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Interaction between Ephrins and mGlu5 Metabotropic
Glutamate Receptors in the Induction of Long-Term
Synaptic Depression in the Hippocampus
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We applied the group-I metabotropic glutamate (mGlu) receptor agonist, 3,5-dihydroxyphenylglycine (DHPG), to neonatal or adult rat
hippocampal slices at concentrations (10 um) that induced a short-term depression (STD) of excitatory synaptic transmission at the
Schaffer collateral/CA1 synapses. DHPG-induced STD was entirely mediated by the activation of mGlu5 receptors because it was abro-
gated by the mGlu5 receptor antagonist, MPEP [2-methyl-6-(phenylethynyl)pyridine], but not by the mGlul receptor antagonist,
CPCCOEt [7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester]. Knowing that ephrin-Bs functionally interact with
group-I mGlu receptors (Calo et al., 2005), we examined whether pharmacological activation of ephrin-Bs could affect DHPG-induced
STD. We activated ephrin-Bs using their cognate receptor, EphB1, under the form of a preclustered EphB1/Fc chimera. Addition of
clustered EphB1/Fcalone to the slices induced a small but nondecremental depression of excitatory synaptic transmission, which differed
from the depression induced by 10 um DHPG. Surprisingly, EphB1/Fc-induced synaptic depression was abolished by MPEP (but not by
CPCCOEt) suggesting that it required the endogenous activation of mGlu5 receptors. In addition, coapplication of DHPG and EphB1/Fc,
resulted in a large and nondecremental long-term depression. The effect of clustered EphB1/Fc was specific because it was not mimicked
by unclustered EphB1/Fc or clustered EphAl/Fc. These findings raise the intriguing possibility that changes in synaptic efficacy
mediated by mGlu5 receptors are under the control of the ephrin/Eph receptor system, and that the neuronal actions of ephrins can

be targeted by drugs that attenuate mGlu5 receptor signaling.

Introduction

Ephrins and “Eph” receptors are membrane-anchored proteins
that regulate tissue patterning, cell migration, and axonal target-
ing during CNS development (Flanagan and Vanderhaegen,
1998; Dalva et al., 2000; Wilkinson, 2001; Kullander and Klein,
2002). The Eph receptor family includes nine EphA and five
EphB receptor subtypes interacting with ephrin-Al-5 and
ephrin-B1-3, respectively. Interaction requires cell-cell contacts
and the formation of tetrameric complexes in which each ligand
interacts with two receptors and vice versa (Himanen et al.,
2004). Activated ephrins and Eph receptors generate bidirec-
tional signals, which are mediated by the tyrosine kinase activity
of Eph receptors on one side, and by the recruitment of soluble
tyrosine kinases and other effectors on the other side (Holland et
al., 1996; Briickner et al., 1997; Kullander and Klein, 2002).

Received Sept. 29, 2009; accepted Nov. 6, 2009.
This work was supported by the Wellcome Trust.
This work is dedicated to the memory of Prof. Fabrizio Eusebi.
*Deceased.
Correspondence should be addressed to Sonia Piccinin, Department of Physiology and Pharmacology, University
“Sapienza,” Piazzale A. Moro 5,00185 Rome, Italy. E-mail: sonia.piccinin@uniromar.it.
DOI:10.1523/JNEUR0SCI.4834-09.2010
Copyright © 2010 the authors ~ 0270-6474/10/302835-09%15.00/0

Ephrins/Eph receptors participate in the regulation of synaptic plas-
ticity during development and in the adult life. This function in-
volves an interaction between ephrins/Eph receptors and ionotropic
glutamate receptors, particularly NMDA and AMPA receptors
(Calo et al., 2006). Ephrins and Eph receptors associate with pro-
teins that regulate AMPA receptor trafficking (Torres et al., 1998;
Briickner etal., 1999; Lin et al., 1999; Irie et al., 2005). In addition,
EphB1-4 receptors physically associate with NMDA receptors
(Dalva et al., 2000) and positively regulate NMDA receptors in
cultured neurons (Takasu et al., 2002). The role of ephrins/Eph
receptors in activity-dependent forms of synaptic plasticity has
been investigated in the hippocampus. At the Schaffer collateral/
CA1 pyramidal cell synapses, postsynaptic ephrin-Bs are required
for the induction of NMDA-dependent long-term potentiation
(LTP) (Grunwald et al., 2004; Rodenas-Ruano et al., 2006; see
Armstrong et al., 2006 for contrasting results). Postsynaptic eph-
rin-B2/B3 are also required for the induction of long-term de-
pression (LTD) at the CA3-CA1 synapses (Grunwald et al., 2004).
In contrast, presynaptic ephrin-Bs are required for LTP induc-
tion at the mossy fiber-CA3 synapses (Contractor et al., 2002;
Armstrong et al., 2006). We have recently found that ephrin-Bs
interact with group-I metabotropic glutamate receptors (mGlul
and mGlu5 receptors). Both mGlula and mGlu5 receptors coim-



