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Abstract
We analyse the stability of stationary solutions of a singular Vlasov type
hydrodynamic equation (HE). This equation was derived (under suitable
assumptions) as the hydrodynamical scaling limit of the Hamiltonian evolution
of a system consisting of a massive piston immersed in an ideal gas of point
particles in a box. We find explicit criteria for global stability as well as a
class of solutions that are linearly unstable for a dense set of parameter values.
We present some numerical evidence that when the mechanical system (with
a large number of particles) has initial conditions ‘close’ to stationary stable
solutions of the HE, then it stays close to these solutions for a long time. On
the other hand, if the initial state of the particle system is close to an unstable
stationary solution of the HE, then the mechanical system diverges rapidly from
that solution and later appears to develop long lasting periodic oscillations. We
find similar (approximately periodic) solutions of the HE that are linearly stable.

PACS numbers: 05.20.Jj, 47.20.Ky

1. Introduction

The time evolution of a system consisting of a piston of mass M moving parallel to the
x-axis in a cube containing non-interacting point particles of unit mass has been studied
extensively [CLS1,CLS2,CL,G,GF,GP,H,KBM,LPS,Li,PG]. After some rescaling of space
and time (by the length of the cube), the problem reduces to that of a one-dimensional system
with NL (NR) particles in the interval [0, X] (respectively, [X, 1]) where X(t) is the position
of the piston. The left (right) particles move freely between collisions with the wall at x = 0
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(x = 1) and the piston at x = X(t). At the walls the velocities of the particles get reversed,
while at x = X(t) the outgoing velocity, v′, is related to the incoming velocity, v, by the rules
of elastic collisions [CLS2, CL, LPS],

v′ = −M − 1

M + 1
v +

2M

M + 1
V (1.1)

where V is the incoming velocity of the piston. It follows from (1.1) that NL and NR as well
as the total kinetic energy, 1

2

∑N
i=1 v2

i + 1
2MV 2 (N = NL + NR), are conserved quantities.

The dynamics of the system can be reduced to a billiard in a (2N + 1)-dimensional domain
(polyhedron) (cf [CL]). It was shown in [LPS, CLS1, CLS2], under certain quite restrictive
conditions on the initial distribution of gas particles, that, in the limit N → ∞, M ∼ N2/3,
the dynamics of the piston and the gas satisfy a closed system of Euler type hydrodynamic
equations (HEs) for a time interval (0, τ ) in which any particle had at most two collisions with
the piston.

The origin of the scaling M ∼ N2/3 is as follows. For N particles with velocities of O(1)

distributed with a density of O(1) in a parallelepiped of length L and cross-sectional area A, the
number of particles colliding with the piston per unit (unrescaled) time, and hence the pressure
(from each side), is proportional to A. To ensure that, on this timescale, the acceleration of
the piston stays of O(1) as L, A and N ∼ O(AL) grow to infinity, it is necessary to make
the mass of the piston grow as A. For a cube, this corresponds to M ∼ N2/3. In the rescaled
units, the number of collisions experienced by the piston per unit time is O(N) independent
of A, and the HEs hold for general M as long as M ∼ Nα , α ∈ (0, 1), i.e. when the kinetic
energy of the piston becomes negligible compared with that of the gas. The time interval (in
the scaled units) during which the derivation of the HE remains valid depends on α (getting
larger as α → 1), see remarks 3 and 4 in section 4 of [CLS2]. For α = 2

3 , this time interval
is such that the piston suffers no more than two collisions with any gas particle. It is however
not clear from the derivation to what extent those equations may actually approximate the real
evolution of the particle system with large N , for longer times.

This led us to carry out extensive computer simulations of particle systems, with M ∼ N2/3

(precisely, M = 2N2/3), N as large as 27 × 106 [CL], and initial conditions for which the
HEs have a trivial stationary solution X(t) = 0.5 and V (t) = 0 for all t > 0. We found
nevertheless that for certain initial velocity distributions (see later) the trajectory of the piston
diverged greatly from these values after a few collision times. In particular, it was observed
in these simulations that the motion of the piston, after experiencing large seemingly random
fluctuations, quickly converges to a more stable regime, in which the piston and the gas undergo
regular (slowly damped) oscillations lasting many collision times. The parameters of these
oscillations (the period, the amplitude, and the rate of damping) seem to depend very little on
the number of point particles and some other details of the initial distributions.

It is reasonable to conjecture that the behaviour of a mechanical system for finite but large
N is related to the solution of the HE subjected to random fluctuations arising from the discrete
nature of the gas particles. The large deviations of the motion of the mechanical system from
the solution of HE, observed in [CL], may thus be due to the instability of the HE for the initial
conditions considered; cf the discussion of hydrodynamic fluctuation theory [S].

This interpretation requires that the HE describe the limit (as N → ∞) of the mechanical
evolution of the system for times much longer than those for which they were derived in [CLS2].
This in turn would imply that when the solution of the HEs is stable, the mechanical evolution
of the system will remain close to that solution for arbitrarily long times as N → ∞. We note
further that by choosing α in M ∼ Nα close to 1, the time for which the rigorous derivation
of the HE remains valid can be made arbitrary large. Motivated by these considerations, we
investigate here stability properties of a special class of stationary solution of the HE. These
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are of independent intrinsic interest since they represent, as far as we know, a first example of
a rigorous derivation of non-trivial continuum equations from a Hamiltonian system (without
any stochasticity).

This paper is organized as follows. In section 2, we state the HEs and discuss their
structure. In section 3, we prove (rigorously) global stability for a class of stationary solution.
We note that simulations of the mechanical systems with such distributions in [CL] indeed yield
a piston trajectory that remains close to the solution of the HE, with V (t) ∼ 0 for all t > 0. In
section 4, we use a perturbative analysis to find sufficient conditions for linear instability (our
arguments here are heuristic, but the conclusions are in good agreement with simulations).
In section 5, we investigate a particular family of stationary solutions, which includes those
used in the [CL] simulations, and show that, according to the criteria developed in section 4,
it contains both linearly stable and unstable ones, alternating in a very intricate manner. We
also describe there numerical solutions of the HE for two initial conditions obtained by adding
the same perturbation to a linearly stable state and a linearly unstable stationary state. After a
short initial time in which the solutions behave similarly, they exhibit interesting differences
(figures 3–5). In section 6, we compare a mechanical trajectory of the piston with a solution of
the HE with initial conditions obtained from those used for the simulation of the mechanical
system by a small perturbation. The two trajectories look startlingly similar, thus confirming
our previous analysis. After an initial period of 10–15 recollision times, both trajectories
evolve almost periodically for another 15–20 recollision times, which is much longer than the
time for which the equations were derived in [CLS2] but sufficiently short so that the periodic
motion of the mechanical system has no visible damping. These observations suggest the
existence of a periodic solution of the HE, and we then carry out an approximate analytic
construction of such periodic solutions.

2. Hydrodynamic equations

Let X(t) ∈ (0, 1) be the position of the piston at time t and V (t) its velocity. We denote the
continuum density of the gas in [0, 1] × R by a function p(x, v, t). The HEs describing the
time evolution of this continuum fluid plus piston system are as follows.

(H1) Free motion. Inside the container the density satisfies the standard continuity equation
for a non-interacting particle system without external forces:(

∂

∂t
+ v

∂

∂x

)
p(x, v, t) = 0 (2.1)

for all x ∈ (0, 1) except x = 0, x = 1, and x = X(t).

Equation (2.1) has a simple solution,

p(x, v, t) = p(x − vs, v, t − s) (2.2)

for 0 < s < t such that x − vr /∈ {0, X(t − r), 1} for all r ∈ (0, s). Equation (2.2) has one
advantage over (2.1): it applies to all points (x, v), including those where the function p is not
differentiable or even continuous.

(H2) Collisions with the walls. At the walls, x = 0 and x = 1, we have

p(0, v, t) = p(0, −v, t), (2.3)

p(1, v, t) = p(1, −v, t). (2.4)
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(H3) Collisions with the piston. At the piston, x = X(t), we have (this is obtained from (1.1)
when M → ∞)

p(X(t) − 0, v, t) = p(X(t) − 0, 2V (t) − v, t) for v < V (t),

p(X(t) + 0, v, t) = p(X(t) + 0, 2V (t) − v, t) for v > V (t),
(2.5)

where v represents the velocity after the collision and 2V (t) − v that before the
collision; and

X(t) = X(0) +
∫ t

0
V (s) ds (2.6)

is the (deterministic) position of the piston.

