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Abstract
Turbulent mixing of small and diluted inertial particles presents many peculiar and unexpected
features such as preferential segregation at small scales, i.e. clustering or, in wall flows,
preferential wall accumulation, i.e. turbophoresis, which are induced by the multi-scale
features of the turbulence in the carrier fluid. In the context of multi-phase flows, the effect of
turbulence on particle distributions was commonly addressed in simplified geometries as in
homogeneous or channel flows. The present paper discusses the dynamics of suspensions with
different inertia in the far field of turbulent axisymmetric jets by means of direct numerical
simulations. The jet is a well-known constant Reynolds number flow where the characteristic
length scale grows linearly with distance from the jet origin, while the characteristic velocity
decays in inverse proportion. These features, combined with the finite inertia, induce peculiar
non-equilibrium effects on the spatial distribution of the particles. They range from spatially
developing small-scale clustering, due to the multi-scale nature of the turbulent fluctuations, to
self-similarity of the mean particle velocity profile, presumably collapsing on a one-parameter
family of shapes parameterized in terms of the local large-scale Stokes number. The properties
presented here are the most evident features of this most interesting system, where
intermittency and spatial inhomogeneity interact to induce even subtler effects of spatial
segregation, which certainly deserve further investigation.

PACS numbers: 47.27.wg, 47.55.Kf

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The mixing of a particulate phase dispersed in a turbulent
jet is widely found in nature and technology. A remarkable
example is the narrow stream of gas and particulate that is
ejected during a Plinian volcano eruption. In this process the
mixing of the entrained fresh air into the hot stream of gas is
crucial in establishing the conditions for pyroclastic flow [1].

Entrainment also affects droplet evaporation/conden-
sation in clouds [2], where the finite particle inertia enhances
the collision rate [3]. The droplet-laden jet is also the
prototypal flow for fuel injectors, which are ubiquitous
devices found in any kind of internal combustion engine,
turbine engine or rocket motor.

In a particle-laden turbulent jet, particle dynamics exhibit
several features that need to be addressed in detail. Some of
them are shared by other kinds of turbulent two-phase flows,
such as the homogeneous isotropic flow and the homogeneous

shear flow that offer simplified models to address certain
generic behavior of inertial particles in turbulence. Other
features are specific for the jet geometry, whose peculiar
aspects, as we shall see, determine the statistical response of
the particles to the turbulence.

The finite inertia of the particles leads to many
non-equilibrium effects and anomalous aspects in transport
phenomena. It prevents particle trajectories from taking the
fluid paths a Lagrangian tracer would follow and induces
small-scale clustering of the particles. Hence, the turbulent
mixing never fully homogenizes a suspension of particles with
finite inertia, which will be constituted mainly by multi-scale
voids and clusters of particles. The issue has been thoroughly
examined in isotropic (see e.g. [4–6], among others) and
homogeneous shear turbulence [7, 8]. As discussed here,
this phenomenology emerges also in jet flows where it
becomes a local feature found at specific stations along the jet
axis.
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Inhomogeneity adds new features, particularly evident in
wall flows where a mean drift of particles towards the wall—
the so-called turbophoresis—is apparent [9–15].

Similar effects are expected also in jets, where, however,
beyond a strong inhomogeneity in the cross stream direction,
the milder variation along the axis of the stream induces
important new effects.

Several papers investigate the behavior of particles
(e.g. [16–18]) and of evaporating droplets (e.g. [19, 20]) in the
transitional, non-universal, near-field region of jets. For heavy
particles—large particle-to-fluid density ratio—particles are
found to concentrate in the shear layer outside the large
coherent vortical structures that populate the near field,
consistent with the general trend observed in other flows.
Few works [18, 21, 22] concern the far-field behavior, where
the back-reaction of particles on the fluid stream is shown
to impact the spreading rate of the jet. The outward particle
mean radial velocity is larger than it is for the fluid [23],
suggesting localization effects associated with preferential
sampling of outward fluid motions, see [15] for similar effects
in the wall layer of wall turbulence. Inertial effects on particles
decrease moving downstream of the jet [23], consistent with
the increased time scale of the flow.

