for (1.1). This conjecture is not completely
true. Actually, there is another property which plays an important role in the spec-
tral instantaneous and complete blow-up: a Harnack inequality for the homogeneous
parabolic equation. This property is verified if p ≥ 2 and (1 + γ) > 0. The case p = 2
was proved by Chiarenza and Serapioni in [15], while the case p > 2 was proved by
Abdellaoui and Peral in [1].

The main contribution of this paper is to show that in the complementary range
of the parameters p and γ we find solutions, even for large values of λ. The case
p = 2, γ = 0 has been studied in [7] and recently in [26]. The case p �= 2, γ = 0 has
been studied in [19] and [5].

The plan of this work is as follows. We begin with section 2, where some notation
is provided and appropriate function spaces are defined. Section 3 is devoted to the
existence results. In subsection 3.1 we obtain the existence of a global solution in the
case λ < λN,p,γ for all 1 < p < N . This is the content of Theorem 3.1. In this case

the solution belongs to the space Lp(0, T ;D1,p
0,γ(Ω)), which is naturally related to (P)

(see section 2 for the definition). For this reason we will refer to this function u as an
energy solution. In the proof of Theorem 3.1 we give the details of some convergence
results that will be used thereafter. Subsection 3.2 deals with the case λ > λN,p,γ

and 1 < p ≤ 2. The existence of solutions according to the values of γ and p is
investigated, and the main results are stated in Theorems 3.3, 3.6, and 3.8. Roughly
speaking, as γ and p become larger, we find solutions which are less and less regular.
More precisely, we show the following.

1. If 1 < p ≤ 2 and γ + 1 < N(2−p)
2p (see region A in Figure 1.1), then we show

the existence of energy solutions (see Theorem 3.3).

2. If 1 < p ≤ 2 and N(2−p)
2p ≤ γ + 1 < N(2−p)

p (see region B), we show the

existence of a solution of (P) in the sense of distributions; however, this solution does
not belong to the energy space (see Theorem 3.6). We will show that this is an entropy
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solution in the sense introduced in [8], [22], and [23] for equations with L1 data (see
Definition 3.5 below).

3. If 1 < p ≤ 2 and N(2 − p)/(p) < γ + 1 < N/p (see region C), we show the
existence of solutions of (P) in a very weak sense (see Theorem 3.8). We would like
to point out that in this case we solve a problem where the right-hand side is not
bounded in L1.

Notice that, comparing the existence results with those contained in [3] for the case
p = 2, we find that in the nonlinear case (i.e., p �= 2) a very much different behavior
of the solutions appears, depending on the parameters; namely, the behavior in cases
2 and 3 above is typical of the nonlinear setting and does not appear in the linear
case.

In subsection 3.3, for completeness, we include the elementary local existence
result for p ≥ 2 and γ ≤ −1 (see region D in Figure 1.1) in Theorem 3.10, which is
also stated in [2].

In section 4 we study the blow-up when p > 2, 0 < 1 + γ < N
p , and λ > λN,p,γ

(see region E in Figure 1.1), extending and improving the result of [19] for γ = 0.
(See also [12].)

The case p = 2 is obtained in [3] by different kinds of techniques. The main result
is Theorem 4.4 and its consequences. The results in Theorems 4.5 and 4.7 have also
been stated in [2] and are included here for completeness. With regard to the proof
of instantaneous blow-up that we give, it is interesting to point out that for p > 2 the
blow-up is stronger than that obtained for p = 2. Indeed, even the solutions un of
the problems with truncated potential, Wn(x) = min{n, |x|−p(γ+1)}, blow up in finite
time, and the blow-up time tends to zero as n → ∞.

Finally, in section 5 we study the extinction in finite time of the solution in the
case 1 < p < 2, according to the relation between λ and λN,p,γ . Roughly speaking, the
role that λN,p,γ plays in the case p > 2 for the blow-up is changed to be a threshold
for the finite time extinction property in the case 1 < p < 2.

2. Notation and function spaces. For 1 < p < ∞ and γ < N−p
p , we define

the weighted space

Lp
γ(Ω) =

{
u : Ω → R measurable, such that

u(x)

|x|γ ∈ Lp(Ω)

}
,

equipped with the norm

‖u‖Lp
γ(Ω) =

(∫
Ω

|u(x)|p
|x|γp dx

)1/p

.

It is easy to check that the dual space (Lp
γ(Ω))′ of Lp

γ(Ω) is the space Lp′

−γ(Ω), where

p′ is defined by 1
p + 1

p′ = 1. Moreover, we define D1,p
0,γ(Ω) as the closure of C∞

0 (Ω) in
the norm

‖u‖D1,p
0,γ(Ω) = ‖∇u‖Lp

γ(Ω) =

(∫
Ω

|∇u(x)|p
|x|γp dx

)1/p

.

As 1 < p < ∞, D1,p
0,γ(Ω) is reflexive, and we can define the dual space of D1,p

0,γ(Ω),

which we will denote by D−1,p′

−γ (Ω), as

D−1,p′

−γ (Ω) = {G ∈ D′(Ω) : G = divF, F ∈ Lp′

−γ(Ω; RN )}.
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Let us point out that functions in Lp
γ(Ω) do not need to be distributions since they

do not belong necessarily to L1(Ω). If γ + 1 ≤ − (p−1)N
p , D1,p

0,γ �⊂ L1(Ω). The meaning

of the gradient in this case is understood as follows. If u ∈ D1,p
0,γ and {φn}n∈N ⊂ C∞

0 (Ω)
is an approximating sequence, then we obtain

∇φn → V in Lp
γ(Ω;RN );

in fact, by density and duality we can justify the integration by parts, namely,∫
Ω

〈V, ψ〉dx = lim
n→∞

∫
Ω

〈∇φn, ψ〉dx = −
∫

Ω

u div(ψ)dx for all ψ ∈ D1,p′

0,−(γ+1).

As a consequence we define grad(u) := V. On the other hand, Theorem 1.18 in [20]
shows that if u ∈ D1,p

0,γ , then the truncature Tk(u) ∈ D1,p
0,γ(Ω), where Tk(u) is defined

by Tk(u) = u if |u| < k and Tk(u) = k u
|u| if |u| ≥ k. Since Tk(u) ∈ L∞(Ω), we can

define ∇Tk(u) as a distribution and by Theorem 1.20 in [20] we have

∇Tk(u) = grad(u)χ{|u|<k}.(2.1)

Hereafter we will denote ∇u = grad (u). Notice the relation of this concept of gradient
with the one in Lemma 2.1 in [8].

Therefore, inequality (1.4) implies the continuous imbedding

D1,p
0,γ(Ω) ⊂ Lq

δ(Ω) for p, q, γ, δ satisfying (1.5).(2.2)

This implies, by duality,

Lq′

−δ(Ω) ⊂ D−1,p′

−γ (Ω) for p, q, γ, δ satisfying (1.5).(2.3)

We now define the following “evolution” spaces which will be useful in what
follows.

Lp(0, T ;D1,p
0,γ(Ω))={u(x, t) : Ω × (0, T ) → R measurable :

u(·, t) ∈ D1,p
0,γ(Ω) for a.e. t ∈ (0, T ), ‖u(·, t)‖D1,p

0,γ(Ω) ∈ Lp(0, T )},

endowed with the norm

‖u‖Lp(0,T ;D1,p
0,γ(Ω)) =

(∫ T

0

‖u(·, t)‖pD1,p
0,γ(Ω)

dt

)1/p

=

(∫∫
QT

|∇u|p
|x|pγ dx

)1/p

.

The dual space of Lp(0, T ;D1,p
0,γ(Ω)) is Lp′

(0, T ;D−1,p′

−γ (Ω)). Let us point out that

D1,p
0,γ(Ω) ⊂ Lq

δ(Ω) compactly

for every p, q, γ, δ satisfying 1
q − δ

N > 1
p − γ+1

N with γ ≤ δ ≤ γ + 1 and δq < N ,
γp < N .