It remains for us to describe the evolution of V (t) (which we take to be left continuous).
Suppose the piston’s position at time t is X and its velocity V . The piston is affected by the
fluid at (x, v) exerting pressure on it from the right (x = X + 0 and v < V ) and from the left
(x = X − 0 and v > V ). Accordingly, we define the density of the fluid in contact with the
piston before a collision (‘density on the piston’) by

P(v, t; X, V ) =
{
p(X + 0, v, t) if v < V

p(X − 0, v, t) if v > V.
(2.7)

(H4) Piston’s velocity. The velocity V = V (t) of the piston satisfies the equation∫ ∞

−∞
(v − V )2 sgn(v − V ) P (v, t; X, V ) dv = 0. (2.8)

The origin of equations (H1)–(H3) in the particle system is clear. (H4) is essentially a force
balance equation—because the rate of collision of the piston with particles on either side and
the consequent force on the piston much larger than the mass of the piston when N/M → ∞,
V adjusts instantaneously to make the forces from the two sides balance exactly. The system
of (hydrodynamic) equations (H1)–(H4) is now closed and, given initial conditions, satisfying
(2.3)–(2.8) at t = 0, completely determines the functions X(t), V (t), and p(x, v, t) for
t > 0. When the initial conditions do not satisfy these equations, one has to imagine that they
become satisfied instantaneously for t = 0+. The existence and uniqueness of solutions of
(H1)–(H4) were proven, under general conditions, in [CLS1,CLS2]. We need only to assume
that p(x, v, 0) is bounded, piecewise differentiable, and either has a compact support in the
x, v plane or decays fast enough as |v| → ∞. We also require that

∫
p(x, v, 0) dv > 0

for all x.
The HEs, like the Vlasov equations for plasmas, are time-reversible (see [P, MP]). They

preserve the classical integrals of motion. The mass of the fluid to the left and to the right of
the piston as well as the total kinetic energy of the fluid remain constant along any solution.

(D1) Mass conservation

ML =
∫ X(t)

0

∫
p(x, v, t) dv dx, MR =

∫ 1

X(t)

∫
p(x, v, t) dv dx.

(D2) Energy conservation

2E =
∫ ∫

v2p(x, v, t) dv dx. (2.9)
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Just like the energy, the total momentum of the fluid,
∫ ∫

vp(x, v, t) dv dx, is also left
unchanged by the fluid–piston interaction, but unlike the energy, the momentum changes due
to reflections at the walls. The reason why the piston itself does not contribute to the total
momentum and energy of the system in this model is due to the fact that its mass and energy
vanish when divided by N , in the limit N → ∞. (The mass, energy, and momentum of the
fluid all correspond to the original quantities in the particle system divided by N .)

The HEs define a dynamics on the domain G := {(x, v) : 0 � x � 1} in which every
point (x, v) ∈ G moves freely with constant velocity and collides elastically with the walls
and the piston. Denote by (xt , vt ) the position and velocity of an arbitrary point at time t � 0.
Then (H1) translates into ẋt = vt and v̇t = 0 whenever xt /∈ {0, 1, X(t)}, (H2) becomes
(xt+0, vt+0) = (xt−0, −vt−0) whenever xt−0 ∈ {0, 1}, and (H3) gives

(xt+0, vt+0) = (xt−0, 2V (t) − vt−0)

whenever xt−0 = X(t). Note that the point (xt , vt ) moves in G and reflects at the walls and
the piston as if these had infinite mass.

The motion of points in G is described by a one-parameter family of transformations
F t : G → G defined by F t(x0, v0) = (xt , vt ) for t > 0. We will also write F−t (xt , vt ) =
(x0, v0). According to (H1)–(H3), the density, p(x, v, t), satisfies a simple equation,

p(xt , vt , t) = p(F−t (xt , vt ), 0) = p(x0, v0, 0)

for all t � 0. It is easy to see that for each t > 0 the map F t is one-to-one and preserves area,
i.e. det |DF t(x, v)| = 1. Hence, the family F t describes an incompressible flow on G and
consequently:

(D3) Incompressibility. For any a < b the Lebesgue measures (areas) of the sets,

{(x, v) : a < p(x, v, t) < b, 0 < x < X(t)}
and

{(x, v) : a < p(x, v, t) < b, X(t) < x < 1}
remain constant in time.

A particular case in which it is possible to solve equations (H1)–(H4) analytically is when
the initial distribution is stationary. This happens when p(x, v, 0) satisfies two conditions.

(S1) Uniformity and symmetry. The initial density p(x, v, 0) = p(x, v) is of the form

p(x, v) =
{
pL(|v|) for x < X0

pR(|v|) for x > X0

for all v and X(0) = X0.
(S2) Pressure balance. The pressure on the piston from both sides is equal:

PL := 2
∫ ∞

0
v2pL(v) dv = PR := 2

∫ ∞

0
v2pR(v) dv. (2.10)

Under conditions (S1)–(S2) the equations (H1)–(H4) have a simple solution—the system
remains frozen in its initial state:

X(t) ≡ X0, V (t) ≡ 0, p(x, v, t) ≡ p(x, v, 0) (2.11)

for all t > 0.
We will analyse in the next three sections the stability of this stationary solution. Note

that there is no requirement on the form of pL(|v|) or pR(|v|); all that is required is a balance
of forces (2.10).
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3. Globally stable solutions

Here, we prove that stationary solutions p(x, v) satisfying (S1)–(S2) and an additional
monotonicity requirement,

pL(|v1|) � pL(|v2|) and pR(|v1|) � pR(|v2|) (3.1)

for all |v1| � |v2| are globally stable. This criterion is very similar to the stability criteria for
the Vlasov equation described by Penrose [P] and by Marchioro and Pulvirenti [MP].

Before we state our result, we introduce some notation. Denote by ‖ · ‖ the following
special norm on the space of functions on G:

‖f (x, v) − g(x, v)‖ =
∫ ∫

|f (x, v) − g(x, v)| (1 + v2) dv dx. (3.2)

Theorem 3.1. Let p(x, v) satisfy (S1), (S2), and (3.1). Then for any ε > 0, there exists a
δ > 0 such that if the initial density, p(x, v, 0), satisfies ‖p(x, v, 0) − p(x, v)‖ < δ, and
X(0) = X0, then

(i) ‖p(x, v, t) − p(x, v)‖ < ε;
(ii) |X(t) − X(0)| < ε

for all t > 0.

Proof. Our theorem is an almost straightforward consequence of the stability theorem4 by
Marchioro and Pulvirenti [MP] (in particular, when pL = pR, then (i) is exactly their theorem),
and so we only outline the argument here.

It is clear from (2.9) that, given the position of the piston, X, and values of the areas of the
level sets defined in (D3), the minimal possible value of the total energy for any phase-space
density, π(x, v), is attained when π(x, v) is uniform in x and monotonically decreasing in |v|
in each compartment.

Consider first the case where π(x, v) has, in each compartment, the same area of the level
sets as some p(x, v) satisfying (S1) and (S2). Then the minimum of the energy when the
piston position is X is attained when

π(x, v) = pL

(
vX

X0

)
, 0 < x < X

and

π(x, v) = pR

(
v(1 − X)

1 − X0

)
, X < x < 1.

The minimal total energy is then

2Emin(t) =
∫ ∞

0

∫ X

0
v2π(x, v) dx dv +

∫ ∞

0

∫ 1

X

v2π(x, v) dx dv

= X3
0

X2

∫ ∞

0
v2pL(v) dv +

(1 − X0)
3

(1 − X)2

∫ ∞

0
v2pR(v) dv

(we used a change of variable u = vX/X0 in the first integral and u = v(1 − X)/(1 − X0) in
the second one). Using the pressure balance (2.10) and denoting P = PL = PR gives

Emin(t) = P

2

(
X3

0

X2
+

(1 − X0)
3

(1 − X)2

)
.

4 We note that the stability theorem in [MP] is stated in the L1 norm but is, in fact, proven in the (3.2) norm. It
therefore needs additional conditions on the space of densities that make these two norms equivalent.
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Consider now the above expression as a function of X. Its minimum is attained at the point
where dEmin/dX = 0, i.e.