In this framework, this paper aims at analyzing the
particle behavior from a direct numerical simulation (DNS)
of a free jet laden with different particle populations to
understand the behavior of the system in the far field.

2. DNS of the particle-laden jet

In order to address particle dynamics in a turbulent round jet,
a Lagrangian approach to track the disperse phase is coupled
to a standard Eulerian DNS approach for the fluid phase. For
the very diluted suspension of tiny particles (diameter smaller
than the Kolmogorov scale) considered here, inter-particle
collisions and force-feedback on the fluid can be safely
neglected.

The carrier fluid is assumed to obey the incompressible
Navier–Stokes equations,

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −
∇ p

ρ
+ ν∇

2u, (2)

where ρ and ν are the density and kinematic viscosities of the
fluid, respectively, and u is the fluid velocity.

The inlet boundary condition for the turbulent round
jet is provided by a companion DNS of a turbulent pipe
flow whose instantaneous velocity field at a fixed section is
used to generate the inlet data for the jet simulation. This
procedure, which allows for realistic inlet fluctuations and
avoids unphysical assumptions on the velocity profile, models
a free jet issuing in the external environment from a fully
developed pipe flow. Crucial issues for a successful DNS of
free jets are the conditions enforced on the boundaries used to
artificially truncate the computational domain, consisting of a
side cylindrical mantle and an exit section. The traction-free
boundary conditions on the side mantle and the Orlanski-type
outlet condition used here were already shown to be able

to provide the correct entrainment rate and to preserve the
constant momentum flux of the unbounded jet [24].

The algorithm solves equation (1) in the cylindrical
coordinates by a conservative second order finite difference
scheme on a staggered grid, with time integration performed
by an explicit third order low-storage Runge–Kutta scheme,
see [24] for additional details of numerics and code validation.

The main parameter of the simulation is the bulk
Reynolds number, ReR = Ub R/ν = 2000, with Ub being the
bulk velocity and R the nozzle radius. The domain dimensions
are 2π × 22R × 83R in the azimuthal, θ , radial, r , and axial,
z, directions, respectively, with a corresponding non-uniform
mesh of 128 × 145 × 784 nodes. Overall, the grid spacing
allows for a resolution nowhere worse than three Kolmogorov
length scales.

The tiny, rigid, spherical particles with diameter, dp,
much smaller than the Kolmogorov scale are treated as
material points with finite inertia evolving according to
Newton’s law. The mass density of the material forming the
solid phase is taken much larger than that of the fluid, ρp/ρ =

1000. In these conditions the only significant force acting on
the particles is the viscous Stokes drag [4], and each particle
evolves according to the equations [25]

dv
dt

=
u(x) − v

τp
(3)

dx
dt

= v, (4)

where v denotes the particle velocity and τp = ρp d2
p/(ρν18) is

the particle response time (Stokes time). The Stokes number,
defined as the ratio of τp to the characteristic time scale of
the carrier fluid, controls the particle dynamics for a given
flow field. With the nominal flow time scale given by the ratio
of nozzle radius to bulk exit velocity, the expression for the
nominal Stokes number is St0 = τpUb/R.

Seven populations of identical particles are considered,
with Stokes number ranging between 2 and 128. For each
population the injection rate is fixed at 150 particles per
eddy turnover time, R/U0. A mixed linear–quadratic formula
based on Lagrange polynomials is used to interpolate the fluid
velocity u at the particle position x, see equation (3). The
same three-stage third order low storage Runge–Kutta method
used for the fluid phase evolves the particle populations.
Further numerical details can be found in [15] where the same
algorithm is used for the DNS simulation of a particle-laden
turbulent pipe flow.

The simulation was preliminarily run up to T =

1000R/U0 to allow the carrier phase to reach a statistical
steady state. Successively, particles were continuously
introduced at the jet inlet. After the particle populations
achieved the statistical steady state, the data acquisition
procedure started collecting more than 160 time-independent
fields with temporal separation of 2.5R/U0, enough to
achieve statistical convergence of the observables to be
addressed in the next section.