Indeed, a sequence {un} which is bounded in D1,p
0,γ(Ω) has a subsequence, again

denoted by {un}, which converges almost everywhere in Ω to a function u ∈ Lq
δ(Ω).

Moreover, by Hölder’s inequality and (1.7), for every measurable subset E ⊂ Ω,

∫
E

|un − u|q
|x|δq dx ≤

(∫
Ω

|un − u|p∗

|x|γp∗ dx

)q/p∗ (∫
E

1

|x|(δ−γ) qp∗
p∗−q

dx

)(p∗−q)/p∗

≤ c

(∫
E

1

|x|(δ−γ) qp∗
p∗−q

dx

)(p∗−q)/p∗

.
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Since the function in the last integral is an L1 function, we get the compactness result
by Vitali’s theorem.

It is easy to see that the operator defined by

−∆p,γu = −div

(
|∇u|p−2∇u

|x|pγ

)

maps D1,p
0,γ(Ω) into its dual D−1,p′

−γ (Ω) and is hemicontinuous, coercive, and monotone.
(See [21].)

In what follows, we will often use the following result, which is an easy application
of Theorem 1.2 of [21] and the reference [24] for the continuity with respect to the
time of the L2-norm.

Proposition 2.1. If f ∈ Lp′
(0, T ;D−1,p′

−γ (Ω)), ψ ∈ L2(Ω), then there exists a

unique solution in the distribution sense, u ∈ Lp(0, T ;D1,p
0,γ(Ω)) ∩ C0(0, T ;L2(Ω)), of

the following problem:⎧⎨
⎩

ut − ∆p,γu = f in Ω × (0, T ) ,
u(x, t) = 0 in ∂Ω × (0, T ) ,
u(x, 0) = ψ(x) in Ω.

We have the following result about the boundedness of the solutions.
Lemma 2.2. Let u ∈ Lp(0, T ;D1,p

0,γ(Ω)) ∩ C0(0, T ;L2(Ω)) be a distributional solu-
tion of (F) (see section 2), with ψ ∈ L∞(Ω), and assume that there exist two constants
q and β0 such that

q >
N

p
, β0 < pγ, ess sup

t

∫
Ω

|f(x, t)|q|x|β0q dx < +∞.(2.4)

Then u ∈ L∞(QT ).
The proof is a slight modification of the classical arguments and is omitted.

3. Existence results. We start with the simpler case λ < λN,p,γ , where λN,p,γ

is defined by (1.8).

3.1. The case λ < λN,p,γ : Global existence. As usual we denote by Tn(s)
the truncation function, i.e., Tn(s) = s if |s| < n, Tn(s) = n sign s if |s| > n. Let

us observe that in this range for λ the operator −∆p,γ − λ |u|p−2u
|x|p(γ+1) is coercive in the

space D1,p
0,γ(Ω). This essentially justifies the following.

Theorem 3.1. If 1 < p < N , γ < N−p
p , λ < λN,p,γ , ψ(x) ∈ L2(Ω), there exists

one distributional solution u for problem (P). Moreover, u ∈ Lp(0, T ;D1,p
0,γ(Ω)) ∩

C0(0, T ;L2(Ω)).
Proof. Define

wn(x) =

⎧⎨
⎩
|x|−pγ if γ ≥ 0,

|x|−pγ +
1

n
if γ < 0,

fn(x, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tn(|u|p−2u)

|x|p(γ+1) + 1
n

if γ ≥ 0,

Tn(|u|p−2u)

|x|pγ(|x|p + 1
n )

if γ < 0.
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Let us first consider the following approximate problems:⎧⎪⎪⎨
⎪⎪⎩

(un)t − div
(
wn(x)|∇un|p−2∇un

)
= λfn(x, un), (x, t) ∈ Ω × (0, T ),

un(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

un(x, 0) = Tn(ψ(x)), x ∈ Ω.

(Pn)

By Proposition 2.1 of section 2 and Schauder’s fixed point theorem, it is quite easy to
get existence of a solution un ∈ W 1,p

0 (Ω)∩L∞(QT ). Let us multiply (Pn) by un(x, t).
Using inequality (1.4), one obtains∫∫

QT

∂un

∂t
un +

∫∫
QT

wn(x)|∇un|p ≤ λ

∫∫
QT

fn(x, un)un

≤ λ

∫∫
QT

|un|p
|x|p(γ+1)

≤ λ

λN,p,γ

∫∫
QT

|∇un|p
|x|pγ ,

where the first integral is understood as a duality product. Since λ < λN,p,γ , we get
the estimates

‖un‖L∞(0,T ;L2(Ω)) ≤ c1,(3.1) ∫∫
QT

|∇un|p
|x|pγ dx dt ≤ c2,(3.2)

that is,

‖un‖Lp(0,T ;D1,p
0,γ(Ω)) ≤ c3.(3.3)

Therefore, there exist a function u ∈ Lp(0, T ;D1,p
0,γ(Ω)) ∩ L∞(0, T ;L2(Ω)) and a sub-

sequence (still denoted by un) such that un ⇀ u weakly in Lp(0, T ;D1,p
0,γ(Ω)) and

∗-weakly in L∞(0, T ;L2(Ω)).
Moreover, if Bε is the sphere centered in the origin with radius ε, we also have

‖un‖Lp(0,T ;W 1,p(Ω\Bε))
≤ c4(ε)(3.4)

for every ε > 0. By (Pn) we also deduce∥∥∥∥∂un

∂t

∥∥∥∥
Lp′ (0,T ;W−1,p′ (Ω\Bε))

≤ c5(ε).(3.5)

Using a compactness Aubin-type result (see, for instance, [24]), by (3.4) and (3.5) we
can assume that un → u strongly in Lp((Ωε) × (0, T )) for every ε > 0, and therefore,
up to a subsequence,

un → u a.e. and in measure in QT .(3.6)

Let us now prove that, for every ε > 0, if we define

Q
(ε)
T = (Ω \Bε) × (0, T ),

then

∇un → ∇u in measure on Q
(ε)
T .(3.7)
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To do this, we follow a technique similar to the one introduced by Boccardo and
Murat in [10]. Let us define, for h > 0, the set

Hh = Hh,m,n = {(x, t) ∈ Q
(ε)
T : |∇un −∇um| > h}.

We are going to prove that, for every δ > 0, one has measHh < δ for m and n large
enough. Then, if we set, for positive A, k,

Γ(n,A) = {(x, t) ∈ Q
(ε)
T : |∇un| > A},

Λ(k) = {(x, t) ∈ Q
(ε)
T : |un − um| > k},

D(A, k, h) = {(x, t) ∈ Q
(ε)
T : |∇un −∇um| > h,

|∇un| ≤ A, |∇um| ≤ A, |un − um| ≤ k},

then

Hh ⊂ Γ(n,A) ∪ Γ(m,A) ∪ Λ(k) ∪D(A, k, h).

For every n ∈ N, meas Γ(n,A) is small for A large enough, uniformly in n, since
|∇un|q is bounded in L1(QT ) for every q < Np/(N − γp). Indeed

∫∫
QT

|∇un|q =

∫∫
QT

|∇un|q
|x|γq |x|γq ≤

(∫∫
QT

|∇un|p
|x|γp |x|γq

) q
p
(∫∫

QT

|x|
γpq
p−q

) p−q
p

,

(3.8)

and the last integral is finite. Moreover, by (3.6), for every fixed k, meas Λ(k) is small
if n, m are large enough. We now consider the set D(A, k, h). By multiplying by
ϕ(x)Tk(un − um) the equations satisfied by un and um, respectively, where ϕ(x) ∈
C∞

0 (Ω), ϕ(x) ≡ 0 for |x| ≤ ε/2, and ϕ(x) ≡ 1 for |x| ≥ ε, one obtains, since the
integral involving the time-derivative is positive,∫∫

Q
(ε/2)
T

|∇un|p−2∇un − |∇um|p−2∇um

|x|pγ ∇Tk(un − um)ϕ(x)

(3.9)

≤ λk

∫∫
Q

(ε/2)
T

|un|p−1 + |um|p−1

|x|p(γ+1)
+ k

∫∫
Q

(ε/2)
T

|∇un|p−1 + |∇um|p−1

|x|pγ |∇ϕ|.