2836 - J. Neurosci., February 24, 2010 - 30(8):2835-2843

munoprecipitate with ephrin-B2, and activation of ephrin-Bs by
a clustered EphB1 receptor/Fc chimera amplifies mGlul receptor
signaling in striatal slices (Calo et al., 2005). Group-I mGlu re-
ceptors, particularly mGlu5 receptors, have an established role in
the induction of LTP and LTD (Riedel et al., 1996; Anwyl, 1999;
Bortolotto etal., 1999; Cho and Bashir, 2002; Naie and Manahan-
Vaughan, 2004; Neyman and Manahan-Vaughan, 2008). This
role has been highlighted in mouse models of fragile-X syn-
drome, where mGlu5-receptor-mediated LTD is amplified in the
hippocampus (Huber et al., 2002; Bear et al., 2004; Délen and
Bear, 2008).

Here we examined whether the interaction between ephrin-Bs/
EphB receptors and group-I mGlu receptors is involved in the in-
duction of synaptic depression in the hippocampus. We addressed
this issue by monitoring the effect at the Schaffer collaterals-CA1
synapses of the selective group-I mGlu receptor agonist, 3,5,-
dihydroxyphenylglycine (DHPG) (Palmer et al., 1997; Fitzjohn et
al., 1999; Huber et al., 2000, 2001) and the effect of activation
of endogenous ephrin-Bs using a clustered EphB1 receptor/Fc
chimera.

Materials and Methods

Drugs

3,5-Dihydroxyphenylglycine (DHPG), 7-(hydroxyimino)cyclopropa
[b]chromen-1la-carboxylate ethyl ester (CPCOOEt), 2-methyl-6-
(phenylethynyl)pyridine (MPEP), and 1,4-diamino-2,3-dicyano-1,4-bis
[2-amino-phenylthio] butadiene (UO126) were purchased from Tocris
Bioscience. 2-(4-Morpholinyl)-8-phenyl-1(4 H)-benzopyran-4-one hy-
drochloride (LY294002) was purchased from Sigma-Aldrich. A chimeric
protein containing the extracellular domain of rat EphBI receptor
(amino acid residues 1-538) or of human EphAl receptor (amino acid
residues 1-547) fused to the C-terminal 6 X histidine-tagged Fc region of
human IgG via a polypeptide linker (Sigma-Aldrich, R&D Systems) was
clustered by a 40 min incubation at 37°C with an AffiniPure goat anti-
human IgG, Fc,-specific (111 ng/ml).

Electrophysiological studies

Preparation of hippocampal slices. Neonate (7- to 9-d-old) or adult (4-
week-old) male Wistar rats (Charles River) were killed by an overdose of
isoflurane followed by cervical dislocation. The brains were rapidly re-
moved and mounted on a steel plate: 400 wm thick sections of the whole
brain were prepared using a vibroslicer (DSK, Dosaka EM). Sectioning
was performed in cold (~4°C) artificial CSF (aCSF) containing the fol-
lowing (in mm): 124 NaCl, 3 KCl, 26 NaHCOs, 2 CaCl,, 1.25 NaH,PO,,
1 MgSO,, and 10 glucose. The aCSF was continuously bubbled with
carbogen (95% O,-5% CO,). After slicing, the hippocampus was dis-
sected and transferred to a submerged chamber continuously perfused
with carbogen-bubbled aCSF at room temperature.

Extracellular recordings and analysis. After an equilibration period of
=1 h extracellular field potentials were recorded from the stratum radia-
tum of the CAI region using glass micropipettes (2—4 MQ) filled with
aCSF. Electrical stimulation was delivered using a concentric bipolar
stimulating electrode (Frederick Haer). Stimuli were produced by con-
stant voltage isolated stimulator boxes (Digitimer) and comprised a
square-wave pulse, 20-200 ps in duration and 1-20 V in amplitude.
Signals were amplified X1000 using an AxoClamp-2-A amplifier (Molec-
ular Devices) and then low-pass filtered at 2 kHz, digitized at 5 kHz,
captured using Clampex 9.2 software (Molecular Devices), and stored on
a PC hard disk for off-line analysis. The stimulation strength was ad-
justed to obtain 50% of the maximal synaptic response by monitoring the
slope of field EPSPs (fEPSPs). In each experiment, measurements of each
individual parameter were averaged over 5 consecutive min. These values
were normalized relative to mean value obtained over the 20 min period
before drug application. Paired-pulse facilitation (PPF) is the potentia-
tion of the response to the second of a pair of stimuli and represents a
form of presynaptic short-term plasticity. Changes in PPF can provide an
indication of changes in transmitter release probability (Zucker, 1989).
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When applied, paired stimuli (interstimulus interval of 50 ms) consisted
of 100 ms constant current square pulses, applied at 0.2 Hz.