3. Scaling considerations

In a free turbulent jet, the axial flux of momentum is
independent of the coordinate z along the axis. Sufficiently
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far from the inlet, the jet is known to achieve a self-similar
state where the dimensionless axial velocity profile, Uz/Uc =

U ∗
z (ξ), depends only on the reduced radial coordinate ξ =

r/r1/2(z) [24, 26, 27]. Here, Uc(z) is the centerline mean
velocity and r1/2(z) is the characteristic transversal length
scale at z, typically the jet half-width defined as the radial
distance from the axis where the mean axial velocity
equals half its centerline value. Analogously, self-similarity
is observed also for second order dimensionless statistics
and dissipation [24]. Altogether, these properties imply
that Rer1/2 = Uc(z) r1/2(z)/ν is independent of z. From
experimental measurements, see e.g [26, 28], and numerical
simulations [24, 29], it is also known that the centerline
velocity in the far field decays in inverse proportion to axial
distance, namely

Uc(z)

Ub
=

B 2R

z − z0
, (5)

where z0 is the virtual origin and B, a given constant for a
specific jet, is expected to be a Reynolds number-independent
quantity weakly dependent on the inflow details [24, 29, 30].
As a consequence, the jet half-width scales linearly with axial
distance,

r1/2

R
= S

z − z0

R
, (6)

with S the spreading rate strictly connected to B via
momentum conservation [24, 26],

Rer1/2 = 2BS ReR . (7)

The external turbulent time scale Tr1/2 , given in terms of r1/2

and Uc,

Tr1/2

Ub

R
=

r1/2

Uc

Ub

R
=

S

2 B

(z − z0)
2

R2
, (8)

increases as the square of the distance from the virtual
origin. As a consequence, the local Stokes number, defined
by comparing the particle relaxation time with Tr1/2 ,

Str1/2(z) =
τp

Tr1/2

=
2 B

S

R2

(z − z0)2
St0, (9)

decays with the inverse squared distance from the origin.
Concerning the fine scales, the same similarity arguments

lead to the conclusion that the typical dissipation rate in the
section, e.g. its centerline value, scales as

εc
R

U 3
b

= ε̂c
(Uc/Ub)

3

(r1/2/R)
=

8 B3 ε̂c

S

R4

(z − z0)4
(10)

with ε̂c = εc r1/2/U 3
c constant. The corresponding Kolmo-

gorov length ηc = ν3/4/ε
1/4
c is

ηc

R
=

1

Re3/4
R

(
S

8 B3 ε̂c

)1/4 z − z0

R
(11)

with the dissipative time scale, tη = η2/ν, given by

τη

Ub

R
=

1

Re1/2
R

(
S

8 B3 ε̂c

)1/2
(z − z0)

2

R2
. (12)

In these conditions the ratios between large- and small-scale
quantities present the usual dependence on Reynolds number,

r1/2

ηc
= Re3/4

R ((2SB)3 ε̂c)
1/4

= Re3/4
r1/2

ε̂1/4
c , (13)

Tr1/2

tη
= Re1/2

R (2SB ε̂c)
1/2

= Re1/2
r1/2

ε̂1/2
c , (14)

and are independent of the axial coordinate.
In a jet, relations (13) and (14) are the main tools

to estimate the impact of the inertia on particle dynamics.
Actually, after defining a small-scale Stokes number as the
ratio of τp to the Kolmogorov time tη,

Stη =
τp

tη
= St0 Re1/2

R

(
8 B3 ε̂c

S

)1/2
R2

(z − z0)2
, (15)

the effect of the inertia is found to decrease quadratically with
the distance from the origin. This implies that all particles
eventually behave as tracers sufficiently downstream of the
exit section of the jet. The ratio between Stη and Str1/2 is
constant along the axis of the jet and is determined by the
Reynolds number,

Stη
Str1/2

= Re1/2
r1/2

ε̂1/2
c ∝ Re1/2

R . (16)

