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Abstract
Spatially homogeneous systems are characterized by the simultaneous presence of a wide
range of time scales. When the dynamics of such reactive systems develop very-slow and
very-fast time scales separated by a range of active time scales, with large gaps in the
fast/active and slow/active time scales, then it is possible to achieve multi-scale adaptive
model reduction along-with the integration of the governing ordinary differential equations
using the G-Scheme framework. The G-Scheme assumes that the dynamics is decomposed
into active, slow, fast, and when applicable, invariant subspaces. We derive the expressions
that express the direct link between time scales and entropy production by resorting to
the estimates provided by the G-Scheme. With reference to a constant volume, adiabatic
batch reactor, we compute the contribution to entropy production by the four subspaces.
The numerical experiments show that, as indicated by the theoretical derivation, the
contribution to entropy production of the fast subspace is of the same magnitude of the
error threshold chosen for the numerical integration, and that the contribution of the slow
subspace is generally much smaller than that of the active subspace.

Introduction
The numerical solution of mathematical models for reaction systems in general, and re-
acting flows in particular, is a challenging task because of the simultaneous contribution
of a wide range of time scales to the systems’ dynamics. However, it is typical that the
dynamics can develop very-slow and very-fast time scales separated by a range of active
time scales.

An opportunity to reduce the complexity of the problem arises when the gaps in the
fast/active and slow/active time scales become large. In [1], we provided an asymptotic
analysis and proposed a numerical technique consisting of an algorithmic framework,
named the G-Scheme, to achieve multi-scale adaptive model reduction along-with the
integration of ordinary differential equations (ODEs) using objective criteria. In the G-
Scheme, it is assumed that the dynamics is (locally) decomposed into active, slow, fast,
and when applicable, invariant subspaces. The method is directly applicable to initial-
value ODEs and (by using the method of lines) to partial differential equations (PDEs).

For irreversible (non-equilibrium) multi-scale processes, such as a detailed kinetic
model (DKM), one question not addressed in [1] is how does the entropy production relate
to the decomposition into fast, active, slow, and invariant subspaces. A quick qualitative
answer could be obtained by establishing a correspondence among fast, active, slow, and
invariant subspaces with near-equilibrium, non-equilibrium, near-frozen, and isentropic
processes. Indeed, near-equilibrium and near-frozen processes are expected to be nearly
isentropic (and quasi-linear), the algebraic invariants (linear and nonlinear) correspond
to isentropic processes, and non-equilibrium processes are expected to be non-isentropic
(and nonlinear). As a consequence, the entropic contributions of the fast and slow sub-
spaces are expected to be small with respect to that of the active subspace. In this paper,
we will analyze this aspect of the G-Scheme with the help of illustrative examples in the
context of auto-ignition in a spatially homogeneous batch reactor.



Theory
We would like to verify empirically the contributions of the slow, active, and fast subspaces
to the overall rate of entropy production in a system featuring chemical non-equilibrium.
To this end, we resort to the standard model of a constant volume, adiabatic, batch reac-
tor, where the mixture’s temperature is initially set above the auto-ignition temperature.

The set of ODEs describing the time evolution of the state in a batch reactor at
constant volume is

dYj
dt

=
Wj ω̇j (T, Yj)

ρ
, j = 1, . . . , N,

dT

dt
= − 1

ρCp

N∑
j=1

hj(T )Wjω̇j (T, Yj)

(1)

where T and Yj are the temperature and composition (expressed in term of mass fractions)
of the mixture, t is time, ρ is the mixture density which is constant for the assumption
of constant volume, Cp is the mixture mean heat capacity at constant pressure per unit
mass, N is the number of species, hj is the species enthalpy per unit mass, Wj is the
species molecular weight, and ω̇j is the molar rate of formation/destruction of the j-th
species. The set of ODEs is closed by the thermal equation of state for a mixture of
ideal gases p = ρRT , where p is the pressure in the reactor vessel, R =

∑
N RjYj is the

mixture’s gas constant, and the caloric equation of state can be expressed as

Cp (T, Yj) =
N∑
j=1

Cp,j(T )Yj, (2)

where Cp,j(T ) is the heat capacity at constant pressure per unit mass of the j-th species.
The customary relations between mass fractions Yj, molar fractions Xj, and molar

concentrations cj read:

cj = ρ
Xj

W̄
= ρ

Yj
Wj

, (3)

where W̄ =
∑

N WjXj is the mean molecular weight of the mixture. The molar rate of
formation/destruction of the j-th species reads:

ω̇j (T, Yj) =
K∑
k=1

∆νj,k r
k (T, Yj) , (4)

where ν ′k = ν ′j,k and ν
′′

k = ν
′′

j,k are the forward and reverse stoichiometric coefficients of

the j-th species in the k-th reaction out of K total reactions, and ∆νk = ∆νj,k = ν
′′

k −ν ′k
is the net stoichiometric coefficient. The net rate of the k-th reaction reads:

rk (T, ρ, Yj) = rkf − rkb = Kk
f

N∏
j=1

c
ν’k
j −Kk

b

N∏
j=1

c
ν’’k
j = Kk

f

N∏
j=1

(
ρ
Yj
Wj

)ν’k
−Kk

b

N∏
j=1

(
ρ
Yj
Wj

)ν’’k
(5)

where rkf and rkb are the forward and backward reaction rates, and Kk
f and Kk

b are the
forward and backward reaction constants, which depend exponentially on temperature
according to the standard Arrhenius form.