Measurement of polyphosphoinositide (PI) hydrolysis in
hippocampal slices

Hippocampal slices (350 X 350 wm) were prepared from neonate rats, as
described previously (Nicoletti et al., 1986), and incubated at 37°C under
constant oxygenation for 45 min in Krebs-Henseleit buffer, pH 7.4. Forty
microliters of gravity packed slices were transferred to vials containing 1
uCi of myo-[2->Hl]inositol (specific activity, 10 Ci/mmol; GE Health-
care, Milan, Italy) to label inositol phospholipids. At the end of this
incubation, 10 mum LiCl was added, followed 10 min later by the mGlu1/5
receptor agonist, DHPG. When present, mGlu receptor antagonists
and/or clustered EphB1/Fc were added 5-10 min before DHPG. The
incubation was continued for 60 min and then terminated by the addi-
tion of methanol:chloroform:water (1:1:1). The amount of [ *H]inositol
monophosphate (InsP) accumulated during the reaction was measured
by anion exchange chromatography as described previously (Nicoletti et
al., 1986).

Assessment of the MAP kinase (MAPK) and the
phosphatidylinositol-3-kinase (PI-3-K) pathways

in hippocampal slices

Neonate hippocampal slices prepared as above were preincubated in
oxygenated Krebs/Henseleit buffer, pH 7.4, for 3 h in an attempt to
reduce the background activity of the MAPK and the PI-3-K pathways,
and then challenged with DHPG and clustered EphB1/Fc alone or in
combination for 10 min. The incubation was terminated by washing the
slices in ice-cold buffer. Slices were lysed in Triton X-100 lysis buffer
[containing the following (in mwm): 50 Tris-HCI, pH 7.5, 1% Triton
X-100, 100 NaCl, 5 EDTA, 50 NaF, 40 B-glycerophosphate, 200 sodium
ortovanadate, 100 PMSF, 1 ug/ml leupeptin, 1 ug/ml pepstatin A) for 15
min at 4°C. Samples were centrifuged at 12,000 X g for 10 min at 4°C.
Equal amounts of proteins (100 ng) from supernatants were sepa-
rated by 12.5% (p-ERK1/2) or 7.5% (p-Akt) SDS-polyacrylamide gel.
After separation, proteins were transferred on nitrocellulose membranes.
Membranes were incubated with an antibody against phosphorylated ex-
tracellular signal regulated kinase, ERK1/2 (phospho-p44/42 MAPK
monoclonal antibody, 1:2000; New England Biolabs Inc.) for 2 h at room
temperature or with an antibody against phosphorylated Akt (1:1000,
rabbit polyclonal phospho-Akt (Ser473) antibody; New England Biolabs
Inc.) overnight at 4°C. Blots were then incubated for 1 h with the secondary
antibody (1:5000, peroxidase-coupled anti-mouse or 1:8000, peroxidase-
coupled anti-rabbit; GE Healthcare). Immunostaining was revealed by the
enhanced ECL Western blotting analysis system (GE Healthcare). The same
blots were normalized against anti-ERK1/2 or anti-Akt antibodies (1:1000;
New England Biolabs Inc.).

Western blot analysis of mGlu5 receptors in ephrin-B2

and KCC2 immunoprecipitates

Western blot analysis of mGlu5 receptors in ephrin-B2 immunoprecipi-
tates from the hippocampus of neonate rats was performed as described
previously (Calo et al., 2005). In brief, 1 mg of lysate was incubated with
5 pg of rabbit polyclonal ephrin-B2 immunoprecipitating antibody
(Santa Cruz Biotechnology) or rabbit polyclonal anti-K */Cl ~ synporter
(KCC2) antibodies (Millipore Biotechnology) and bound to protein
A-Sepharose beads (Sigma-Aldrich). For Western blot analysis, pro-
teins were resuspended in SDS-bromophenol blue buffer containing
20 mwm dithiothreitol, separated on 8% SDS-PAGE, transferred to
nitrocellulose membrane, immunoblotted, and revealed by ECL (GE
Healthcare). The following primary antibodies were used: rabbit
polyclonal anti-mGlu5 receptors (1:1000; Millipore Biotechnology);
rabbit polyclonal anti-ephrin-B2 antibody (1:100, R&D Systems); and
rabbit polyclonal anti-KCC2 antibodies (Millipore Biotechnology). The
hippocampus of mGlu5 receptor knock-out mice (Battaglia et al.,
2004) was used to confirm the specificity of the anti-mGlu5 receptor
antibody.
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Assessment of ephrin-B2 activation in transfected HEK293 cells
and hippocampal slices

Human embryonic kidney 293 (HEK293) cells were grown in DMEM
containing L-alanyl-L-glutamine, 10% fetal bovine serum, and antibiotics
(100 U/ml penicillin, 100 ug/ml streptomycin) on 10 cm diameter cell
culture dishes at 37°C in an atmosphere of 5% CO,, 95% air. Transient
transfection with ephrin-B2 construct (gift from Dr. Wilkinson, Lon-
don) was performed using Lipofectamine 2000 in OptiMEM medium
(Invitrogen) and 10 ug of cDNA for 4 h. The cells were serum starved
overnight and then treated for 30 min with either clustered EphB1/Fc
(0.25 ug/ml), unclustered EphB1/Fc or the anti-Fc IgG alone. Neonate
hippocampal slices, prepared using the same method described for the
assessment of PI hydrolysis, were preincubated in oxygenated Krebs/
Henseleit buffer, pH 7.4, for 90 min, and then challenged with clustered
EphB1/Fc, DHPG, MPEP, clustered EphB1/Fc + DHPG, or clustered
EphB1/Fc + MPEP for 5 min. A mixture of tyrosine phosphatase
inhibitors (cocktail 2, Sigma-Aldrich) was added 15 min before drug
addiction.