The behavior of a given particle changes continuously
along the axis of the jet, from strongly inertia dominated
near the jet exit to purely Lagrangian far downstream. An
intermediate region exists where an inertial particle may
behave as a ‘tracer’ with respect to the large-scale motions
Str1/2(z) � 1, still presenting substantial inertial effects with
respect to the small-scale velocity fluctuations Stη(z) > 1.
The extension of this region, zi

2 − zi
1, is determined by the

conditions

Str1/2(z
i
1) = St0 (2BR2/S)/(zi

1 − z0)
2
= a,

(17)
Stη(z

i
2) = St0 (8R4 B3ε̂1/2

c /S)1/2 Re1/2
R /(zi

2 − z0)
2
= b

with a ' b � 1. Hence, the larger the inertia, the farther
downstream the intermediate region is shifted, zi

1 − z0 ∝
√

St0 . The extension of the intermediate region depends
on the particle relaxation time and scales with Reynolds
number to the power one-fourth zi

2 − zi
1 ∝ Re1/4

R

√
St0,

ReR � 1. For zi
1 < z < zi

2 we should expect small-scale
clustering, controlled by the dissipative Stokes number Stη,
together with a passive-tracer-like dynamics of large-scale
and single point statistics, such as mean particle velocity or
fluctuation intensity, which are controlled by Str1/2 .

The dimensional reasoning illustrated above allows for
the qualitative prediction of the kind of motion executed by
a heavy particle while transported downstream. The particle
will start with purely ballistic behavior at the exit of the jet
that will continue until a first critical section, zc, is reached.
Here its large-scale Stokes number falls below a threshold
and the particle begins to perceive the large-scale fluctuations
of the turbulence. Moving downstream, the range of scales
able to couple with the particle dynamics grows towards

3
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Figure 1. Instantaneous configuration of a thin axial–radial slice of
the turbulent jet. Top panel: passive scalar field (Schmidt number
0.7). Middle panel: particles with St0 = 2. Bottom panel: particles
with St0 = 16.

the small scales. At station zi
1 the particle attains tracer-like

behavior with respect to large-scale fluctuations, until after
passing through section zi

2 the particle eventually becomes
a Lagrangian tracer in every respect. At any given station
beyond zc and before zi

2, a range of turbulent scales exists able
to induce multi-scale features in the particle population, along
the lines described for homogeneous shear turbulence in [8].

4. Results

A visual impression of the turbulent jet is provided in the
top panel of figure 1, which displays the instantaneous
configuration of a transported passive scalar with Schmidt
number 0.7. Given fully turbulent inflow, no evidence is
found of the Kelvin–Helmholtz instability that classically
characterizes the near field of jets with a laminar (top-hat)
inflow. Beyond 20–25 R from the origin, the jet shows
the expected self-similar behavior for mean velocities and
Reynolds stresses, see [24] and section 3. Also the scalar field
conforms to the expected behavior, see e.g. [31].

The other two panels of figure 1 show the instantaneous
configuration of two different particle populations, St0 = 2
and 16 for the middle and bottom panels, respectively. The

Figure 2. Centerline mean velocity versus z/R for several particle
populations. The black line provided for reference is the fluid
velocity.

region near the jet nozzle is dominated by inertia for both
populations, with the heaviest particles moving straight along
the axis for a length of about 5R without perceiving fluid
fluctuations. Close to the axis the population at St0 = 16
keeps an almost uniform distribution up to a significantly
long distance (∼ 50R). In this region these particles execute
purely ballistic motions. In contrast, in the same region, both
the passive scalar field and the lightest particles show large
fluctuations in the local concentration.