X3
0

X3
= (1 − X0)

3

(1 − X)3

which is only possible if X = X0. Therefore, the state X = X0 provides a unique minimum
of the total energy function under the incompressibility constraint (D3). Any deviation of X

from X0 would result in an increase in the total energy. Since only a small increase of the total
energy is allowed by a δ-perturbation of the initial density, then only small deviations of X

from X0 are permitted. This proves claim (ii) and also implies that EL and ER remain at all
times very close to the values corresponding to the unperturbed density. We can then apply
the stability theorem of Marchioro and Pulvirenti [MP] and obtain (i).

This proves the theorem in the case where p(x, v, 0) has exactly the same area of the level
sets, in each compartment, asp(x, v). For other perturbed initial densities, p(x, v, 0), the above
estimates only hold approximately, and our results then follow by standard approximation
techniques. �

Suppose, for example, that the initial density, p(x, v, 0), satisfies (S1) and (3.1), but (S2)
only holds approximately: |PL − PR| = � with a small � > 0. This is a particular case of
our theorem, and hence the piston will remain ε-close to its initial position, X0, at all times.
Interestingly, we can estimate, in terms of �, how far the piston can swing from its initial
position. Indeed, the piston can move as long as

X3
0

X(t)2

∫ ∞

0
v2p(X(t) − 0, v, t) dv +

(1 − X0)
3

(1 − X(t))2

∫ ∞

0
v2p(X(t) + 0, v, t) dv � 2E(0)

where X0 = X(0), as before, and E(0) is the initial total energy:

2E(0) = X0

∫ ∞

0
v2pL(v) dv + (1 − X0)

∫ ∞

0
v2pR(v) dv.

By simple calculations one obtains, to the leading order of �, the following bound on the
piston displacements:

|X(t) − X0| � 2�

3PL

(
1

X0
+

1

1 − X0

)−1

+ O(�2).

4. Perturbative analysis

Here, we analyse the linear stability of the solutions of the HE corresponding to initial densities
p(x, v, 0) satisfying the following stricter version of (S1)–(S2).

(S3) Full uniformity and symmetry. The initial density, p(x, v, 0), is uniform in x across the
entire cylinder, i.e. p(x, v, 0) = p0(|v|) for all v and 0 < x < 1.

We also assume that the piston is initially at the midpoint, X(0) = 0.5. Of course, under
the conditions (S3), the HEs (H1)–(H4) have a simple stationary solution (2.11). On the other
hand, we no longer assume monotonicity (3.1).

We use perturbative analysis to investigate the stability of the stationary solution (2.11).
Our arguments are essentially heuristic: we perturb the initial density (by ε) in the L1 norm
(or, equivalently, in the (3.2) norm) and then expand all the equations in ε up to first order and
ignore terms of higher order.
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From now on we denote by p0(v) = p0(|v|) an initial density satisfying (S3) and by
p(x, v, 0) a perturbed initial density, which we write as

p(x, v, 0) = p0(|v|) + εp1(x, v, 0)

where ε is small and ‖p1(x, v, 0)‖ = 1. For t > 0, we decompose the density, p(x, v, t), as

p(x, v, t) = p0(|v|) + εp1(x, v, t).

We also set p1(x, v, t) = pL(x, v, t) for x < X(t) and p1(x, v, t) = pR(x, v, t) for x > X(t).
According to (2.8), the velocity, V (t), of the piston is given by∫ ∞

V

(v − V )2[p0(v) + εpL(X, v, t)] dv =
∫ V

−∞
(v − V )2[p0(v) + εpR(X, v, t)] dv

where X = X(t) is the position of the piston. Expanding in ε and ignoring terms of order o(ε)

gives

V (t) = ε

∫ ∞
0 v2pL(X, v, t) dv − ∫ 0

−∞ v2pR(X, v, t) dv

4
∫ ∞

0 vp0(v) dv
.

Integrating by parts, we obtain (for piecewise smooth p0)

2
∫ ∞

0
vp0(v) dv = −

∫ ∞

0
v2p′

0(v) dv.

We define

h(v) = −p′
0(v) for v > 0

and for the sake of completeness set h(−v) = h(v). Then

V (t) = ε

∫ ∞
0 v2pL(X, v, t) dv − ∫ 0

−∞ v2pR(X, v, t) dv

2
∫ ∞

0 v2h(v) dv
. (4.1)

When p0(v) is not differentiable, we interpret −h(v) as the generalized derivative of p0(v).
Denote by 〈·〉+ the integration

∫ ∞
0 · dv and by 〈·〉− the integration

∫ 0
−∞ · dv. Then

V (t) = ε
〈v2pL(X, v, t)〉+ − 〈v2 pR(X, v, t)〉−

2〈v2h(v)〉+
.

The density of the gas after interaction with the piston is given by the formulae (2.5),
which imply

p(X − 0, −v, t) = p(X − 0, v + 2V, t)

= p0(v + 2V ) + εpL(X, v, t)

= p0(v) + 2Vp′
0(v) + εpL(X, v, t)

= p0(v) − 2V h(v) + εpL(X, v, t).

Here, we assume v > 0 and ignore terms of order o(ε). Hence, the ‘reflection rule’ can be
written as

pL(X, −v, t) = pL(X, v, t) − h(v)
〈v2pL(X, v, t)〉+ − 〈v2pR(X, v, t)〉−

〈v2h(v)〉+
.

This expression suggests the introduction of new functions

qR,L(x, v, t) = pL,R(x, v, t)

h(v)
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and

ρ(v) = v2h(v)

〈v2h(v)〉+
.

The above expression for pL(X, −v, t) can now be written as

qL(X, −v, t) = qL(X, v, t) − 〈qL(X, v, t)ρ(v)〉+ + 〈qR(X, v, t)ρ(v)〉−. (4.2)

Similarly, on the other side of the piston,

qR(X, v, t) = qR(X, −v, t) + 〈qL(X, v, t)ρ(v)〉+ − 〈qR(X, v, t)ρ(v)〉−. (4.3)

One can interpret these ‘reflection rules’ as follows: the functions qL and qR ‘exchange’ their
average values with respect to the ‘density’, ρ(v).

Note that ρ(v) is normalized, so that 〈ρ(v)〉+ = 1, but it is not necessarily positive
(or even non-negative). On the other hand, when ρ(v) � 0, i.e. the unperturbed density,
p0(|v|), is non-increasing, thus satisfying (3.1). In this case the stationary solution (2.11) is
stable, as we already know by theorem 3.1. Here we recover this result by our perturbative
analysis.

Theorem 4.1. The quantity

Q =
∫ ∫

q2(x, v, t)ρ(v)

|v| dx dv

is constant in time, i.e. dQ/dt = 0. Here, q = qL for x < X and q = qR for x > X.

Proof. Clearly, Q cannot change just due to the free motion of the gas or due to collisions with
the walls, and so we only need to worry about collisions with the piston. The gas particles
colliding with the piston during an infinitesimal interval (t, t + dt) lie in two triangles on the
xv plane: X − v dt < x < X for v > 0 and X < x < X − v dt for v < 0. The outgoing
particles lie in similar symmetric triangles. Hence, during the interval (t, t + dt), the quantity
Q decreases by (up to the factor of dt)∫ ∞

0
|v|q

2
L(X, v, t)ρ(v)

|v| dv +
∫ 0

−∞
|v|q

2
R(X, v, t)ρ(v)

|v| dv

= 〈q2
L(X, v, t)ρ(v)〉+ + 〈q2

R(X, v, t)ρ(v)〉−
and it increases by∫ 0

−∞
|v|q

2
L(X, v, t)ρ(v)

|v| dv +
∫ ∞

0
|v|q

2
R(X, v, t)ρ(v)

|v| dv

= 〈q2
L(X, v, t)ρ(v)〉− + 〈q2

R(X, v, t)ρ(v)〉+.

After substituting (4.2) and (4.3) into the above expressions for qL and qR and some
manipulations, all changes in Q cancel out and so it stays constant. �

When p0(|v|) is strictly decreasing, and hence ρ(v) > 0, then Q is a norm in the space
of functions. Thus, the above theorem implies linear stability.

When p0(|v|) is decreasing, but not strictly, then ρ(v) � 0, but there may be regions
where ρ(v) = 0. They correspond to the intervals where p′

0 = 0, i.e. where p0 is
constant. On such intervals, the reflection rules (4.2)–(4.3) for the perturbed density, pL,R, are
trivial:

pL(X, −v, t) = pL(X, v, t) and pR(X, v, t) = pR(X, −v, t).