Total protein extracts (1 mg) from HEK cells or hippocampal slices
were immunoprecipitated as described previously (Calo et al., 2005).
Briefly, we used 5 ug of anti-ephrin-B2 antibody (Santa Cruz Biotech-
nology) for 4 h at 4°C followed by addition of 50 ul of Protein-A Sepha-
rose for 2 h at 4°C. Ephrin-B2 immunoprecipitates were analyzed by
immunoblotting with monoclonal 4G10 anti-phosphotyrosine antibody
(Millipore Biotechnology) or anti-ephrin-B2 antibody (1:100, R&D
Systems).

Results

Low concentrations of the group-I mGlu receptor agonist,
DHPG, induced short-term depression (STD) of Schaffer
collateral/CA1 pyramidal cell synaptic transmission in adult
and neonatal hippocampal slices

We recorded synaptic responses at Schaffer collateral-CA1 pyra-
midal cell synapses in hippocampal slices prepared from postna-
tal day 7-9 or from adult rats. In control slices, synaptic activity
was stable for at least 3 h (data not shown). We challenged the
slices with DHPG at concentrations of 10 uM to induce a tran-
sient depression of synaptic transmission. Lower concentrations
of DHPG (5 uM) did not affect synaptic transmission (data not
shown; see also van Dam et al., 2004), whereas higher concentra-
tions (20—50 uM) are known to induce postsynaptic depolariza-
tion (Davies et al., 1995) and nondecremental LTD (Palmer et al.,
1997; Fitzjohn et al., 1999). In adult hippocampal slices, bath
application of 10 um DHPG for 20 min induced a short-term
depression (STD) of synaptic activity (from 18 to 42% below the
baseline in different experiments) that returned back to baseline
levels 30 min following washout of DHPG (Fig. 1 A). Similarly, in
neonatal hippocampal slices, DHPG application resulted in STD,
which returned to baseline following drug withdrawal (Fig. 2A).
Delivering paired stimulation showed no changes in paired-pulse
facilitation (data not shown) indicating that expression of
DHPG-induced STD was unlikely to be due to changes in
neurotransmitter release.

Activation of ephrin-Bs induced a slight but nondecremental
depression of synaptic transmission in hippocampal slices
Membrane anchored ephrin ligands form a tetrameric complex
with two molecules of cognate Eph receptors expressed by
opposing cells. This complex generates forward and reverse
signals bidirectionally in the two cells via phosphorylation pro-
cesses (Himanen et al., 2004). We mimicked the physiological
activation of ephrin-Bs by their receptors in vitro by using a sol-
uble chimeric EphB1 receptor fused to the Fc portion of IgG,
preclustered by an anti Fc antibody (Davis et al., 1994, Himanen
et al., 2001). Clustered EphB1/Fc activated ephrin-B2 expressed
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in HEK293 cells, as detected by immunoblotting with anti-
phospho-tyrosine antibodies in ephrin-B2 immunoprecipitates
(densitometric values of phosphorylated ephrin-B2/total ephrin-
B2 = controls 0.33 = 0.09; clustered EphB1/Fc, 0.25 ug/ml =
0.65 = 0.11*; unclustered Eph/Fc, 0.25 pg/ml = 0.24 * 0.07;
anti-Fc IgG alone = 0.36 * 0.08; means + SEM of 4 determina-
tions; *p < 0.05 vs all other values). Perfusion of hippocampal
slices with EphB1/Fc alone (0.25 pug/ml) induced a small depres-
sion of synaptic activity in both adult and postnatal hippocampal
slices (Figs. 1 B and 2 B, respectively). In contrast to the effects of
DHPG, synaptic depression persisted after removal of EphB/Fcin
adults and postnatal rats, respectively (Figs. 1B, 2 B). The anti-Fc
antibody alone (111 ng/ml) had no effect on synaptic transmis-
sion (data not shown).