Using Hölder’s inequality, (1.4), and (3.3), one checks that the right-hand side of (3.9)
is bounded by c6k, where c6 is a constant which only depends on λ, ε, p, N . Since
the left-hand side is greater than

ε−pγ

∫∫
Q

(ε)
T ∩{|un−um|≤k}

(
|∇un|p−2∇un − |∇um|p−2∇um

)
· ∇(un − um),

we have proved that this last integral is small (uniformly in n and m) if k is sufficiently
small. Observe now that by the monotonicity and continuity of |ξ|p−2ξ, for every
h > 0, there exists µ > 0 such that

D(A, k, h) ⊂ G(A, k, µ) = {(x, t) ∈ Q
(ε)
T : |∇un| ≤ A, |∇um| ≤ A, |un − um| ≤ k,

(|∇un|p−2∇un − |∇um|p−2∇um) · ∇(un − um) > µ}.
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It follows that

measD(A, k, h)≤ 1

µ

∫∫
Q

(ε)
T ∩{|un−um|≤k}

(
|∇un|p−2∇un−|∇um|p−2∇um

)
·∇(un−um),

so that meas D(A, k, h) is small (uniformly in n and m) if k is sufficiently small. This
proves (3.7). We can now pass to the limit in (Pn) in the sense of distributions.
Indeed, if we multiply (Pn) by ϕ(x, t) ∈ C∞

0 (QT ), we obtain

−
∫∫

QT

un
∂ϕ

∂t
+

∫∫
QT

|∇un|p−2∇un

|x|pγ ∇ϕ = λ

∫∫
QT

Tn

(
|un|p−2un

|x|p(γ+1)

)
ϕ.(3.10)

One can easily pass to the limit in each term using the convergences (3.6) and (3.7),
the estimates (3.1) and (3.3), the inequality (1.4), and Vitali’s theorem.

3.2. The case λ > λN,p,γ , p ≤ 2: Global existence. In this section we will
suppose λ > λN,p,γ and p ≤ 2. We will show the existence of solutions with different
behaviors (see Theorems 3.3, 3.6, and 3.8 in subsections 3.2.1, 3.2.2, and 3.2.3 below),
depending on the range for the parameters γ and p.

More precisely, we will find solutions which become weaker and weaker (from the
point of view of regularity) as γ and p increase (see Figure 1.1).

First, let us prove the following lemma which will be useful in what follows. It
gives the existence of self-similar solutions S(x, t) of the equation in problem (P) for
this range of the parameters.

Lemma 3.2. If λ > λN,p,γ and p < 2, the function

S(x, t) = A ·
(

t

|x|p(γ+1)

) 1
2−p

,(3.11)

where A = A(λ, γ) > 0, is such that

Ap−2 =
1

(2 − p)[(p− 1)δp − (N − p(γ + 1))δp−1 + λ]
and δ =

p(γ + 1)

2 − p
(3.12)

satisfy the following:

1. If γ + 1 < N(2−p)
2p , then S(·, t) ∈ D1,p

γ (Ω) and verifies (P) in the sense of
distributions.

2. If N(2−p)
2p ≤ γ + 1 < N(2−p)

p , then

(i) S(·, t) ∈ Lq(Ω) for every q such that 1 < q < N(2−p)
p(γ+1) ;

(ii) ∇S(·, t) ∈ Lq1(Ω) for every q such that 0 < q1 < N(2−p)
2+pγ ;

(iii) ∇S(·, t) ∈ Lq
γ(Ω) for every q such that 0 < q < N(2−p)

2(γ+1) ;

(iv) |∇S(·,t)|p−1

|x|pγ , S(·,t)p−1

|x|p(γ+1) ∈ L1(Ω);

(v) S solves (P) in the sense of distributions.

3. If N (2−p)
p ≤ (γ + 1) < N

p , then S solves (P) in D′(RN \ {0} × (0,∞)) (and

in some weighted Sobolev spaces that will be made precise later).
Proof. We start by looking for solutions of (P) of the form

S(x, t) = tαf(r), with r = |x|.
Choosing the exponent α = 1/(2−p), one can cancel the variable t from the equation,
getting the following ordinary differential equation for f(r):

αf = (p− 1)r−pγ |f ′|p−2f ′′ + r−(pγ+1)(N − (pγ + 1))|f ′|p−2f ′ + λr−p(γ+1)|f |p−2f.

(3.13)
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Next we look for solutions f(r) of the form

f(r) = Ar−δ, A > 0.

It is easy to check that if we choose δ as in (3.12), we can cancel the terms involving
powers of r in (3.13), getting solutions of the form (3.11), provided the constant A is
defined as in (3.12) and is positive. This last assertion is true if

λ >

(
p(γ + 1)

2 − p

)p

(s− 1) = µp,γ ,

where

s =
N(2 − p)

p(γ + 1)
.

Let us observe that the critical value λN,p,γ can be rewritten as

λN,p,γ =

(
p− 2 + s

2 − p
(γ + 1)

)p

.

Moreover, if we regard the constants λN,p,γ and µN,p,γ as functions of the variable s,

λN,p,γ(2) = µN,p,γ(2), λ′
N,p,γ(2) = µ′

N,p,γ(2), λ′′
N,p,γ(s) > 0 for s ≥ 2 − p,

which implies λN,p,γ ≥ µN,p,γ , since s > 2 − p. Therefore, for λ ≥ λN,p,γ we have
A > 0, and we obtain the existence of a positive solution S(x, t). The regularity of S
stated in the lemma is an easy calculation from the explicit expression of S. It is also
easy to see that, if γ + 1 < N(2 − p)/p, then S(x, t) is a solution of (P) in the sense
of distributions.

We can summarize the results about S for 1 < p < 2 as follows.

(a) If γ+1< N(2−p)
2p , S(x, t) is an energy solution; i.e., S(x, t)∈Lp(0, T ;D1,p

0,γ(Ω))∩
C0(0, T ;L2(Ω)).

(b) If N(2−p)
2p ≤ γ + 1 < N(2−p)

p , S(x, t) is an entropy solution (see Definition

3.5 in subsection 3.2.2).

(c) If N(2−p)
p ≤ γ + 1 < N

p , S(x, t) is a very weak solution (see Theorem 3.8,

below).
We will prove that the regularity of the self-similar solution gives the behavior of

the solutions for the initial value problem in each interval of the parameters. Notice
that behavior means that, if 1 < p < 2, then, for all γ ∈ (−∞, N−p

p ), the spectral
instantaneous and complete blow-up as in Baras–Goldstein does not occur. Namely,
there exist solutions with different meanings for all λ.

Let us point out that, if p = 2, all the previous critical values collapse to 1+γ = 0,
and we will find that for 1 + γ ≤ 0 there exist solutions in the energy sense. Note
that in this case, by linearity, we obtain global solutions. Hence, also in this case, the
spectral instantaneous and complete blow-up does not occur.

Moreover, if p > 2 and 1+γ ≤ 0, an argument of comparison allows us to conclude
that there exists at least a local (in time) solution.

The remaining question about the behavior in the case p ≥ 2, N
p > 1 + γ > 0 will

be discussed in section 4.
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3.2.1. The case λ > λN,p,γ , p ≤ 2, γ + 1 < N(2 − p)/(2p): Global
existence of solutions with finite energy.

Theorem 3.3. If λ > λN,p,γ , 1 < p ≤ 2, γ + 1 < N(2−p)
2p , ψ(x) ∈ L2(Ω), then

there exists a distributional solution u of problem (P) such that

u ∈ Lp(0, T ;D1,p
0,γ(Ω)) ∩ L∞(0, T ;L2(Ω)).

Proof. Let us consider the approximate problems (Pn) defined in the proof of
Theorem 3.1. Using un(x, t) as test function in (Pn), we get

1

2

∫
Ω

u2
n(x, τ) dx +

∫∫
Qτ

|∇un|p
|x|pγ ≤ λ

∫∫
Qτ

|un|p
|x|p(γ+1)

− 1

2

∫
Ω

ψ2(x) dx.