In this case pL and pR cannot grow either. Therefore, we obtain linear stability for all
non-increasing p0(|v|).
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Next, we turn to unstable solutions. The stationary solution for an initial density, p0(|v|),
satisfying (S3) is linearly unstable if some small perturbations grow exponentially in time, i.e.
‖p1(x, v, t)‖ ∼ 	t for some p1(x, v, 0) and 	 > 1. This is equivalent to having a positive
Lyapunov exponent in the subspace spanned by the function p1 and its images. To investigate
the existence of such perturbations, we first simplify the collision rules (4.2) and (4.3). Consider
the following ‘symmetric’ and ‘antisymmetric’ linear combinations of qL and qR:

q+(x, v, t) = qL(x, v, t) + qR(1 − x, −v, t)

2
and

q−(x, v, t) = qL(x, v, t) − qR(1 − x, −v, t)

2
.

They are defined for x < 1
2 . The collision rules (4.2)–(4.3) now take the form

q+(X, −v, t) = q+(X, v, t) (4.4)

and

q−(X, −v, t) = q−(X, v, t) − 2〈q−(X, v, t)ρ(v)〉+. (4.5)

Hence, q+ is simply a periodic function in t , and so it cannot grow to infinity or decrease
to zero. In other words, it cannot affect the stability or instability of the HEs. The latter is
determined by q− alone. So we will only consider q− and omit ‘−’ for brevity. Our collision
rule then reduces to a single equation:

q(X, −v, t) = q(X, v, t) − 2〈q(X, v, t)ρ(v)〉+. (4.6)

Next, we demonstrate, by example, that densities ρ0(|v|) for which the stationary
solution (2.11) is unstable do exist.

Example. Let p0 be a rectangular function defined by

p0(v) =
{

1 if 0.5 < |v| < 1
0 otherwise.

(4.7)

This p0(v) satisfies (S3) but not (3.1). We will show that the corresponding stationary solution
is linearly unstable.

First, the function h = −p′
0 is the sum of two delta functions:

h(v) = −δ0.5 + δ1

(and symmetrically for v < 0). It is easy to compute ρ directly:

ρ = − 1
3δ0.5 + 4

3δ1.

Now the reflection rule (4.6) implies:

q(−1) = − 5
3q(1) + 2

3q(0.5),

q(−0.5) = − 8
3q(1) + 5

3q(0.5).

Note that only the values p(x, ±0.5, t) and p(x, ±1, t) will evolve in a non-trivial way, as
specified above, since h(v) = 0 for all v /∈ {1, 0.5, −0.5, −1}.

We now construct a linear subspace of functionsq = q− that stays invariant under the above
transformations and in which functions grow exponentially in time (since the q+ component
of the perturbation is irrelevant, we set it to zero). We can simplify the construction further by
assuming that at time t = 0

q(x, ±1, 0) = u1, q(x, 0.5, 0) = u2, q(x, −0.5, 0) = u3
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with some constants u1, u2, u3 (the choice of indices 1, 2, 3 is rather arbitrary). We note that
the functions pL,R(x, v, 0) are now piecewise constant and are completely described by the
values u1, u2, u3. The space of such perturbations is three dimensional.

It is easy to see that at time t = 1 the functions pL,R will again be constant on the same
intervals, and hence they will be described by some other constants u′

1, u
′
2, u

′
3. Our collision

rule (4.6) implies that the vectors u′ = (u′
1, u

′
2, u

′
3)

T and u = (u1, u2, u3)
T are related by a

linear transformation,

u′ = Au

where A is a 3 × 3 matrix:

A = 1

3


−5 2 0

0 0 3
−8 5 0


 .

After that, the evolution will proceed periodically—the vector u will be multiplied by the
matrix A at times t = 1, 2, 3, . . .. The matrix A has three real eigenvalues:

λ1,2 = −4 ± √
7

3
and λ3 = 1.

The largest eigenvalue, λ = −(4 +
√

7)/3 ≈ −2.215, has the following (unit) eigenvector:

u = (0.4472, −0.3680, 0.8152).

This eigenvector spans a one-dimensional subspace in the space of perturbation densities, which
is invariant during time intervals of period 1 and in which the corresponding perturbations are
expanded by a factor |λ| ≈ 2.215. Roughly, the perturbations double over one period.

To explore the above periodic growth of perturbations, we note that the piston velocity is
given by

V (t) = ε

2
(〈qL(X, v, t)ρ(v)〉+ − 〈qR(X, v, t)ρ(v)〉−)

= ε〈q(X, v, t)〉+.

Hence in our example, during the time interval 0 < t < 1,

V = ε

3
(4u1 − u3) = 0.9736ε.

During the next time interval, 1 < t < 2, we have

V = ε

3

(
4u′

1 − u′
3

) = −2.156ε

and so on. Hence, over a unit period of time, the piston velocity grows by a factor of |λ| = 2.215
and changes sign—the piston starts its movements back and forth (oscillations), which increase
exponentially in time.

We note that the same density (4.7) was studied in [CL], where the trajectory of the piston
was computed after an initial configuration of gas molecules was selected randomly from the
distribution, p0(v), given in (4.7). It was found [CL] that the piston indeed made oscillations
that increased exponentially in time. The piston’s velocity grew as constant Rt , with R ≈ 1.6.
This estimate is to be compared with our calculation of the largest eigenvalue ≈2.215.

Next, we modify the unstable perturbations, q, found above and make them smooth (rather
than piecewise constant) functions of v.

We will be looking for the function q of the form

q(x, v, t) = C(v)ez(t−x/v)



908 E Caglioti et al

where z is a complex constant. Note that due to (2.2) the function q (with v fixed) can only
depend on t − x/v. We chose the exponential form in order to investigate the existence of
solutions of the linear equation that grow exponentially with time. Also, for convenience, we
introduce the new space coordinate, y, in the following way: for all v > 0 and x < 0.5, we
set y = x + 0.5; for v < 0 and x < 0.5, we set y = 0.5 − x; for v > 0 and x > 0.5, we set
y = x − 0.5; and for v < 0 and x > 0.5, we set y = 1.5 − x. The coordinate y assumes the
value zero when a point (x, v) ∈ G moving under F t reflects off the piston, then grows to 0.5
when the point travels to the wall, and grows further from 0.5 to 1 when the point travels from
the wall back to the piston.

In the new coordinate y, we will be looking for the function q of the form

q(y, v, t) = C(|v|)ez(t−y/|v|).

More precisely, let

q(y, ±1, t) = C(1)ez(t−y)

q(y, ±0.5, t) = C(0.5)ez(t−2y).

Recall that p0(|v|) is the characteristic function of the interval [0.5, 1].
Now, the reflection rule (4.6) implies

C(1) = − 5
3C(1)e−z + 2

3C(0.5)e−2z

C(0.5) = − 8
3C(1)e−z + 5

3C(0.5)e−2z.

We need to find z for which the above system of equations has a non-trivial solution. Put
ez = λ and introduce an auxiliary variable D(0.5) = C(0.5)e−z. Now the above system can
be rewritten as

λC(1) = − 5
3C(1) + 2

3D(0.5)

λD(0.5) = C(0.5)

λC(0.5) = − 8
3C(1) + 5

3D(0.5).

Hence, λ is an eigenvalue of the matrix of coefficients

1

3


−5 2 0

0 0 3
−8 5 0




which is the same matrix, A, that we encountered before. We take its leading eigenvalue
|λ| > 1 and set

z = ln |λ| + iπ.

The function q now takes form

q(y, v, t) = ±C(|v|)|λ|t−y/|v| cos π

(
t − y

|v|
)

where C(0.5) and C(1) are the coordinates of the leading eigenvector, and we only take the
real part, for obvious reasons. Since |λ| > 1, we have an exponential growth of perturbations
and thus linear instability. This gives us smooth unstable perturbations.

We now generalize the above construction to arbitrary non-monotonic initial densities p0.
Let p0(v) satisfy (S3) but not (3.1). We will be looking for perturbations of the form

q(y, v, t) = C(|v|)ez(t−y/|v|) (4.8)
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with the same convention on y as before. The reflection rule (4.6) leads to (cancelling ezt )

C(v) = C(v)e−z/v − 2
∫ ∞

0
C(v)e−z/vρ(v) dv

for all v > 0. Denoting

D = −2
∫

C(v)e−z/vρ(v) dv

gives immediately

C(v) = D

1 − e−z/v
.