Synaptic depression induced by either DHPG or activated
ephrin-Bs was mediated by mGlu5 receptors

To examine which of the two group-I mGlu receptor subtypes
mediated DHPG-induced STD, we used CPCOOEt (30 um) and
MPEP (10 um), which are noncompetitive antagonists of mGlul
and mGlu5 receptors, respectively (Gasparini et al., 1999; Litschig
et al., 1999; Pagano et al., 2000), and did not induce changes in
synaptic transmission on their own (data not shown). DHPG-
induced STD was completely prevented by the application of
MPEP in both adult and neonatal hippocampal slices (Figs. 1C,
2C), whereas CPCCOEt had no effect on DHPG-induced STD
(Figs. 1D, 2D). We then combined either CPCCOEt or MPEP
with EphB1/Fc to disclose a potential role for mGlul or mGlu5
receptors in synaptic depression induced by activated ephrin-Bs.
Interestingly, synaptic depression induced by EphB1/Fc was
abolished in the presence of MPEP (Figs. 1E, 2E) whereas it
persisted in the presence of CPCCOEt (Figs. 1F, 2 F). Thus, syn-
aptic changes induced by EphB1/Fc required the endogenous
activity of mGlu5 receptors.

Robust and nondecremental synaptic depression induced

by a combined activation of ephrin-Bs and mGlu5 receptors
in hippocampal slices

In this particular set of experiments, adult or neonate hippocam-
pal slices were treated with clustered EphB1/Fc for 80 min. DHPG
was present in the last 20 min of EphB1/Fc exposure. Coapplica-
tion of DHPG with clustered EphB1/Fc resulted in LTD of syn-
aptic transmission, which persisted for the entire recording
period (140 min). In addition, the extent of synaptic depression
was much greater than that induced by DHPG of EphB1/Fc alone
in both adult and neonate hippocampal slices (Figs. 1G, 2G). The
enhanced depression induced by DHPG and EphB1/Fc was com-
pletely dependent on activation of mGlu5 receptors because syn-
aptic depression returned back to baseline values when MPEP
was present during the 20 min exposure to DHPG (Figs. 1 H, 2 H).

Responses to DHPG were specifically amplified by

activated ephrin-Bs

To examine whether the action of clustered EphB1/Fc was
specific, we also challenged neonate hippocampal slices with
unclustered EphB1/Fc or with clustered EhpA1/Fc. Unclustered
EphB1/Fc is unable to activate ephrin-Bs (see above) and can
even antagonize endogenous activation of ephrin-Bs in some
studies (Davis et al., 1994). Addition of unclustered EphB1/Fc to
hippocampal slices had no effect on synaptic transmission and
did not change responses to 10 um DHPG (Fig. 2],K). Clustered
EphA1/Fc, which selectively activates ephrin-As, did not mimic
the action of clustered EphB1/Fc, but, unexpectedly, induced a
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Figure 1. Pharmacological activation of mGlu5 receptors and ephrin-Bs depresses synaptic transmission at the Schaffer collateral/CA1 synapses in adult rat hippocampal slices. Pooled data

normalized to the baseline, illustrating the effects of DHPG (A), clustered EphB1/Fc (B), DHPG + MPEP (C), DHPG + CPCCOEt (D), clustered EphB1/Fc -+ MPEP (E), clustered EphB1/Fc + CPCCOEt
(F), clustered EphB1/Fc + DHPG (G), and clustered EphB1/Fc + DHPG + MPEP (H) on the slope of fEPSP are shown. Values are means = SEM. Statistical analysis was performed by one-way ANOVA
followed by Tukey's PLSD. In A (n = 5), values corresponding to the peak of synaptic depression (40 — 60 min) were significantly different from baseline values ( p << 0.05);in B (n = 6), all values
following the termination of Eph/Fc exposure were significantly different from baseline values ( p > 0.05) except the value at time 0; in € (n = 3), none of the values with DHPG + MPEP differed
from baseline values; in D (n = 3), peak values of synaptic depression (40 —50 min) were significantly different from baseline values ( p << 0.05);in E (n = 3), none of the values with EphB1/Fc +
MPEP differed from baseline values; in F (n = 5), peak values of synaptic depression (40— 60 min) were significantly different from the two initial baseline values; in G, (n = 6) note a robust
nondecremental LTD induced by coapplication of EphB1/Fc and DHPG. DHPG was applied for 20 min following a 60 min exposure to EphB1/Fc. All values recorded at the end of DHPG exposure were
significantly different from values recorded during exposure to EphB1/Fcalone ( p <<0.05). Notein H (n = 5) that the synergism between EphB1/Fcand DHPG was abolished when DHPG was applied
inthe presence of MPEP. Representative traces illustrating fEPSP before, during, and after drug applications are shownin all figures. Traces are averages of four consecutive responses at the indicated

time points.

long-lasting increase in synaptic transmission (Fig. 2L). DHPG
was still able to reduce synaptic transmission when combined
with clustered EphA1/Fc (Fig. 2 M).