Concerning the lightest particles, the occurrence of
small-scale clustering is apparent in the central region of
the image. This impression is substantiated by evaluating the
local small-scale Stokes number Stη, which lies in the range
0.5–2.2 for 306 z/R 6 60 (here B = 6.77, z0/R = −0.8,
S = 0.089 and ε̂c = 0.018, as obtained from the analysis of
centerline mean velocity, spreading rate and dissipation [24]).
This behavior is consistent with the results found in a
homogeneous turbulent shear flow and in isotropic turbulence
where peak clustering occurs where Stη ' 1 [4, 8]. The
overall picture provided by the scaling analysis of section 3
is confirmed by the behavior of the particles with St0 = 16,
which begin to manifest significant clustering effects towards
the right edge of the image where the local small-scale Stokes
number becomes sufficiently small, Stη ∼ 2.2. Hence, the
data confirm the idea that the small-scale particle distribution
(small-scale mixing) is ruled by the local Stη.

As far as the far field is concerned, the mean centerline
velocity of particles with St0 = 8 almost matches the fluid
centerline mean velocity Uc at z ' 40 R, see figure 2 where
data for several populations are reported. At station z = 40 R,
equation (9) yields Str1/2 ' 0.73. The same value of the local
large-scale Stokes number Str1/2 is achieved at z ' 57 R for
particles with St0 = 16. Exactly at this station these kinds of
particles match the fluid mean centerline velocity (figure 2).
On the basis of the scaling analysis of section 3, particles with
St0 = 32 should match the fluid average velocity at z ' 81R,
close to the artificial boundary of the computational domain.
Figure 2 seems to confirm this trend, although a certain bias is
certainly induced by the numerical outlet boundary condition
that may locally alter the correct jet dynamics.

By conforming to the predictions of the scaling theory
provided in section 3, these results suggest that the centerline
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Figure 3. Mean axial particle velocity profiles versus r/R for several particle populations at different axial stations. In each panel the fluid
profile is plotted in black. Top panels: left, z/R = 20; right, z/R = 30. Middle panels: left, z/R = 40; right, z/R = 50. Bottom panels: left,
z/R = 60; right, z/R = 70.

mean velocity of the solid phase, Vc, is controlled solely by the
local large-scale Stokes number Str1/2 . In other words, after
normalizing with the local fluid mean centerline velocity, the
dimensionless velocity Vc/Uc of particles with different τp

should be the same at stations where Str1/2(z) is the same. This
notion is straightforwardly extended to the conjecture that the
whole mean axial velocity profile across the jet section could
be self-similar if appropriately rescaled and parameterized
with the local large-scale Stokes number.

The radial profiles of the mean axial velocity for fluid
and particle populations are shown in figure 3 at several
axial distances. At fixed station, with increasing τp, particle

velocities are found to exceed the fluid velocity and to
present a wider distribution across the section. These are
in fact memory effects, with particles retaining memory
of their previous exposure to fluid velocities, which are
on average faster, since the fluid velocity decreases along
the average streamlines. For a specific particle population,
moving downstream a station is eventually reached where
the particle velocity profile exactly reproduces the fluid, see
e.g. at z = 30R particles with St0 6 4. Looking at the data,
the particles begin to recover the fluid velocity starting from
the outer part of the jet, eventually achieving the coincidence
of velocity on the axis further downstream, e.g. compare the

5
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Figure 4. Normalized mean axial particle velocity V/Uc(z) as a
function of the reduced radial coordinate r/(z − z0) for two particle
populations (St0 = 8 and 16, triangles and squares, respectively) at
two corresponding stations (z = 34R and 49R, for the former and
the latter population, respectively) such that the local large-scale
Stokes number achieves in both cases unit value (Str1/2 = 1). The
filled circles provide the mean fluid axial velocity.

profiles of particles with St0 = 16 at z = 40 R and at z = 50R.
A similar trend is found for St0 = 32, where things are shifted
downstream. In this case the end of the computational domain
is reached before particles can completely acquire the fluid
average velocity.

Since the matching between particle and fluid mean
velocities starts from the outer part of the jet, once particles
attain the fluid velocity at the axis of the jet the entire profile
collapses on the fluid profile. In our simulations this is found
to occur within reasonable accuracy from the station where
Str1/2(z)6 0.73 onwards. From equation (9) we estimate that
the mean particles velocity profile reproduces the fluid beyond
the station zf,

z > zf = z0 +

√
2 B

0.73 S
St0 R ' 13.5

√
St0 R, (18)

where the coordinate z0 of the virtual origin of the jet is
typically of the order of R and negative.