Thus, we not only eliminated t but determined the function C(v) up to a constant factor. The
above solution exists if

D = −2
∫ ∞

0

De−z/vρ(v)

1 − e−z/v
dv

or, cancelling D,∫ ∞

0

ρ(v)

1 − ez/v
dv = 1

2
. (4.9)

If this equation has a solution z with Re(z) > 0, we immediately obtain an unstable perturbation
(4.8). Otherwise our construction of unstable perturbations does not work.

Unfortunately, it does not seem to be easy to solve equation (4.9) for particular functions
ρ(v) or even to determine if it has solutions with a positive real part, as we will demonstrate
in the next section.

Next we mention an important property of (4.9). Let us denote

F(z) :=
∫ ∞

0

ρ(v)

1 − ez/v
dv − 1

2
. (4.10)

Lemma 4.2. F(z) + F(−z) = 0 for all z ∈ C.

Proof.

F(z) + F(−z) =
∫ ∞

0

ρ(v)

1 − ez/v
dv −

∫ ∞

0

ez/vρ(v)

1 − ez/v
dv − 1

=
∫ ∞

0

(1 − ez/v)ρ(v)

1 − ez/v
dv − 1

= 0. �
As a result, the existence of a solution of (4.9) with Re(z) > 0 is equivalent to that of a

solution with Re(z) < 0. The alternative is when all the solutions lie on the imaginary axis
Re(z) = 0.

5. A special family of densities

Here, we investigate a family of rectangular densities

p0(v) =
{

1 if r < |v| < 1
0 otherwise

(5.1)

where 0 < r < 1 is the parameter of our family. Note that our example (4.7) is a particular
case of (5.1) with r = 1/2. It is easy to compute

h(v) = −p′
0(v) = δr(v) − δ1(v)
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and

ρ(v) = v2h(v)∫ ∞
0 v2h(v) dv

= 1

1 − r2
[δ1(v) − r2δr(v)].

Since h(v) = 0 for all v /∈ {1, r, −1, −r}, we only consider perturbations q(x, v, t) defined
for v = 1, r, −1, −r . The reflection rule (4.6) now gives

q(X, −1, t) = − αq(X, 1, t) + βq(X, r, t)

q(X, −r, t) = − γ q(X, 1, t) + αq(X, r, t)

where

α = 1 + r2

1 − r2
, β = 2r2

1 − r2
, γ = 2

1 − r2
. (5.2)

It is relatively easy to investigate the case of rational r = m/n with 1 � m < n. Now
(5.2) takes form

α = n2 + m2

n2 − m2
, β = 2m2

n2 − m2
, γ = 2n2

n2 − m2
. (5.3)

To investigate the evolution of perturbations q(x, v, t) as t grows, we consider n + m points
Pi ∈ G, 1 � i � n + m (shown in figure 1). The points Pi are defined as follows:

Pi =




(
−1, 0.5 − i − 1

m

)
for 1 � i <

m

2
+ 1

(
1,

i − 1

m
− 0.5

)
for

m

2
+ 1 � i � m

(
−r, 0.5 − i − m − 1

n

)
for m < i < m +

n

2
+ 1

(
r,

i − m − 1

n
− 0.5

)
for m +

n

2
+ 1 � i � m + n.

It is crucial to observe that the points Pi move under the dynamics in a periodic fashion.
In a time period �t = 1/m, the point Pi is mapped to Pi+1 for all 1 � i < m and all
m + 1 � i < m + n. Also, Pm moves to the piston, gets reflected off it, and lands on P1.
Likewise, Pm+n moves to the piston, gets reflected off it, and lands on Pm+1. Therefore, the

x

v

P

P

P

P

P

P

12

m+n

m

m+1

m-1

1

1

r

r

1/m

1/n

P3

_

_

Figure 1. The construction of points Pi . Here, m = 7 and n = 12.
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time shift, �t , permutes the points Pi , 1 � i � m + n, in two independent cycles. The reason
why we combine the two cycles together is that they are linked by the reflection rule, as we
will see shortly.

For each i, denote qi(t) = q(Pi, t). Then we have

qi(t + �t) = qi−1(t)

for all 2 � i � m and m + 2 � i � m + n. The reflection rule now implies

q1(t + �t) = −αqm(t) + βqm+n(t)

qm+1(t + �t) = −γ qm(t) + αqm+n(t).

Thus, the vector q(t) = (q1(t), . . . , qn+m(t)) is updated at time t + �t by the rule

q(t + �t) = Bq(t)

where B is an (n + m) × (n + m) matrix,

B =




0 · · · −α · · · β

1
. . .

...
. . . 0

...
...

...

1 0 · · ·
0 · · · −γ 0 · · · α

1 0
...

...
. . .

. . .
...

0 · · · 0 · · · 1 0




.

We conclude that the existence of unstable perturbations q(t) is equivalent to the existence of
an eigenvalue λ of B such that |λ| > 1. The characteristic polynomial of the matrix B is

P(λ) = λm+n + αλn − αλm − 1 (5.4)

where α = (n2 + m2)/(n2 − m2) is defined in (5.3).

Remark. Interestingly, the equation (4.9) can be reduced to P(λ) = 0 as well. Indeed, it is
easy to see that∫ ∞

0

ρ(v)

1 − ez/v
dv = 1

1 − r2

[
1

1 − ez
− r2

1 − ez/r

]
.

Now the substitution λ = ez/m and some algebraic manipulations show that equation (4.9) is
equivalent to P(λ) = 0.

It is easy to see that if λ is a root of P(λ), then so is 1/λ (this reciprocability also follows
from lemma 4.2). Thus, the existence of unstable perturbations is equivalent to the existence
of eigenvalues of B that do not lie on the unit circle |λ| = 1.

If an eigenvalue |λ| > 1 of B exists, then the perturbations in the corresponding eigenspace
grow by a factor of |λ| over the time period �t = 1/m. Hence, the expansion factor per unit
time would be 	 = |λ|m.

Theorem 5.1. Let r = m/n be a rational number with an even denominator n (hence, m

is odd). Then there is a unique eigenvalue of B such that λ < −1. This eigenvalue has
multiplicity 1. The expansion factor per unit time 	r = |λ|m depends on r continuously, and
we have, asymptotically,

	r = 1 + const · r3/2 + O(r2) as r → 0 (5.5)
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and

	r ∼ const

1 − r
as r → 1. (5.6)

Proof. One can easily check that, under the conditions of the theorem, P(−1) > 0 and
P(−∞) < 0, and hence a root λ < −1 exists. Next,

P ′(λ) = [(n + m)λn + αnλn−m − αm]λm−1

and so P ′(−1) < 0 and P ′(−∞) > 0. Now let Q(λ) = (n + m)λn + αnλn−m − αm; then

Q′(λ) = [(n + m)λm + α(n − m)]nλn−m−1

and so clearly Q′(λ) < 0 for all λ < 1. Putting these facts together proves the uniqueness and
the simplicity of the root λ < 0.

The equation P(λ) = 0 can be rewritten in terms of 	r = |λ|m as follows:

−	1+1/r
r +

1 + r2

1 − r2
	1/r

r +
1 + r2

1 − r2
	r − 1 = 0. (5.7)

Now the continuity of 	r , as a function of r , is obvious. Note that our argument is only valid
when r = m/n with an even n and an odd m because this parity condition dictates the signs
in (5.7).

To prove (5.5), one can substitute 	r = 1 + ε into (5.7) and expand all the terms in
Taylor series, the calculation is then straightforward and we omit it. The proof of (5.6) is
similar. �

Figure 2 presents the graph of the Lyapunov exponent, log 	r as a function of r .

Lemma 5.2. Let z be a solution of (4.9) such that |ez| �= 1 and ez ∈ R. Then dF/dz �= 0
(in fact, dF/dz is a real negative number).

Proof. A direct calculation shows that
dF

dz
= − (1 + r + r2)(1 + ez)2 + r3(1 − ez)2

4r2(1 + r)(1 − ez)2

which proves the lemma. �
For any r = m/n with even n and odd m, the corresponding solution, ez = −	r , satisfies

the conditions of the above lemma. Hence, this solution changes continuously with r , and so
we get the following corollary.