Measurements of intracellular signaling pathways in
hippocampal slices challenged with DHPG and/or EphB1/Fc
Using hippocampal tissue from 7- to 9-d-old rats we confirmed
that mGlu5 receptors coimmunoprecipitates with ephrin-B2
(Caloetal., 2005). We used a polyclonal antibody that recognizes
a C terminus epitope of mGlu5 receptors. The antibody labeled a
major band at 140 kDa, which is the expected molecular size of
the mGlu5 receptor monomers, and an additional high molecu-
lar weight band, which may correspond to receptor dimers. Both
bands were absent in the hippocampus of mGlu5 receptor knock-
out mice (Fig. 3A). The input rat hippocampal tissue used for
immunoprecipitation expressed mGlu5 receptors, ephrin-B2,
and the neuronal K */Cl ~ cotransporter, KCC2. Ephrin-B2 and
KCC2 were detected as single bands at the expected molecular
size of 37 and 140 kDa, respectively. The mGlu5 receptor was
detected in ephrin-B2 immunoprecipitates, but not in KCC2 im-

munoprecipitates (negative controls) (Fig. 3A). We then exam-
ined whether activation of ephrin-B2 by clustered EphB1/Fc
potentiated the stimulation of PI hydrolysis by DHPG in neona-
tal hippocampal slices. In neonatal brain tissue, the PI response to
DHPG and other group-I mGlu receptor agonists is substantial
and largely mediated by mGlu5 receptors (Nicoletti et al., 1986;
Casabona et al., 1997). DHPG produced a >3-fold increase in PI
hydrolysis at 10 uMm (Fig. 3B), and a tenfold increase at 100 uMm
(data not shown). The action of DHPG was inhibited by MPEP
but not CPCCOEt (Fig. 3B). Clustered EphB1/Fc alone had no
effect on [*H]InsP formation (Fig. 3C), excluding a direct inter-
action of the chimeric protein with mGlu5 receptors. However,
clustered EphB1/Fc amplified the stimulation of PI hydrolysis by
10 uM DHPG, and this potentiation was abolished by MPEP (Fig.
3C). We then examined whether drugs that bind to mGlu5 recep-
tors (i.e., DHPG or MPEP) could influence the activation of
ephrin-B2, as assessed by immunoblot analysis of phosphory-
lated ephrin-B2 in response to clustered EphB1/Fc. Clustered
EphB1/Fc increased tyrosine phosphorylation in ephrin-B2 im-
munoprecipitates from neonate hippocampal slices. This effect
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Figure 2.

Same as in Figure 1, but in hippocampal slices from rats at postnatal days 7-9. InAand D (n = 6 and 4, respectively), values corresponding to the peak of synaptic depression (40 — 60 min) were

significantly different from baseline values ( p << 0.05);in B (n = 5), values following the termination of Eph/Fc exposure were significantly different from baseline values ( p <<0.05);in F (n = 5), values from
50t0 60 min were significantly different from baseline values ( p << 0.05);in Cand E (n = 4.and 5, respectively), none of the values with DHPG + MPEP or clustered EphB1/Fc + (Figure legend continues.)
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blot analysis of phosphorylated ERK1/2
showed that DHPG produced a slight
concentration-dependent activation of the
MAPK pathway. Clustered EphB1/Fc was
inactive on its own and did not potentiate
the action of 10 um DHPG (Fig. 4A). The
MAPKK (MEK) inhibitor, UO126, inhib-
ited the short-term depression of synaptic
transmission induced by 10 um DHPG. A
nonsignificant trend to a long last depres-
sion of synaptic transmission was induced
clustered EphB1/Fc in the presence of
UO126. When applied together in the pres-
ence of UO126, clustered EphB1/Fc and
DHPG induced responses similar to those
induced by clustered EphB1/Fc alone (Fig.
4B-D). Neither DHPG nor EphB1/Fc
had any detectable effect on the PI-3-K
pathway, as detected by immunoblot
analysis of phosphorylated Akt (Fig. 5A).
The PI-3-K inhibitor, 1LY294002, did
not affect the depression of synaptic
transmission induced by DHPG and/or
clustered EphB1/Fc (Fig. 5B-D).
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Discussion

mGlureceptor-dependent LTD in the CA1 region can be induced
by particular stimulation protocols (e.g., by paired-pulse low-
frequency stimulation; PP-LSF) or, alternatively, by direct appli-
cation of group-I mGlu receptor agonists to hippocampal slices
(Fitzjohn et al., 1996; Overstreet et al., 1997; Palmer et al., 1997;
Schnabel et al., 1999; Huber et al., 2000). The latter strategy car-
ries the advantage of selectively activating group-I mGlu recep-
tors, although it should be kept in mind that there may be some
differences in the molecular events underlying the induction and
expression of DHPG/LTD and PP-LFS-induced mGlu receptor-