If p < 2, one has∫∫
Qτ

|un|p
|x|p(γ+1)

≤
∫∫

Qτ

u2
n + c1T

∫
Ω

dx

|x|2p(γ+1)/(2−p)
,

where c1 = c1(p). The last integral is finite by the hypotheses on γ. If p = 2, then
necessarily γ + 1 < 0, and therefore∫∫

Qτ

|un|p
|x|p(γ+1)

≤ c2

∫∫
Qτ

u2
n,

with c2 = c2(Ω, γ). In both cases, by Gronwall’s lemma, we obtain the estimates
(3.1)–(3.3), and we can conclude the proof exactly as for Theorem 3.1.

Remark 3.4. Note that actually, in the proof of this theorem, λ can be any real
number, since the principal part of the operator is never used to obtain estimates.

3.2.2. The case λ > λN,p,γ , p ≤ 2, N(2−p)/(2p) < γ +1 < N(2−p)/p:
Global existence of entropy solutions. We will specify the sense in which we
consider solutions in this case.

Definition 3.5. Assume that ψ ∈ L1(Ω). We say that u ∈ C([0, T ];L1(Ω)) is

an entropy solution to problem (P) if |u|(p−1)

|x|p(γ+1) ∈ L1(QT ), Tk(u) ∈ Lp(0, T ;D1,p
0,γ(Ω))

for all k > 0, and

∫
Ω

Θk(u(T ) − v(T )) dx +

∫ T

0

〈vt, Tk(u− v)〉 dt +

∫∫
QT

|∇u|p−2

|x|pγ ∇u · ∇(Tk(u− v))

≤
∫

Ω

Θk(ψ − v(0)) dx + λ

∫∫
QT

|u|p−2u

|x|p(γ+1)
Tk(u− v)

(3.14)

for all k > 0 and v ∈ Lp((0, T ),D1,p
0,γ(Ω)) ∩ L∞(QT ) ∩ C([0, T ];L1(Ω)) such that

vt ∈ Lp′
((0, T );D−1,p′

−γ (Ω)), where Θk is given by

Θk(s) =

∫ s

0

Tk(t)dt.(3.15)

For a general definition and basic properties of entropy solutions, see, for instance,
the references [9], [23], and [22].
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Theorem 3.6. If λ ≥ λN,p,γ , 1 < p < 2, N(2−p)
2p ≤ γ + 1 < N(2−p)

p , while the

initial datum ψ(x) satisfies

ψ ∈ Lq(Ω) for every q such that 1 < q <
N(2 − p)

p(γ + 1)
,

then there exists a distributional solution u of problem (P) such that

u ∈ L∞(0, T ;Lq(Ω)) for every q such that 1 < q <
N(2 − p)

p(γ + 1)
,(3.16)

|∇u|q1
|x|γq1 ∈ L1(QT ) for every q1 such that 0 < q1 <

N(2 − p)

2(γ + 1)
,(3.17)

|∇u|p−1

|x|pγ ,
up−1

|x|p(γ+1)
∈ L1(QT ).(3.18)

Moreover, u is an entropy solution to problem (P).
Proof. Once again, we consider the approximate problems (Pn), and we multiply

them by the test function Φ(un) = [(1 + |un|)1−µ − 1] signun, with µ ∈ (0, 1) to be
chosen hereafter. If we define

Ψ(s) =

∫ s

0

Φ(σ) dσ =
(1 + |s|)2−µ − 1

2 − µ
− |s|,

we have

Ψ(s) ≥ c1(µ)|s|2−µ − c2(µ).(3.19)

Therefore,

∫
Ω

Ψ(u(x, τ)) dx + (1 − µ)

∫∫
Qτ

|∇un|p
|x|γp

1

(1 + |un|)µ

≤
∫

Ω

Ψ(ψ(x)) dx + λ

∫∫
Qτ

|un|p−1

|x|p(γ+1)
(1 + |un|)1−µ(3.20)

≤
∫

Ω

Ψ(ψ(x)) dx + c3

∫∫
Qτ

|un|p−µ + 1

|x|p(γ+1)
,

where c3 depends on λ, µ, p. Note that Ψ(ψ) is integrable by the hypothesis on the
initial datum. Since p < 2, we can estimate the last integral as

∫∫
Qτ

|un|p−µ + 1

|x|p(γ+1)
≤ c4

∫∫
Qτ

|un|2−µ + c5

∫∫
Qτ

1

|x|p(γ+1)(2−µ)/(2−p)
,(3.21)

where c4 and c5 depend on µ and p. Now we choose µ in such a way that

2 − (2 − p)N

p(γ + 1)
< µ < 1.(3.22)
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This implies that the last integral in (3.21) converges. Using (3.19)–(3.22) and Gron-
wall’s lemma, we obtain the following estimates:

‖un‖L∞(0,T ;Lq(Ω)) ≤ c6 for every q such that 1 < q <
(2 − p)N

p(γ + 1)
,(3.23) ∫∫

QT

|∇un|p
|x|γp

1

(1 + |un|)µ
≤ c7 for every µ such that (3.22) holds,(3.24)

∫∫
QT

|∇un|q1
|x|γq1 ≤ c8 for every q1 such that 0 < q1 <

(2 − p)N

2(γ + 1)
,(3.25)

∫∫
QT

|un|p−µ

|x|p(γ+1)
≤ c9 for every µ such that (3.22) holds.(3.26)

Indeed,

∫∫
QT

|∇un|q1
|x|γq1 ≤

(∫∫
QT

|∇un|p
|x|γp

1

(1 + |un|)µ

)q1/p(∫∫
QT

(1 + |un|)µq1/(p−q1)

)(p−q1)/p

.

The estimate (3.25) follows from (3.24) and (3.22).
We now show that the sequence {un} satisfies

∫∫
QT

|un|(p−1)r

|x|p(γ+1)
≤ c10 for all r such that 1 ≤ r <

2 − p

p− 1

[
N

p(γ + 1)
− 1

]
,(3.27)

∫∫
QT

|∇un|(p−1)s

|x|pγ ≤ c11 for all s such that 1 ≤ s <
(N − pγ)(2 − p)

(p− 1)(2 + pγ)
.(3.28)

Inequality (3.27) follows from (3.26) and (1.4), while (3.28) follows easily from (3.25).
We can now pass to the limit in the distributional formulation, as we have done in the
proof of Theorem 3.1, using the estimate in Lq1(0, T ;W 1,q1(Ω \ Bε)), which follows
from (3.17), for every ε > 0.

The function u is an entropy solution. Indeed, it is easy to prove (taking Tk(un) as
test function in (Pn)) that Tk(un) is bounded in Lp(0, T ;D1,p

0,γ(Ω)) and (using Vitali’s

theorem and (3.28)) that fn(x, un) converges to up−1

|x|p(γ+1) strongly in L1(QT ).

Then, if we take Tk(un − v) as test function in (Pn), with v as in Definition 3.5,
we can easily pass to the limit and get the result with the same techniques as in
[22].

Remark 3.7. As far as the sharpness of the regularity of the solutions found in
Theorem 3.6, let us observe that any function of the form St0(x, t) = S(x, t + t0),
where S is defined by (3.11), is a solution in the distribution sense of problem (P),
with initial data ψ(x) = S(x, t0), and its regularity is exactly the one we quoted in
Theorem 3.6.

3.2.3. The case λ > λN,p,γ , p ≤ 2, N(2−p)/(p) < γ +1 < N/p: Global
existence of very weak solutions. We point out that for every t > 0 the singular
solution S(x, t) is continuous with respect to t with values in L2

−αp/2(Ω) for every α
such that

α >
2(γ + 1)

2 − p
− N

p
.(3.29)
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This, together with the previous estimates on S, suggests the definition of the following
space:

Yα = {u ∈ Lp(0, T ;D1,p
0,γ−α(Ω)) ∩ C0([0, T ];L2

−αp
2

(Ω)) : u′ ∈ Lp′
(0, T ;D−1,p′

−β (Ω))},
(3.30)

where

β = γ + α(p− 1).(3.31)

The following theorem specifies the meaning of a very weak solution.