Corollary 5.3. For every r = m/n with even n and odd m, there is an interval (r − ε, r + ε)

in which all parameter values have unstable perturbations.

r

ln Λ

0

2

4

6

8

0.2 0.4 0.6 0.8 1

Figure 2. Log 	r as a function of r .
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Therefore, unstable perturbations exist for an open and dense set of parameter values
0 < r < 1. Moreover, one can show [C] that equation (4.9) has solutions with Re(z) �= 0,
implying the existence of unstable perturbations, for all irrational r ∈ (0, 1). One would
naturally wonder if all r have unstable perturbations. The answer is, surprisingly, negative.

Fact 5.4. For the density (5.1) with r = 1/3, there are no solutions, z, of (4.9) with Re(z) > 0,
and hence there are no solutions of the linearized equation that grows exponentially with time.

Proof. The characteristic equation,

λ4 + 5
4λ3 − 5

4λ − 1 = 0

has two real roots (λ = ±1) and two complex roots. The complex roots are, on the one
hand, conjugate and, on the other, satisfy the reciprocability rule, P(λ) = 0, if and only if
P(1/λ) = 0. Hence, they must belong to the unit circle |λ| = 1. �

It is interesting to know if other rational parameter values r = m/n with odd n are also
stable. We have examined the values r = 1/n for small odd values of n = 5, 7, . . . , 31
numerically (using MATLAB) and always found that all the roots of P(λ) belonged to the unit
circle. Therefore, we conjecture that the values r = 1/n with odd n are stable.

On the other hand, the values r = m/n with odd n but m > 1 appear to be unstable.
For r = 2/3, 2/5, 3/5, 3/7 we found, again numerically (using MATLAB), roots λ such that
|λ| > 1. All those roots are complex; for example, for r = 2/3 they areλ = −0.3778±1.7173i.
It remains for us to determine theoretically whether all rational values r = m/n with m > 1
are unstable, and we leave this question open.

Fact 5.4 seems to disagree with theorem 5.1. Indeed, let p0(v) be the rectangular
density (5.1) corresponding to r = 1/3 and p(x, v, 0) = p0(v) + εp1(x, v, 0) an arbitrary
perturbation with an infinitesimally small ε. According to fact 5.4, this perturbation cannot
grow exponentially in time. On the other hand, let us approximate 1/3 by a rational number
r = m/n with even n. Denote by p∗

0(v) the corresponding rectangular density (5.1) for the
chosen r = m/n. Then we have

p(x, v, 0) = p∗
0(v) + εp2(x, v, 0) with p2 = p1 +

p0 − p∗
0

ε
. (5.8)

Hence, if |r − 1/3| < ε, then (p0 − p∗
0)/ε is of order one (in the L1 metric), and p(x, v, 0)

becomes an ε-perturbation of the density, p∗
0(v). As such, it ‘must’ grow exponentially in

time according to theorem 5.1. This apparent disagreement requires an explanation, which we
provide next.

We recall that smooth unstable perturbations are given by the general formula (4.8). For
the rectangular density (5.1), the velocity v in this formula only takes two values, |v| = r and
|v| = 1; hence the factor C(|v|) takes two values as well and so plays only a limited role. For
simplicity, we set |v| = 1 and ignore the constant factor C(|v|) = C(1). Now the (real part of)
unstable perturbations is described by

q(y, 1, t) = Re ez(t−y) = e(Re z)(t−y) cos[(Im z)(t − y)]. (5.9)

A similar formula holds for |v| = r , and we omit it. Now recall that for any rational r = m/n

we have ez/m = λ, where λ < −1 is the eigenvalue of B, described by theorem 5.1. Therefore,
Re z = m log |λ| = log 	 and Im z = ±mπ .

We see that the real part of z changes continuously with r = m/n but the imaginary
part does not. In particular, when r = m/n is close to 1/3 and n is even, both m and
n have to be large, so that m → ∞ and |Im z| → ∞ as r → 1/3. In terms of the
perturbation (5.9), the growth of |Im z|, as r approaches 1/3, implies that the function q(y, 1, t)
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Figure 3. Initial rectangular density (5.1) perturbed by a ‘bump’.

becomes highly oscillatory, and so does the corresponding initial unstable perturbation
p(x, v, 0) = h(v)q(x, v, 0). Thus, the linear subspace of unstable perturbations (along which
exponential growth takes place) becomes nearly orthogonal to any given function, in particular
to p2(x, v, 0), defined in (5.8).

This explains the above ‘disagreement’. The density, p2, does grow exponentially in time
for any r = m/n with an even n, but as r → 1/3, the projection of p2 onto the unstable
subspace corresponding to the positive Lyapunov exponent log 	r > 0 becomes small and
vanishes in the limit, and hence the exponential growth is not visible during a long initial
interval of time. In the limit r → 1/3, that ‘initial interval’ becomes infinite and the instability
evaporates.

One can also reverse this line of argument. Indeed, when ε is not infinitesimally small
but finite, the representation (5.8) implies that any perturbation p(x, v, 0) of the rectangular
density (5.1) for any 0 < r < 1 will eventually grow exponentially fast in time (because
any r ∈ (0, 1) can be approximated by rational numbers m/n with even n). We checked this
conclusion experimentally and found that it was indeed correct.

To investigate the instability experimentally, we solved the HEs (H1)–(H4) numerically,
starting with a perturbed rectangular density (5.1), shown in figure 3. The initial density,
p(x, v, 0), takes the value 1 on the black region and 0 elsewhere. The small ‘bump’ at the
top left edge of the upper rectangle represents the perturbation. The area of the bump in our
experiments was less than 1% relative to the total area of each black rectangle.

Figures 4 and 5 show typical trajectories of the piston, X(t), for r = 1/3 and r = 1/4,
respectively. Note that their shape during the first 4–5 units of time only reflects the size and
position of the ‘bump’; hence the shape is almost identical. For times τ > 5, though, interesting
differences develop. In the r = 1/4 unstable case, the oscillations grow exponentially in a
pronounced steady fashion. In the r = 1/3 linearly stable case, the oscillations distort their
shape first, then start growing slowly, and only pick up pace at τ ∼ 12. Eventually, they also
grow exponentially. These observations indicate that the linearly stable stationary solution
with r = 1/3 is nonlinearly (globally) unstable.

6. Periodic solutions of the HEs

Here we discuss the long-term behaviour of our system in the unstable regime.
In our previous work [CL] we reported the results of computer simulations of the piston

and particle dynamics in an ideal gas with many (up to 27 million) particles. The initial
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Figure 4. Piston’s trajectory from the solution of the HE for a perturbed rectangular density
with r = 1/3.
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Figure 5. Piston’s trajectory from the solution of the HE for a perturbed rectangular density
with r = 1/4.
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Figure 6. Piston’s trajectory in the mechanical model with 106 particles.

configuration of particles was selected randomly with the average density (4.7) (see [CL] for
details). A typical trajectory of the piston, X(t), found in our experiments is shown here in
figure 6. One can see that during the initial interval of time, 0 < t < 8, the piston moves back
and forth with an exponentially increasing amplitude, which is consistent with our analysis in
section 4, where the density (4.7) was proven to be unstable.

Later on, however, at times 8 < t < 15, the amplitude of the piston’s oscillations decreases
to a certain constant value (nearly a half of its maximum, attained at t = 8). Then the piston’s
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Figure 7. Piston’s trajectory from the HE for a perturbed rectangular density with r = 1/2.

oscillations become very stable and continue almost unchanged for a very long time, up to
t = 50 or 100, with a very slowly decreasing amplitude.

On the other hand, we have solved the HEs (H1)–(H4) numerically, starting with the same
initial density (4.7), perturbed by a bump (shown in figure 3). Figure 7 presents the resulting
trajectory of the piston. One can see that it behaves almost identically to the simulated trajectory
of the piston shown in figure 6. Thus, not only the initial instability but also the longer term
behaviour of the simulated piston trajectory approximately match those of perturbed solutions
of the HEs.

The behaviour shown in figure 7 persists when various perturbations of the initial
density (4.7) are applied. It seems that there is a periodic cycle or an invariant manifold
of quasi-periodic solutions of (H1)–(H4) that acts as an attractor. Of course, due to the
time-reversibility of the HEs there can be no attractors in the strict sense. It is more likely that
there is an invariant manifold of periodic or quasi-periodic solutions that acts as a saddle point
in the phase space: typical trajectories approach that manifold temporarily and then slowly
move away. We cannot prove rigorously the existence of periodic or quasi-periodic solutions,
but we construct such solutions by using perturbative analysis.