<«

(Figure legend continued.) ~ MPEP differed from baseline values; in G (n = 5), we found the
same synergism between EphB1/Fc and DHPG observed in adult hippocampal slices (see Fig.
1G). All values recorded at the end of DHPG exposure were significantly different from values
recorded during exposure to EphB1/Fc alone (p << 0.05). Again, the synergism between
EphB1/Fcand DHPG was abolished when DHPG was applied in the presence of MPEP (n = 5).
Pool data from a different set of experiments with hippocampal slices from rats at postnatal
days 7-9 are shown in /=M. In I (DHPG; n = 5) and K (unclustered EphB1/Fc + DHPG; n = 5),
values corresponding to the peak of synaptic depression (from 40 to 80 min in | and from 79 to
110 min in K) were significantly different from baseline values ( p << 0.05); the lack of effect of
unclustered EphB1/Fc on synaptic transmission is shown in J (1 = 6); in L (n = 6), clustered
EphA1/Fcis shown to induce a long-lasting increase in synaptic transmission. Values at times
=40 min are significantly different from baseline values; in M (n = 5), DHPG is still able to
reduce synaptic transmission in the presence of clustered EphA1/Fc. Representative tracesillus-
trating fEPSP are shown in all figures. Traces are averages of four consecutive responses at the
indicated time points.
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A, mGlu5 receptors coimmunoprecipitate with ephrin-B2 in hippocampal protein extracts. From the left side: (1)
expression of mGlu5 receptors in the hippocampus of adult wild-type or mGlu5 knock-out mice; (2) expression of mGlu5 receptors,
ephrin-B2, and KCC2 in protein extracts from the hippocampus of 7- to 9-d-old rats used for immunoprecipitation (input); and (3)
expression of mGlu5 receptors in ephrin-B2 immunoprecipitates, but not in KCC2 immunoprecipitates. [P, inmunoprecipitates;
WB, Western blotting. B, (, Stimulation of PI hydrolysis in neonate hippocampal slices challenged with DHPG (10 m) in the
absence or presence of CPCCOEt (10 wum) or MPEP (1 um) or i the absence or presence of EphB1/Fc with or without MPEP is shown
in B and C, respectively. Data are means = SEM of 5—6 determinations. p << 0.05 [(one-way ANOVA + Tukey's PLSD) vs the
respective values obtained in the absence of DHPG (*) or vs values obtained with DHPG alone (#)]. Tyrosine phosphorylation in
ephrin-B2 immunoprecipitates from neonate hippocampal slices challenged with clustered EphB1/Fc, DHPG, or MPEP applied
alone orin combinationis shown in D. Data were normalized by the levels of total ephrin-B2 inimmunoprecipitates. Densitometric
values are means == SEM of 4 —5 determinations. *p << 0.05 (one-way ANOVA + PLSD vs control values).

dependent LTD (reviewed by Kemp and Bashir, 2001). In our
experiments, application of 10 uM DHPG to hippocampal slices
induced STD of excitatory synaptic transmission at the Schaffer
collateral/CA1 pyramidal cell synapses. STD was entirely medi-
ated by the activation of mGlu5 receptors because it was abol-
ished by the noncompetitive mGlu5 receptor antagonist, MPEP,
but not by the mGlul receptor antagonist, CPCCOEt. mGlu5
receptors are predominantly, if not exclusively, localized to
postsynaptic elements in the hippocampus (Shigemoto et al.,
1997). To examine whether DHPG-induced synaptic depression
was modulated by the ephrin/Eph receptor system, we focused on
ephrin-Bs, which are also postsynaptically localized in CA1 pyra-
midal cells (Grunwald et al., 2004; Rodenas-Ruano et al., 2006).
Pharmacological activation of ephrin-Bs by means of a preclus-
tered EphB1 receptor/Fc chimera, induced a small but long-
lasting depression of synaptic transmission, in contrast to the
STD induced by DHPG. This effect was specific because no de-
pression of synaptic transmission was seen in slices treated with
unclustered EphB1/Fc, the anti-Fc antibody alone, or clustered
EphAl/Fc. In contrast, clustered EphA1/Fc, which selectively ac-
tivates ephrin-As, induced a long-lasting increase in synaptic
transmission, an unexpected finding that warrants further inves-
tigation. Interestingly, both the slight depression of synaptic
transmission and the increase in ephrin-B2 phosphorylation in-
duced by clustered EphB1/Fc were prevented by MPEP, suggest-
ing that mGlu5 receptors are involved in the activation process of
ephrin-B2. It is unlikely that clustered EphB1/Fc directly acti-
vated mGlu5 receptors because clustered EphB1/Fc failed to
stimulate PI hydrolysis in neonate hippocampal slices, i.e., in a
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system in which mGlu5 receptors are highly responsive to phar-
macological activation (Nicoletti et al., 1986). It is possible that
ephrin-Bs and mGlu5 are functionally interconnected in the
same synaptic territory, and an active conformation of mGlu5
receptors enables the activation of ephrin-B2. MPEP could im-
pair this process by inhibiting the activation of mGlu5 receptors
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by endogenous glutamate or the consiti-
tutive activity of mGlu5 receptors (Joly et
al., 1995; Ango et al., 2001; Mithlemann et
al., 2005). If so, how can we explain the
difference between synaptic depression
induced by ephrin-B activation and DHPG-
induced STD? One possibility is that
EphB1/Fc tightly binds to ephrin-Bs and
is not easily washed out, as opposed to
DHPG. An alternative explanation, which
we favor, is that synaptic depression in-
duced by ephrin-B activation incorporates
at least two components: (1) a necessary
component mediated by mGlu5 receptors;
and (2) an additional component intrinsic
to ephrin-B signaling and independent of
mGlu5 receptors. Activated ephrins trigger
a cascade of phosphorylation processes me-
diated by soluble tyrosine kinases (see Intro-
duction and references therein). Tyrosine
phosphorylation is known to affect AMPA
receptor trafficking and responses, thereby
influencing the efficacy of excitatory synap-
tic transmission (Wang et al., 2005; Moult et
al., 2006). The intrinsic ephrin-B compo-
nent might be critical for the duration of
synaptic depression providing that mGlu5
receptors are endogenously activated (or
constitutively active). When combined with
low concentrations of DHPG (here, 10 um),
activation of ephrin-Bs by clustered EphB1/Fc
amplified the stimulation of PI hydrolysis
and generated a robust and nondecremental
synaptic depression similar to that typically
observed with higher concentrations of
DHPG. Unclustered EphB1/Fc did not pro-
duce such an effect. It should be highlighted
that in some studies unclustered EphB1/Fc
inhibits the endogenous activation of eph-
rin-Bs (Davis et al., 2004). If so, data with
unclustered EphB1/Fc in our study might
suggest the absence of a constitutive regula-
tion of synaptic transmission by endoge-
nous ephrin-Bs. However, whether or not,
and to what extent, unclustered EphB1/Fcat
concentrations of 0.25 ug/m blocks endog-
enous ephrin-Bs in hippocampal slices is
uncertain, and there might be a threshold
for the regulation of synaptic transmission
by endogenous ephrin-Bs. Accurate titra-
tion studies with unclustered EphB1/Fc are
needed to solve this caveat.
DHPG-induced LTD at the Schaffer
collateral-CA1 synapses is insensitive to
inhibitors of phospholipase CB (Huang
and Hsu, 2006), inhibitors of protein ki-
nase C (Schnabel et al., 1999), intracel-