Theorem 3.8. Assume that λ > λN,p,γ , 1 < p < 2, N(2−p)
p ≤ γ + 1 < N

p , and

that the initial data ψ(x) belongs to L2
−αp

2
(Ω) for some α satisfying (3.29). Then there

exists a function u ∈ Yα which is a distributional solution of (P) away from the origin
(that is, in D′((Ω \ {0}) × (0, T ))). Moreover, u is a solution of (P) in the following
sense:

−
∫ τ

0

〈v′, |x|αpu〉 dt +

∫
Ω

u(τ)v(τ)|x|αp dx−
∫

Ω

ψv(0)|x|αp dx
(3.32)

+

∫∫
Qτ

|∇u|p−2∇u · ∇(v|x|αp)
|x|γp dx dt =

∫∫
Qτ

|u|p−2uv|x|αp
|x|(γ+1)p

dx dt

for every τ ∈ [0, T ] and for every v ∈ Yα.
Proof. Step 1: A priori estimate. Let un be a solution of problem (Pn). We use

|x|αpun(x, t) as test function in (Pn). Then, by Young’s inequality,

∫
Ω

u2
n(x, T )|x|αp dx +

∫∫
QT

|∇un|p|x|(α−γ)p

≤ c1

∫∫
QT

|∇un|p−1|x|(α−γ)p−1 + λ

∫∫
QT

|un|p
|x|p(γ+1−α)

+
1

2

∫
Ω

ψ2(x)|x|αp dx

≤ 1

2

∫∫
QT

|∇un|p|x|(α−γ)p + c3

∫∫
QT

|un|2|x|αp + c3

∫
Ω

|x|p(α−
2(γ+1)
2−p )

+
1

2

∫
Ω

ψ2(x)|x|αp dx.

Under the hypotheses on α and on the initial datum, the last two integrals are finite.
Therefore, we can use Gronwall’s lemma to conclude that

un is bounded in Lp(0, T ;D1,p
0,γ−α(Ω)) ∩ C0([0, T ];L2

−αp
2

(Ω)).

By (Pn), one can easily check that

u′
n is bounded in Lp′

(0, T ;D−1,p′

−β (Ω)).

Step 2: Passage to the limit. By weak convergence, and following the same ar-
gument as in the proof of Theorem 3.1 for the pointwise convergence of the gra-
dients, we obtain a function u ∈ Lp(0, T ;D1,p

0,γ−α(Ω)) ∩ L∞(0, T ;L2
−αp

2
(Ω)), with
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u′ ∈ Lp′
(0, T ;D−1,p′

−β (Ω)), such that

un ⇀ u weakly in Lp(0, T ;D1,p
0,γ−α(Ω)),

un ⇀ u ∗-weakly in L∞(0, T ;L2
−αp

2
(Ω)),

∇un → ∇u almost everywhere in QT ,

un(·, τ) → u(·, τ) a.e. in Ω and weakly in L2
−αp

2
(Ω) for every τ ∈ [0, T ].

Using these convergences, one can take |x|αpv as test function in (Pn) and pass to the
limit as n → ∞, obtaining the weak formulation (3.32). Since the functions of the
form |x|αpv include smooth test functions in D(QT ) which are zero in a neighborhood
of the origin, we have also proved that u is a solution in the distributional sense far
from the origin.

We now prove that u ∈ C0([0, T ];L2
−αp

2
(Ω)). According to the uniform estimates

for the approximate solutions, we find that un(·, t) is an equicontinuous sequence in
L2
−αp

2
(Ω)). By the Ascoli–Arzelà lemma, we conclude.

Remark 3.9.

(i) The previous result, in the case where γ = 0, improves the result contained
in [19] and specifies the meaning of the solution given in that paper; more precisely,
it gives us that the solution is in Lp(0, T ;D1,p

−α(Ω)) for some α > 2/(2 − p) −N/p.
(ii) If we define the operator Γv = |x|αpv, then Γ is an isomorphism from

D1,p
0,γ−α(Ω) to D1,p

0,β(Ω), where β = (p − 1)α + γ. Therefore, the weak formulation
(3.32) could be rewritten as

−
∫ τ

0

〈w′, u〉 dt +

∫
Ω

u(τ)w(τ) dx−
∫

Ω

ψw(0) dx +

∫∫
Qτ

|∇u|p−2∇u · ∇w

|x|γp dx dt

=

∫∫
Qτ

|u|p−2uw

|x|(γ+1)p
dx dt

for every τ ∈ [0, T ] and for every w ∈ Lp(0, T ;D1,p
0,β(Ω))∩C0([0, T ];L2

αp
2

(Ω)) such that

w′ ∈ Lp′
(0, T ;D−1,p′

α−γ (Ω)).
(iii) In the case where the initial data ψ(x) is nonnegative and satisfies

ψ(x) ≤ S(x, t + t0) for some positive t0,

it is possible to obtain an alternative (constructive) proof by a monotone iteration
argument, using S(x, t+t0) as a supersolution and solving, by induction, the sequence
of problems⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂un

∂t
− ∆p,γun = λTn

(
1

|x|p(γ+1)

)
up−1
n−1, (x, t) ∈ Ω × (0, T ),

un(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

un(x, 0) = ψ(x), x ∈ Ω,

(P̃n)

with u0 ≡ 0.
(iv) The solution found in Theorem 3.10 satisfies the equation in a very weak

sense because the right-hand side of the equation does not even belong to L1.
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3.3. The case λ > λN,p,γ , p ≥ 2, γ ≤ −1: Existence for small times.
This subsection deals with existence for small values of t in the case λ > λN,p,γ , p > 2,
γ ≤ −1. The result of this subsection can be compared with the ones of section 4: an
instantaneous blow up will occur for the solutions of the approximate problems for
the same values of λ and p when γ > −1.

Theorem 3.10. If λ > λN,p,γ , p ≥ 2, γ ≤ −1, while the initial data ψ(x) satisfies
ψ(x) ∈ L∞(QT ) and ψ(x) ≥ 0, then there exist T ∗ = T ∗(N, p, γ, λ, ‖ψ‖L∞(Ω)) > 0

and a distributional solution u in QT∗ of our problem with u ∈ Lp(0, T ;D1,p
0,γ(Ω)) ∩

L∞(0, T ;L2(Ω)) for every T < T ∗. Moreover, if p = 2, T ∗ is any positive value.
Proof. Let us define the problems (P̃n) as in the previous subsection and let y(t)

be the solution of the ordinary differential equation{
y′(t) = d yp−1,

y(0) = ‖ψ‖L∞(Ω),

where

d ≥ λ sup
x∈Ω

|x|−p(γ+1).(3.33)

An immediate calculation shows the following.
(α) If p > 2, the solution is

y(t) =
‖ψ‖L∞(Ω)

(1 − (p− 2)d‖ψ‖p−2
L∞(Ω)t)

1/(p− 2)
,

which blows up in t = T ∗ = 1

(p−2)d‖ψ‖p−2

L∞(Ω)

.

(β) If p = 2, then the global solution is

y(t) = ‖ψ‖L∞(Ω)e
dt.

Since y(t) is a supersolution of (P), by the comparison principle we have

u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ y.

If we multiply problem (P̃n) by un
χ

(0,τ), we obtain

1

2

∫
Ω

u2
n(x, τ) dx +

∫∫
QT

|∇u|p
|x|pγ ≤ λ

∫∫
QT

|y|p−1|x|−p(γ+1) +
1

2

∫
Ω

ψ2(x) dx.

By condition (3.33),

λ

∫∫
QT

|y|p−1|x|−p(γ+1) ≤ meas Ω(y(τ) − ‖ψ‖L∞(Ω)).

Therefore, we get the estimates

‖un‖L∞(0,τ ;L2(Ω)) ≤ c1, ‖un‖Lp(0,τ ;D1,p
0,γ(Ω)) ≤ c2 for every τ < T ∗.