We will be looking for solution of the HEs (H1)–(H4) such that the piston makes harmonic
oscillations

X(t) = 1
2 + ε cos ωt, Ẋ(t) = −εω sin ωt (6.1)

with some fixed ω > 0 and small ε > 0. We will approximate such solutions up to the first
order in ε, i.e. ignoring terms of higher order.

The construction is done in two steps. First, we assume that the piston moves as prescribed
by (6.1) and consider the motion of a fluid point bouncing against the moving piston, X(t),
and the fixed wall, x = 0. Second, we define the density, p(x, v, t), which, coupled with the
piston’s oscillations (6.1), satisfies equations (H1)–(H4).

Let the piston move according to equations (6.1). Then fluid points in the left compartment,
0 < x < X(t), bounce against the wall, x = 0, and the piston; the latter simply acts on
them as a moving wall. It is known that the phase space of gas particles bouncing against a
periodically moving wall necessarily contains many invariant curves. Moreover, the region
corresponding to high velocities |v| > v0 is densely filled by such invariant curves; the larger
v0, the higher the density of invariant curves. This fact is a consequence of KAM theory,
and it was first proved by Douady in his thesis [Do] and later independently by Laederich
and Levi [LL]. We describe these invariant curves approximately, up to the first order in ε,
by equation

v + εF (t, V ) = V + O(ε2) (6.2)
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where v denotes the velocity of the particle when it kicks the piston, t is the collision time,
and V is the parameter of the curve. In fact, we will construct invariant curves for all V > V0

with some V0 > 0. Here, we only consider particles to the left to the piston; the particles to
the right of the piston are completely symmetric.

Let us consider successive collisions of a gas particle with the piston. Denote by vn > 0
the velocity of the particle before its nth collision and by tn the time of that collision. Then
the law of elastic impact reads

vn+1 = vn − 2Ẋ(tn) = vn + 2εω sin ωtn. (6.3)

Let tn+1/2 denote the time at which the particle bounces off the wall, x = 0, between its
nth and (n + 1)th collisions with the piston. Obviously, tn+1/2 = tn + X(tn)/vn+1 and
vn+1(tn+1 − tn+1/2) = X(tn+1). Since we are interested in knowing vn up to terms O(ε), it
is sufficient to find tn up to terms O(1). This is easy:

tn+1 = tn +
1

vn+1
+ O(ε) = tn +

1

V
+ O(ε) (6.4)

where we used (6.2).
Now let us look for an invariant curve of the form

v + εF (t, V ) = V + O(ε2).

We have to impose the constraint

vn+1 + εF (tn+1, V ) = vn + εF (tn, V ) + O(ε2). (6.5)

By equations (6.3), (6.4), and (6.5), we get

vn + 2εω sin ωtn + εF

(
tn +

1

V
+ O(ε), V

)
= vn + εF (tn, V ).

Cancelling vn and ε and removing the index n gives a general equation for an invariant curve:

2ω sin ωt + F

(
t +

1

V
, V

)
− F(t, V ) = 0. (6.6)

We construct solutions of this equation in the form

F(t, V ) = a cos ωt + b sin ωt (6.7)

where a and b depend on V . By substituting this expression into (6.6), we find that (6.6) can
only hold if

a
(

cos
( ω

V

)
− 1

)
+ b sin

( ω

V

)
= 0

a sin
( ω

V

)
− b

(
cos

( ω

V

)
− 1

)
= 2ω.

The solution of the above system is

a = ω sin(ω/V )

1 − cos(ω/V )

b = ω.

Remark. Note that a (and hence the invariant curve) is not defined for V = ω/2πk,
k = ±1, ±2, . . .. To avoid these singularities, we will not use invariant curves corresponding
to V � ω/2π . In particular, the density p(x, v, t) that we define below will be constant for
|v| � ω/2π .
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Thus, for any V > V0 > ω/2π , we can define an invariant curve u(x, t; V ) in the phase
space of gas particles, where V is the parameter of the curve and u(x, t; V ) is the velocity of
the particle on the curve at point x at time t . The curve is made by two branches: the upper
branch, u+, and the lower branch, u−. Obviously, we have

u+(X(t), t; V ) = V − εF (t, V ) + O(ε2)

u−(X(t), t; V ) = −[V − εF (t, V ) − 2Ẋ(t)] + O(ε2)

u+(t, 0, V ) = −u−(t, 0, V ).

Note that the last equation here is equivalent to (6.5).
Now, we define a density p(x, v, t) so that its value on each invariant curve u(x, t; V ),

|V | > V0, is a constant denoted by ρ(V ). Between the curves u+(x, t; V0) and u−(x, t; V0),
we set the density to a constant equal to 1. Therefore,

p(x, u+(t, x, V ), t) = p(x, u−(t, x, V ), t) = ρ(V ) if V > V0

and

p(x, v, t) ≡ 1 if u−(x, t; V0) < v < u+(x, t; V0).

The function ρ(V ) and the ‘cutoff’ value V0 > ω/2π will be specified below.

Example. Let us set ρ(V ) ≡ 0 for V > V0, i.e.

p(x, v, t) =
{

1 for u−(x, t; V0) < u < u+(x, t; V0)

0 elsewhere.

In order to compute the pressure on the piston, we only need to know the density, p(x, v, t),
at the point x = X(t), i.e. we need to know the function

v(t, V ) := u+(X(t), t, V ) = V + εF (t, V ) + O(ε2).

In our example the density on the piston (on the left-hand side) is 1 up to v+ = V0 − εF (V0, t).
The density on the piston on the right-hand side is 1 up to a similar invariant curve, which
is phase shifted by �t = π/ω. Therefore, the density on the right-hand side is 1 down to
v− = −V0 − εF (t, V0). Since F(t + π/ω) = −F(t) by (6.7), the velocity of the piston is
exactly the average of v+ and v− and therefore is −εF (t, V0).

Thus, our density and the piston satisfy the HEs (H1)–(H4) if Ẋ = −εF (t, V0), which
gives

−εω sin ωt = −εω sin ωt − εω sin(ω/V0) cos ωt

1 − cos(ω/V0)
.

In our example, the only possible choice is V0 = ω/π.

Now let us consider the case of a generic function ρ(V ). The pressure on the piston on
the left-hand side is equal to

PL =
∫ ∞

Ẋ

pL(v)(v − Ẋ)2 dv =
∫ ∞

0
pL(v)(v2 − 2vẊ) dv + O(ε2)

where pL(v) = p(X(t) − 0, v, t) is the density on the piston (we have used the fact that
Ẋ = O(ε)). Recall that the density is pL(v) = ρ(V ) = ρ(v + εF (t, v)) + O(ε2). From now
on we neglect terms of order O(ε2). Then we get

PL =
∫ ∞

0
(v2 − 2vẊ) ρ(v + εF (t, v)) dv.
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The pressure on the right-hand side is given, by analogy, by

PR =
∫ 0

−∞
pR(v)(v2 − 2vẊ) dv =

∫ ∞

0
pR(−v)(v2 + 2vẊ) dv.

Note that for v > 0 we have pR(v) = ρ(V ) = ρ(v + εF (v, t + π)) = ρ(v − εF (t, v)).
Therefore,

PR =
∫ ∞

0
(v2 + 2vẊ)ρ(v − εF (t, v)) dv.

We now conclude that PL = PR iff

Ẋ = ε

∫ ∞
0 ρ ′(v)F (t, v)v2 dv∫ ∞

0 ρ(v)2v dv
= −ε

∫ ∞
0 ρ ′(v)F (t, v)v2 dv∫ ∞

0 ρ ′(v)v2 dv

which is analogous to our earlier formula (4.1).
Using (6.7) and the subsequent equations, we find

Ẋ = −εω sin ωt − ε

∫ ∞
0 ρ ′(v)(sin(ω/v)/(1 − cos(ω/v)))v2 dv∫ ∞

0 ρ ′(v)v2 dv
ω cos ωt.

Our density, coupled with the piston oscillations (6.1), satisfies the HEs (H1)–(H4) if and only
if Ẋ = −εω sin ωt . This implies∫ ∞

ω/2π

dv ρ ′(v)v2 sin(ω/v)

1 − cos(ω/v)
= 0 (6.8)

where we have imposed ρ ′ = 0 for v � ω/2π.