The conjecture that the entire mean particle velocity
profile is self-similar at corresponding axial stations is
checked in figure 4. The figure compares the mean particle
velocity profile normalized by the local mean centerline fluid
velocity Uc(z) for two different populations. The normalized
profile is plotted as a function of the reduced radial coordinate
r/(z − z0), which is the similarity variable for the mean
fluid velocity profile, see section 3. For each population
the profile is taken at the station where the corresponding
large-scale Stokes number Str1/2(z) attains unit value. The
shape similarity of the two profiles is striking.

Other features emerge clearly from the plots in figure 4.
The selected unit value of the local Stokes number exceeds
0.73, which is the limit below which particle and fluid profiles
become indistinguishable. The particle average velocity is
already very close to that of the fluid, almost everywhere in
the section. However, while the external portion of the profile
is already exactly on top of the fluid one, the inner portion still
shows a significant discrepancy, exceeding the fluid velocity
by 10% at the centerline. This seems to confirm to a large

extent the self-similar nature of the particle average profile in
the far field of the jet. A wider analysis is at present under way
to complete the illustration of the conjectured self-similarity,
and to look in more detail at subtler effects induced by the
intermittency of the field. The results will be briefly reported
elsewhere.

5. Final remarks

The dynamics of inertial particles dispersed in a turbulent
jet has been investigated numerically by means of a DNS.
This is the only DNS of the far field of a particle-laden free
turbulent jet we are aware of. It required a precise validation
of the carrier fluid dynamics, easily spoiled by numerical
artifacts induced by the artificial boundary conditions needed
to truncate the otherwise unbounded computational domain.
The successful simulation of a fully developed free turbulent
jet makes possible the comparison with the classical similarity
theory of the jet far field. This theory was exploited here
to predict the most significant features of inertial particle
transport. Overall, a remarkable correspondence is found
between the proposed theoretical predictions and the results
of our numerical experiments.

From the theoretical point view, two different Stokes
numbers basically rule the dynamics of the particles. One,
Stη = τp/τη, compares the particle relaxation time with the
local Kolmogorov time scale. The other, Str1/2 = τp/Tr1/2 ,
accounts for the local large-scale eddy-turnover time of the jet,
Tr1/2 = r1/2/Uc. The former controls the small-scale particle
dynamics that, as established in statistically homogeneous
flows, is prone to small-scale clustering in the appropriate
Stokes number range. The latter describes the response to
large-scale fluctuations and controls low-order single point
statistics.

For a fixed particle inertia, both these parameters are
found to decay as the square of the distance from the origin
of the jet. As a consequence, independently of the specific
inertia, any particle is bound to eventually behave as a
Lagrangian tracer at sufficient distance from the jet orifice.
The ratio between the small- and the large-scale Stokes
number is found to be proportional to the square root of the
jet Reynolds number ReR , thereby providing predictions on
the range of scales influenced by the finite particle inertia and
the spatial extension of the region where clustering effects
take place. Consistently, in a certain intermediate range of
positions along the jet axis, a given particle behaves as if
it were a Lagrangian tracer with respect to large-scale fluid
velocity fluctuations, while still obeying the ballistic limit
with respect to the small-scale dynamics.

On the basis of theoretical considerations, the mean axial
particle velocity profile is conjectured to achieve a self-similar
state in the far field of the jet, where the scaling parameter is
the local large-scale Stokes number, based on the flow time
scale of the local section of the jet. The conjecture is verified
by the numerical data to very good accuracy.

As a final comment, we like to stress that those discussed
here are only the gross properties of this extremely interesting
system. Small-scale intermittency of fluid fluctuations
in conjunction with the spatial inhomogeneity of the
field induces subtler effects, which are at present under
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investigation and will be reported in detail elsewhere. In
addition, we consider it worth mentioning here that especially
interesting features are expected to emerge at the boundary of
the jet, where the so-called external intermittency is expected
to play a major role.
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