In the case p = 2, we can fix any T ∗ > 0 to get the same estimates. Now the conclusion
follows exactly as in the proof of Theorem 3.1.
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4. Blow-up: p > 2, N/p > (1 + γ) > 0, and λ > λn,p,γ . We consider in
this section the spectral, instantaneous, and complete blow-up in the case p > 2 and
(1 + γ) > 0. The case p = 2 has been obtained in [3] and requires a different method.
We would like to point out that in the case p > 2 a stronger result than in the linear
case is obtained. This behavior is given because even the problem with the truncated
potential blows up in finite time. We will assume that the initial data verifies that
ψ ∈ L2(Ω) and there exists δ > 0 such that ψ > 0 in Bδ(0). Notice that for the
equation

ut − ∆p,γu = 0(4.1)

and by direct calculations we can find Barenblatt-type solutions; precisely,

B(x, t) = t−Nβ(N,p,γ)

[
M − (p− 2)β(N, p, γ)

1
p−1

p(γ + 1)
ξ

p(γ+1)
p−1

] (p−2)
(p−1)

+

,(4.2)

where M is a positive arbitrary constant,

β(N, p, γ) =
1

N(p− 2) + p(γ + 1)
, and ξ =

|x|
tβ(N,p,γ)

.

This property could be understood as some kind of finite speed of propagation for
the equation with zero right-hand side. It is necessary to point out that if γ �= 0,
the equation is not invariant by translation, and then the corresponding translated
Barenblatt functions are not solutions to the equation.

The lack of homogeneity in (4.1) provides the following weak Harnack inequality.
Lemma 4.1. Let u be a nonnegative weak solution to (4.1), and assume that

u(x0, t0) > 0 for some (x0, t0) ∈ ΩT ; then there exists B(N, p, γ) > 1 such that, for
all θ, ρ > 0 satisfying B4ρ(x0) × (t0 − 4θ, t0 + 4θ) ⊂ ΩT , we have

1

|Bρ(x0)|

∫
Bρ(x0)

u(x, t0)dx

(4.3)

≤ B

⎡
⎣(ρp(γ+1)

θ

) 1
p−2

+

(
θ

ρp(γ+1)

) N
p(γ+1)

(
inf

Bρ(x0)
u(., t0 + θ)

) λγ
p(γ+1)

⎤
⎦ ,

where λγ = N(p− 2) + p(γ + 1) = 1
β(N,p,γ) .

The proof is similar to the one by DiBenedetto in [17] for the case γ = 0. The
details can be found in [1] in the case (1 + γ) > 0, where some counterexamples to
the Harnack inequality if (1 + γ) ≤ 0 are shown.

We consider problem (P), and we make the following assumptions:
(H1) p > 2, 0 < 1 + γ < N/p, and λ > λn,p,γ .
(H2) ψ ∈ L∞(Ω), ψ(x) ≥ 0, and moreover, there exists ρ, δ > 0 such that ψ(x) > δ

for every x ∈ Bρ(0).
We will prove that problem (P) has no solution. We start by studying, for n ∈ N,

the approximate problems⎧⎪⎨
⎪⎩

(un)t − ∆p,γun = λWn(x)|un|p−2un in QT ,

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = ψ(x) in Ω,

(4.4)
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where Wn(x) = Tn( 1
|x|p(γ+1) ). Note that for every fixed n, problem (4.4) has a solution

at least for small times (depending on n and λ), as one can easily see using a convenient
supersolution independent of x.

By separation of variables we look for solutions of (4.4) of the form Φ(x, t) =
Θ(t)X(x), to use as a subsolution. The equation becomes

Θ′X − Θp−1∆p,γX = λWn(x)Θp−1Xp−1.

We take the Θ(t) solution of {
Θ′(t) = µΘp−1(t),
Θ(0) = A,

(4.5)

that is,

Θ(t) =
A

[1 − (p− 2)µAp−2t]1/(p−2)

with µ,A > 0 to be chosen. Note that limt→τ Θ(t) = ∞ for τ = 1
µ(p−2)Ap−2 .

On the other hand, X(x) must solve the elliptic problem

{−∆p,γX = λWn(x)Xp−1 − µX in Ω,

X(x) = 0 on ∂Ω.
(4.6)

Defining αX = Y with µαp−2 = λ the problem above becomes{−∆p,γY = λ(Wn(x)Y p−1 − Y ) in Ω,

Y (x) = 0 in ∂Ω.
(4.7)

Problem (4.7) fails in the hypotheses for bifurcation from infinity as in [6]; see [16]
for details.

Let λ1(n) be the first eigenvalue for the problem

{−∆p,γϕ = λWn(x)|ϕ|p−2ϕ in Ω,

ϕ(x) = 0 in ∂Ω.

Then (i) λ1(n) > 0; (ii) λ1(n) is isolated and simple; (iii) the first eigenfunction does
not change sign; (iv) λ1(n) is decreasing in n, and λ1(n) ↘ λN,p,γ . The properties
(i), (ii), and (iii) are similar to the p-laplacian case and are detailed in [16]; (iv) is
easily checked following the proof for the p-laplacian in [19].

Theorem 4.2. If λ > λN,p,γ , then there exists n0 such that, for every n > n0,
there exists a bounded positive solution Y (x) to (4.7).

Proof. As λ > λN,p,γ there exists n0 such that, for n > n0, λ > λ1(n). Now
λ1(n) is the unique bifurcation point of positive solutions from infinity for problem
(4.7). Moreover, as (1 + γ) > 0, the solutions in the branch are bounded; see [16]
and [6]. Moreover, if Y > 0 is a solution to (4.7), then ‖Y ‖∞ ≥ Rn > 0 for some
constant Rn, because if a positive solution Y is such that ‖Y ‖∞ < ε, then we have
−∆p,γY ≤ λY (nεp−2 − 1) < 0, and for ε small we reach a contradiction with the
maximum principle.

As a consequence we can find a subsolution to problem (4.4) that shows the finite
time blow-up. Precisely, we have the following result.
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Lemma 4.3. Let u be a solution to problem (4.4), where λ > λ1(n) and ψ(x) > 0
in every x ∈ Ω. Then there exists T > 0 depending on the data and there exists a
subsolution Φ such that u(x, t) ≥ Φ(x, t) and limt→T Φ(x, t) = ∞ for every x ∈ Ω.

Proof. The solution u is positive and, by regularity (see [1]), is bounded for small
times. Therefore, we fix a small time τ > 0, and we look for a subsolution of the form
Φ(x, t) = X(x)Θ(t), with X(x) the solution of (4.6), and

Θ(t) = ε(1 − (p− 2)εp−2(t− τ))−1/(p−2),

with ε > 0 such that εX(x) ≤ u(x, τ). By the weak comparison principle we
conclude.

In order to show the instantaneous complete blow-up, we need to rescale the
problem, using the following property. Define

Zn(x) =
(n0

n

) 1
p−2

X

((
n

n0

) 1
p(γ+1)

x

)
.(4.8)

Then Zn solves⎧⎪⎨
⎪⎩

−∆p,γZn = λWn(x)Zp−1
n − µZn if |x| <

(n0

n

) 1
p(γ+1)

,

Zn(x) = 0 if |x| =
(n0

n

) 1
p(γ+1)

since ( n
n0

)Wn0((
n
n0

)
1

p(γ+1)x) = Wn(x). Moreover, the radius of the ball goes to zero
and ‖Zn‖∞ → 0 as n → ∞. Therefore, for prescribed R, η > 0 we can choose n such
that (n0

n

) 1
p(γ+1)

< R, Zn(x) ≤ η on BR.(4.9)

Theorem 4.4. Assume that (H1), (H2) hold. Then for every ε > 0 there exist
r(ε) > 0 and nε such that if un is the minimal solution to (4.4) ∀n > nε

un(x, t) ≡ +∞ for t > ε and |x| < r(ε).