Interestingly, (6.8) is related to our early equation (4.9). Specifically, let z in (4.9) be a
purely imaginary number, z = ωi. Also note that ρ(v) in (4.9) is just proportional to v2ρ ′(v)

here. Then (6.8) becomes equivalent to Im F(z) = 0, with F(z) defined by (4.10). In other
words, (6.8) expresses the ‘imaginary part’ of the equation (4.9). We already observed in the
previous section that Im z characterized the frequency of oscillations of unstable perturbations,
and here ω = Im z is the frequency of oscillations of the piston. We note that for z = ωi one
always has Re F(z) = 0, as follows from (4.10), and hence in our case (6.8) is equivalent to
F(z) = 0. Therefore solving (6.8) corresponds to finding pure imaginary eigenvalues of the
HE linearized around a stationary solution ρ.

This analysis is only relevant when ρ(v) is stable; otherwise the motion will be dominated
by other exponentially increasing modes, and so from now on we restrict ourselves to the case
in which ρ is a non-increasing function of |v|.

In this case, there are some quantitative restrictions on the period of oscillations of the
piston. The period T = 2π/ω can be bounded from below by a function of the average kinetic
energy 〈K〉 = K/M, where

K =
∫ ∞

0
ρ(v)

v2

2
dv and M =

∫ ∞

0
ρ(v) dv.

Proposition 6.1. Let ρ ′ � 0 be supported on the interval [ω/2π, ∞) and satisfy equation (6.8).
Then the period of oscillations, T , is bounded by

T �
√

2

3〈K〉 .

The equality holds when ρ ′ = (π/ω)δ(v −ω/π), i.e. when ρ(|v|) is constant on (0, ω/π) and
0 elsewhere.
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Note that equation (6.8) can be satisfied in many different ways, all of them leading to
different periodic solutions of the HEs, but it is not clear which of them, if any, describe the
long-term behaviour of the system for a given initial condition.

Nevertheless, it is possible to verify proposition 6.1 numerically. For instance, in the
case of our unstable density (4.7), we have K = 7

24 and T = √
16/7 � 1.511 86. The

experimentally determined period of oscillations of the piston is T � 1.62 (see [CL]). We also
simulated the piston trajectory with other unstable densities (5.1) with r → 0 and observed
that the period of oscillations approached 2, which is exactly the value of the lower bound
given by the above proposition (because in this case K = 1

6 and hence T = 2). The fact that
the period converges to 2 as r → 0 also follows from our early example (with V0 = 1), in
which ω = πV0 = π ; hence T = 2π/ω = 2.

Proof of proposition 6.1. Consider a function

G(v) := v
sin(ω/v)

1 − cos(ω/v)
.

Then equation (6.8) reads

C :=
∫ ∞

ω/2π

−ρ ′vG dv = 0.

Note that in the interval [ω/2π, ∞) the function G(v) is strictly increasing and that
G(ω/2π) = −∞, G(ω/π) = 0, and G(∞) = ∞.

Introducing a new function R(v) = −ρ ′(v)v � 0 and integrating by parts yields

M =
∫ ∞

ω/2π

R(v) dv, K =
∫ ∞

ω/2π

R(v)
v2

6
dv, C =

∫ ∞

ω/2π

R(v)G(v) dv.

It is useful to replace v by a new variable u = G(v), −∞ < u < ∞. Since G is strictly
increasing, we can write

M =
∫ ∞

−∞
S(u) du, K =

∫ ∞

−∞
S(u)η(u) du, C =

∫ ∞

∞
S(u)u du

where S(u) = R(G−1(u))/G′(G−1(u)) and η(u) = (G−1(u))2/6 (here G−1 denotes the
inverse of the function G).

We have to solve the following variational problem: minimize K/M under the constraint
C = 0. As we shall see in the following, the function η turns out to be convex. This easily
implies proposition 6.1.

Also, the convexity of η implies that the solution of the variational problem, S̄, is a
delta-function centred at u = 0, i.e. at v = ω/π (so that C vanishes).

So it only remains for us to prove that η is a convex function of u. By direct computation,
we get

6η′ = d

du
(G−1(u))2 = 2G−1(u)

dG−1(u)

du
= 2v

G′(v)
.

Hence, it is sufficient to prove that the function G′(v)/v is strictly decreasing in the interval
v > ω/2π. Without loss of generality, we set ω = 1; then

G(v) = v sin(1/v)

1 − cos(1/v)
.

Consider a new function

H(v) := G′(v)

v
= 1 + v sin(1/v)

v2(1 − cos(1/v))
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then

H(v)′ = −v − (−1 + v2) sin(1/v) + v cos(1/v)(1 + v sin(1/v))

v4(1 − cos(1/v))2
.

The denominator of H ′ being positive, we only need to prove that the numerator of H ′ is
negative in the interval v > 1/2π.

If we replace v by 1/x and multiply the numerator by x2, we find the expression

h(x) = − x + (x2 − 1) sin(x) + cos(x)(x + sin x)

= (cos x − 1)(sin x + x) + x2 sin x.

We need to show that h(x) < 0 in the interval x ∈ (0, 2π). First of all, h(0) = h(2π) = 0,
and for any x ∈ (π, 2π) the expression is clearly negative.

It only remains for us to prove that h(x) is negative in (0, π ]. By computing the Taylor
expansion of h about h = 0, one finds

h(x) =
+∞∑
k=3

(−1)k
22k − 4k2

(2k + 1)!
x2k+1.

It is easy to prove that for any x ∈ (0, π ] this is an alternating series, the absolute values of its
terms being strictly decreasing.

The first few terms of the above expansion are

h(x) = − x7

180

(
1 − 2

21
x2 +

1

240
x4 − 19

166 320
x6

)
+ O(x15).

Therefore,

− x7

180
< h(x) < − x7

180

(
1 − 2

21
x2

)
which implies that h(x) < 0 for any x ∈ (0, π ]. �

7. Conclusions and open problems

The instability of a massive piston in a box filled with an ideal gas that is initially in a mechanical
(but not thermal) equilibrium was observed in [CL]. It was found there that sometimes this
state rapidly breaks down and then the piston and the gas tend to oscillate in an amazingly
regular fashion. Our aim here was to understand this phenomenon by analysing the stability
of the HEs that govern the time evolution of the system in an appropriate space–time scaling
limit.

We have presented several results of our studies. Section 3 contains our only rigorous
(mathematical) theorem, which describes conditions under which the phenomenon in question
does not occur in the HE. Section 4 presents a semi-heuristic ‘perturbative’ analysis of the HE
that gives a plausible (but not rigorous) criterion (4.9) for the instability of the piston dynamics.
This criterion amounts to solving the highly nonlinear equation (4.9), which presents a difficult
problem by itself. In fact, in section 5 we try to apply this criterion to a particularly simple
family of density functions (5.1) and only obtain partial results. We could not analyse the
entire family, but our criterion did yield densities of both sorts: those for which the piston is
stable and those for which it is unstable. The densities of both types alternate in a very intricate
manner. The conclusions of section 5, though derived heuristically, are in good agreement with
computer simulations of the HEs.
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Lastly, a related but separate question is discussed in section 6—what may be the long-
term behaviour of oscillations of the piston in the case where the HEs are unstable? We
conjecture that there are saddle-type periodic solutions in the phase space that temporarily
attract typical unstable trajectories; the latter stay close to those periodic solutions for a long
time but eventually spin off to chaotic regions in the phase space. In section 6 we construct
approximate periodic solutions using heuristic arguments similar to the perturbative analysis
in section 4.

We are clearly far from a complete understanding of the phenomenon in question. Here
we only obtain some partial results and outline possible approaches to the problem that require
further studies. Indeed, this paper raises more open questions than it answers, and we hope
the work in this direction continues.

One possible extension of our studies is to describe the original mechanical system by HEs
with an added fluctuation term. This is a result of the granularity of the particle system and
should be of O(N−α) with some α > 0. Such fluctuation terms may be derived as a high order
corrections to the HEs (see [S]). With such a hydrodynamic fluctuation term, stable stationary
solutions of the HEs will remain close to the stationary solutions without fluctuations for a
long time, but eventually they will slowly drift away to a thermal equilibrium, i.e. they will
behave similar to the particle system.

Concerning the HE discussed in this work, we would like to know if they have periodic
or asymptotically periodic solutions and determine their period, amplitude, and structure.
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