lular Ca** chelators (Fitzjohn et al., 2001; Ireland and Abraham,
2009), or agents that deplete intracellular Ca®" stores (Schnabel
etal., 1999). Thus, it is unlikely that amplification of PI hydrolysis
mediates the synergism between clustered EphB1/Fc and DHPG
on synaptic depression. Activation of the MAPK pathway and the
PI-3-K/Akt/mammalian target of rapamycin (mTOR) pathway
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has been implicated in the induction of LTD by DHPG at the
Schaffer collateral-CA1 synapses (Gallagher et al., 2004; Hou and
Klann, 2004; Banko et al., 2006; Volk et al., 2006; Ronesi and
Huber, 2008). In neonate hippocampal slices, DHPG activated
the MAPK pathway but not the PI-3-K pathway, and DHPG failed to
induce STD in the presence of the MEK inhibitor, UO126. Under
our conditions, clustered EphB1/Fc did not activate the MAPK and
PI-3-K pathways. In addition, clustered EphB1/Fc still induced LTD
in the presence of the PI-3-K inhibitor, LY49002, and induced a
trend to a long-lasting depression of synaptic transmission in the
presence of the MEK inhibitor, UO126. It should be highlighted that
multiple signaling pathways contribute to DHPG-induced synaptic
depression at the Schaffer collateral-CA1 synapses, including activa-
tion of c-Jun N-terminal kinases (Lietal., 2007), p38 MAPK (Rush et
al,, 2002), nuclear factor kB (O’Riordan et al., 2006), tyrosine de-
phosphorylation (Moult et al., 2002, 2006; Gladding et al., 2009).
Which of these pathways mediates the synergism between ephrin-B2
and mGlu5 receptors on synaptic transmission remains to be
determined.

One of the most interesting findings in the mGlu receptor field
is that an exaggerated signaling through mGlu5 receptors can
account for a variety of symptoms associated with fragile X syn-
drome, the most common form of heritable mental retardation
and the leading identified cause of autism (reviewed by Bear et al.,
2004; Dolen and Bear, 2008). LTD triggered by activation of
mGlu5 receptors is selectively enhanced in the hippocampus of
mice lacking the fragile X mental retardation protein (Huber et
al., 2002; Nosyreva and Huber, 2006; Nakamoto et al., 2007; Park
etal.,2008). Furthermore, either mGlu5 receptor antagonists or a
genetic reduction in the expression of mGlu5 receptors rescue the
fragile X phenotype in these mice (Bear, 2005; Dolen and Bear,
2005; Yan et al., 2005; Délen et al., 2007). Our finding that acti-
vated ephrin-Bs cooperate withmGlu5 receptors for the induc-
tion of synaptic depression encourages the study of the ephrin/
Eph receptor system in mouse models of fragile X, and raises the
possibility that ephrins represent new targets for drugs that reg-
ulate mGlu5 receptor signaling in the hippocampus.
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