Proof. Take n0 such that λ > λ1(n0). We prescribe the blow-up time T = ε and
choose µ = [(p−2)ε]−1. For such µ and n > n0, the scaled solution (4.8) to (4.4), Xn,
satisfies (4.9) with R = ρ and η = δ. Consider Θ(t) solution to (4.5) with µ as above
and A = 1. Then φn(x, t) = Θ(t)Xn(x) blows up in T = ε. By weak comparison in

the ball |x| < (n0

n )
1

p(γ+1) , the minimal solution to (4.4) blows up in T0 < ε.
We point out that in order to obtain blow-up in a prescribed small time we have to

take the index n large enough. We will use the concept of entropy solution introduced
in Definition 3.5 and a straightforward modification of the comparison arguments for
entropy solutions (see [23]).

Theorem 4.5. Assume that (H1), (H2) hold. Then problem (P) has no entropy
solution, even for small times, and moreover, if un(x, t) is the minimal solution to
(4.4), we have that limn→∞ un(x, t) = +∞ for all (x, t) ∈ Ω × (0,∞).

Proof. By contradiction, assume that there exists an entropy solution u(x, t) > 0
of problem (P). Then u is a supersolution to problem (4.4) for all n. As a consequence
the minimal solution to (4.4) satisfies un(x, t) ≤ u(x, t); hence u(x, t) blows up at least
in the time in which un blows up, so we conclude.



710 A. DALL’AGLIO, D. GIACHETTI, AND I. PERAL

By using Theorem 4.4 we obtain a region E∞ such that

E∞ ⊃ {|x| < r(t)} × (0,∞),

such that

lim
n→∞

un(x, t) = +∞ for all (x, t) ∈ E∞.

Next we use the Harnack inequality (4.3), assume that there exists a point (x0, t0) ∈
Ω × (0,∞) such that 0 ≤ un(x0, t0) ≤ M < ∞, and call

ρ(x0, t0) = dist{x0, ∂Ω} > 0.

Then, if Br(x0) × {t = t1} ∩ E∞ has N -dimensional positive measure for some r <
ρ(x0, t0) and t1 < t0, we consider the problem⎧⎪⎨

⎪⎩
(vn)t − ∆p,γvn = 0 in Br(x0) × (t1, t0),

vn(x, t) = 0 on ∂Br(x0) × (t1, t0),

vn(x, t1) = un(x, t1) in Br(x0);

(4.10)

then vn(x, t) ≤ un(x, t), and this is a contradiction to the Harnack inequality (4.3).
If for all r < ρ(x0) and all t1 < t0, |Br(x0) × {t = t1} ∩ E∞| = 0, then for all δ > 0
we can find in a finite number of steps a point (x1, t0 − δ) ∈ Ω × (0, t0) such that

|Br(x0) × {t = t1} ∩ E∞| > 0,

and then we reach a contradiction as above.
Remark 4.6. Notice that this result is stronger, in some sense, than the result by

Baras and Goldstein (see [7]) for the heat equation; if p > 2, even the solution to the
equation with truncated potential blows up in finite time.

Next we will prove that even if we truncate the whole nonlinearity, we find spectral
instantaneous complete blow-up. More precisely, we have the following result.

Theorem 4.7. Consider the truncated problem⎧⎪⎨
⎪⎩

(vn)t − ∆p,γvn = λWn(x)Tn(vp−1
n ) in Ω × R

+,

v(x, t) = 0 on ∂Ω × R
+,

v(x, 0) = ψ(x) in Ω,

(4.11)

where (H1) and (H2) hold. Then

lim
n→∞

vn(x, t) = +∞ for every (x, t) ∈ Ω × R
+.

Proof. Using the same argument as in [2], we find that if B4r(0) ⊂ Ω, then

lim
n→∞

∫
Br(0)

vn(x, t) dx = +∞ for every t > 0.

Then by the Harnack inequality and a strategy which is similar to the one in Theorem
4.5, we obtain the complete blow-up.
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Remark 4.8.

(i) An alternative method to the one described above can be seen in [1]. The
separation of variables gives a more transparent view of the behavior but uses in a
strong way the presence of exactly two homogeneities. In the linear case (see [3]), or
if the second member is not eigenvalues-like (see [2]), different arguments are needed.

(ii) If instantaneous and complete blow-up happens without hypothesis (H2),
this seems to be an open problem. If γ = 0, we can take as a subsolution a convenient
scaled and translated Barenblatt function that allows us to conclude that there exists
a T ∗ > 0 such that for t > T ∗ the same result as in Theorem 4.7 holds.

5. Behavior of solutions in the case 1 < p < 2 and λ < λN,p,γ . In
this section we will try to explain how the optimal constant in the Hardy inequality
becomes the threshold for extinction in finite time of the solution.

5.1. Finite time extinction.
Theorem 5.1. Assume that

max

{
2N

N + 2
,

2N

N + 2(γ + 1)

}
< p < 2,

λ < λN,p,γ , and ψ ∈ L2(Ω). Then there exists a constant

T ∗ = T ∗(N, p, γ, λ,Ω) ≤ c1(N, p, γ, λ,Ω)‖ψ‖2−p
L2(Ω)

such that any solution of problem (P) satisfies

u(·, t) ≡ 0 for t ≥ T ∗.(5.1)

Proof. Taking u as a test function in (P), and using inequalities (1.3) and (1.7),
we get

1

2

d

dt

∫
Ω

u2(t) dx +
1

SN,p,γ

(
1 − λ

λN,p,γ

)[∫
Ω

|u(t)|p∗

|x|γp∗ dx

] p
p∗

≤ 0.

Using the assumptions on p and γ, by Hölder’s inequality we obtain

∫
Ω

u2(t) dx ≤
[∫

Ω

|u(t)|p∗

|x|γp∗ dx

] 2
p∗ [∫

Ω

|x|
2γp∗
p∗−2 dx

] p∗−2
γp∗

≤ c1

[∫
Ω

|u(t)|p∗

|x|γp∗ dx

] 2
p∗

,

where c1 = c1(N, p, γ,Ω) is a positive constant. Therefore, setting

φ(t) =

∫
Ω

u2(t) dx,

one has

φ′(t) + c2[φ(t)]
p
2 ≤ 0,

with c2 > 0. Since p < 2, this implies

φ(t) ≤
(
[φ(0)]

2−p
2 − c3t

) 2
2−p

+
,

from which the statement follows.
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Theorem 5.2. Assume that

γ ≥ 0, 1 < p <
2N

N + 2
,

λ < ηN,p,γ =

(
N(2 − p)

p
− 1

)(
[N − p(γ + 1)]p

(2 − p)(N − p)

)p

,

and ∫
Ω

|ψ|
N(2−p)

p dx < ∞.

Then there exists a constant

T ∗ = T ∗(N, p, γ, λ,Ω) ≤ c1(N, p, γ, λ,Ω)‖ψ‖2−p

L
N
p

(2−p)
(Ω)

such that any solution of problem (P) found by approximation as in Theorem 3.1
satisfies

u(·, t) ≡ 0 for t ≥ T ∗.(5.2)

Proof. We take vn = |un|α−2un as test function in (Pn), with α ≥ 2 to be chosen
hereafter. We obtain

1

α

d

dt

∫
Ω

uα
n(t) dx + (α− 1)

∫
Ω

|∇un(t)|p|un(t)|α−2

|x|γp dx = λ

∫
Ω

|un(t)|α−(2−p)

|x|(γ+1)p
dx.

Since

∫
Ω

|∇un(t)|p|un(t)|α−2

|x|γp dx =

(
p

α− (2 − p)

)p ∫
Ω

∣∣∣∇(
|un(t)|

α−(2−p)
p

)∣∣∣p
|x|γp dx

and, by Hardy’s inequality,

∫
Ω

|un(t)|α−(2−p)

|x|(γ+1)p
dx ≤ λ−1

N,p,γ

∫
Ω

∣∣∣∇(
|un(t)|

α−(2−p)
p

)∣∣∣p
|x|γp dx,

we obtain

1

α

d

dt

∫
Ω

uα
n(t) dx + c1

∫
Ω

∣∣∣∇(
|un(t)|

α−(2−p)
p

)∣∣∣p
|x|γp dx ≤ 0,

where

c1 = (α− 1)

(
p

α− (2 − p)

)p

− λ

(
p

N − p(γ + 1)

)p

> 0.

Therefore, by (1.7),

1

α

d

dt

∫
Ω

uα
n(t) dx + c1SN,p,γ

[∫
Ω

|un(t)|
[α−(2−p)]p∗

p

|x|γp∗ dx

] p
p∗

≤ 0.(5.3)



PARABOLIC EQUATIONS 713

Choosing

α =
N(2 − p)

p
,

the two powers of un become equal. Since γ ≥ 0, if we define

φ(t) =

∫
Ω

uα
n(t) dx,

we obtain

φ′(t) + c2[φ(t)]
p
p∗ ≤ 0,

where c2 = c2(N, p, γ,Ω) > 0, and we obtain the result for the approximate solutions
un as in the previous theorem. The result on u follows by taking the limit on n.

Remark 5.3. Note that ηN,p,γ = λN,p,γ for p = 2N
N+2 .

Theorem 5.4. Assume that

0 < γ + 1 <
N(2 − p)

2p
,

(5.4)

λ < µN,p,γ =

(
N(2 − p)

p(γ + 1)
− 1

)(
p(γ + 1)

2 − p

)p

,

and that there exists

ᾱ >
(2 − p)N

p(γ + 1)

such that ψ ∈ Lᾱ(Ω). Then there exists a constant

T ∗ = T ∗(N, p, γ, λ,Ω, ᾱ, ψ) ≤ c1(N, p, γ, λ,Ω, ᾱ)‖ψ‖2−p
Lα(Ω)

such that any solution of problem (P) found by approximation as in Theorem 3.1
satisfies

u(·, t) ≡ 0 for t ≥ T ∗.(5.5)

Proof. We use |un|α−2un as a test function in (Pn), where α is such that

(2 − p)N

p(γ + 1)
< α ≤ ᾱ(5.6)

and

λ < (α− 1)

(
p(γ + 1)

α− (2 − p)

)p

.(5.7)

Note that this is always possible, since assumption (5.4) implies that (5.7) is true for

α = (2−p)N
p(γ+1) . As in the previous proof, we obtain inequality (5.3), where the constant

c1 is positive by (5.7). Now observe that condition (5.6) implies

α >
N(2 − p)

p
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and

γαpp∗

p∗[α− (2 − p)] − αp
> −N ;

therefore, by Hölder’s inequality,

∫
Ω

uα
n(t) dx ≤

[∫
Ω

|x|
γαpp∗

p∗[α−(2−p)]−αp dx

] p∗[α−(2−p)]−αp
p∗[α−(2−p)]

[∫
Ω

|un(t)|
[α−(2−p)]p∗

p

|x|γp∗ dx

] αp
p∗[α−(2−p)]

≤ c2(N, p, γ, α,Ω)

[∫
Ω

|un(t)|
[α−(2−p)]p∗

p

|x|γp∗ dx

] αp
p∗[α−(2−p)]

.

Hence one has

d

dt

∫
Ω

uα
n(t) dx + c3

[∫
Ω

uα
n(t) dx

]α−(2−p)
α

≤ 0,

with c3 > 0. Since α−(2−p)
α < 1, we conclude as before.

Remark 5.5. Note that condition 0 < γ + 1 < N(2−p)
2p in Theorem 5.4 means

that 1 < p < 2N
N+2(γ+1) , which implies, for γ ≥ 0, that p also satisfies 1 < p < 2N

N+2 .

Therefore, we can compare the results of Theorems 5.2 and 5.4 in the region where
1 < p < 2N

N+2 and γ ≥ 0. An easy calculation shows that in that region we have
ηN,p,γ < µN,p,γ , where ηN,p,γ and µN,p,γ are given in the statements of Theorems 5.2

and 5.4, respectively. Since N(2−p)
p > N(2−p)

p(γ+1) , Theorem 5.4 gives a better result than

Theorem 5.2 in the above region. Let us also point out that the value µN,p,γ is the
same value we find in Lemma 3.2, which gives the esistence of self-similar solutions of
the equation in problem (P).

5.2. Nonextinction results. If p > 2 and ψ verifies the hypothesis (H2), by
using the Barenblatt-type functions one can easily prove that there is no extinction
in finite time. Indeed, for any fixed time T > 0, consider the function B(x, t + 1),
where B is the function defined in (4.2). One can easily check that, if the constant M
in (4.2) is sufficiently small, then this function is a subsolution of problem (P). Since
T is arbitrary, the result follows.

In this section we will prove that solutions to problem (P) with 1 < p < 2,
γ + 1 ≥ 0, and λ > λn,p,γ are nonzero for all time. The key of the proof is the
construction of a nonnegative subsolution to the problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ut − ∆p,γ(u) = λ

|u|p−2u

|x|(γ+1)p
, (x, t) ∈ Ω × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = 0, x ∈ Ω,

(5.8)

following the ideas in [18] (see also [19]). Consider the eigenvalue problem{
−∆p,γ(φ1) = µ1(n)Wn(x)φp−1

1 , x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(5.9)
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where Wn(x) = min{n, |x|−(γ+1)p}. The principal eigenvalue is isolated and simple.
Moreover, it is easy to check that the sequence of principal eigenvalues, {µ1(n)}, is
decreasing, that limn→∞ µ1(n) = λn,p,γ , and that the corresponding eigenfunction φ1

has constant sign (see, for instance, [16]). In this way, if λ > λn,p,γ , there exists n0

such that for n > n0, one has λ > µ1(n). Hence, for n > n0, let Θ(t) be the positive
solution to the problem Θ′(t) = Θp−1(t), Θ(0) = 0.

Define

v(x, t) = Θ(εt)φ1(x),

where ε > 0 will be chosen later, and φ1 is a positive eigenfunction of (5.9) such that
‖φ1‖∞ = 1. We have that

vt − ∆p,γ(v)

λv(x, t)p−1
<

εφ2−p
1

λ
+

µ1(n)

λ
Wn(x);

hence, as 2 − p > 0, γ + 1 ≥ 0, and µ1(n)
λ < 1, for a suitable ε > 0 we obtain that

vt − ∆p,γ(v)

λv(x, t)p−1
< Wn(x).

Then v(x, t) is a subsolution to the truncated problem obtained from (5.8) and there-
fore to problem (5.8) with 1 < p < 2, ψ(x) ≥ 0, (1 + γ) > 0, and λ > λn,p,γ . For
the truncated equation we obtain a flat supersolution by solving the ordinary differ-
ential equation y′(t) = nλ[y(t)]p−1, 1 < p < 2, with data y(0) = a, whose solution
is y(t) = [a2−p + nλ(2 − p)t]1/(2−p). Given a T > 0 we find a value of a for which
v(x, t) < y(t) in Ω × (0, T ) and y(0) ≥ ψ(x). Iterating from v, we obtain as a conclu-
sion that in these hypotheses the minimal solution to the truncated equation of (5.8)
has no finite time extinction. And therefore the same result holds for (5.8).

Remark 5.6. If 1 + γ < 0, the weights are flat at the origin. If we use the
eigenvalue analysis as in [16], i.e., for βn = (1 + γ) − 1

n , then we define, for instance,

αn(x) =

{
|x|−pβn if x ∈ Ω ∩B1(0),

|x|−p(γ+1) if x ∈ Ω \B1(0).

In this way αn(x) ≤ |x|−p(γ+1) for all x ∈ Ω, and moreover, the eigenvalue problems⎧⎨
⎩−div

(
|∇ψ1|p−2∇ψ1

|x|γp

)
= ν1(n)αn(x)ψp−1

1 , x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(5.10)

verify the following:
1. The principal eigenvalue is isolated and simple.
2. We can choose the corresponding eigenfunction ψ1 positive.
3. The sequence of principal eigenvalues satisfies ν1(n) ↘ λN,p,γ as n → ∞.

However, the final construction does not work.
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