The entropy per unit mass s of a mixture of N ideal gases is given by

s (T, p, Yj) =
S (T, p,Xj)

W̄

S (T, p,Xj) =
N∑
j=1

(
S0
j (T )−R log

(
p

pref

)
−R log Xj

)
Xj,

S0
j (T ) = ∆S0

f,j +

∫ T

Tref

C̄p,j(T )

T
dT

(6)

with S the entropy per molar units, ∆S0
f,j the species formation entropy per molar units,

C̄p,j the species molar heat capacity, and R the universal gas constant.
If we define the state of the system as the algebraic vector x = {Yj, T} with the

corresponding vector field defined as

g (Yj, T ) =

{
Wj ω̇j (T, Yj)

ρ
,− 1

ρCp

N∑
j=1

hjWj ω̇j (T, Yj)

}
. (7)

we can recast Eq. (1) as a dynamical system defined by the Cauchy problem

dx

dt
= g(x), x(0) = x0, with

x ∈ RN+1, t ∈ (0, T ) ⊂ R, and g : E ⊂ RN+1 → RN+1.

(8)

The associated phase flow ϕt is such that ϕt(x0) is the solution of the Cauchy problem
at time t starting at x(t = 0) = x0.

Basic Concepts of the G-Scheme
In the G-Scheme, we assume that the dynamics can be decomposed at any given time
instant into active, slow, fast, and when applicable, invariant subspaces. The G-Scheme
introduces a local curvilinear frame of reference, defined by a set of orthonormal basis
vectors with corresponding coordinates, attached to this decomposition. The evolution
of the curvilinear coordinates associated with the active subspace, ∆ξa, is described by
non-stiff ODEs, whereas those associated with the slow, ∆ξh, and fast, ∆ξt, subspaces are
accounted for by applying asymptotic approximations of the original problem to provide
∆ξhFF , and ∆ξtSIM , respectively.

The G-Scheme involves two main stages:

1. evolution of the active modes described by NA non-stiff ODEs;

2. corrections associated with the slow/fast dynamics.

The active ODEs evolve in subspace A which is freed from fast scales, i.e., they
are non-stiff. They can be solved by resorting to any explicit integration scheme (e.g.,
explicit Runge-Kutta). When compared to a standard BDF implicit scheme for stiff
problems, the G-Scheme requires the solution of NA explicit non-stiff ODEs instead of
N + 1 implicit stiff ODEs. However, the scheme requires the identification of the tangent
space decomposition.

Ideal decomposition of the tangent space Tx at any point x ∈ C ⊂ RN+1 involves the
identification of N+1 invariant subspaces, a difficult task. The G-Scheme decomposes the



tangent space in four subspaces having time scales of comparable magnitude, Tx= E⊕H⊕
A ⊕ T, where E is the linear subspace spanned by directions associated with invariants,
if any exists (conservation laws). All scales slower than the active ones are confined
to the slow subspace H(ead) (dormant/near-frozen processes). The active subspace A
contains all the current intermediate dynamic time scales (active/non-equilibrium). All
scales faster than the active ones are confined in the fast subspace T(ail) (exhausted/near-
equilibrium). Thus, the basic concept in the G-Scheme is to ‘distill’ the Heart, and ‘cut’
the Head and Tail in a generic multi-scale dynamical system.1

The most important decision to be taken in the implementation of the G-Scheme
framework is the choice of a curvilinear frame of reference, i.e., a basis matrix yielding
a maximal degree of slow/fast decoupling. In fact, the basis vectors used to define the
matrix might be found, in principle, by different means, if they can provide the ideal
block-diagonalization of the eigenvalue matrix in a cost efficient way. The Computational
Singular Perturbation [2] method offers a computational algorithm to achieve this goal.
The CSP refinements converge to the right/left eigenvectors of J (x (tn)) if nonlinearities
are neglected. In this case, we can rank the basis vectors according to the magnitude of
the corresponding eigenvalues, to obtain

0 = λ1 = · · · = λE < |λE+1| ≤ · · · ≤ |λH−1| � |λH | ≤ · · · ≤ |λT | � |λT+1| ≤ · · · ≤ |λN+1|,
(9)

where

0 = λ1 = · · · = λE identify the scales in E,

|λE+1| ≤ · · · ≤ |λH−1| identify the scales in H,

|λH | ≤ · · · ≤ |λT | identify the scales in A,

|λT+1| ≤ · · · ≤ |λN+1| identify the scales in T.

(10)

As estimate of the time scale associated to an eigen-direction, we take the reciprocal of
the magnitude of the corresponding eigenvalue.

The G-Scheme exploits the two archetypes for reduction introduced by Tikhonov[3]
and Fenichel [4]: slow-invariant-manifold (SIM) and fast-fibers (FF), to define the adaptive
reduction; the SIM and FF concepts are invoked to define the T(ail) and H(ead) subspaces,
respectively; the concepts of SIM and FF are invoked on a local basis. The contributions
of fast and slow scales are accounted for with SIM and FF algebraic corrections obtained
through asymptotic analysis. Differently from other approaches, for the G-Scheme to
be applicable it is not required that a global SIM exist, nor that the SIM dimension be
constant or prescribed in advance. Similar comments apply for the exploitation of the
FF.

Entropy Production and Time Scale Decomposition
Let us now assume that the dynamical system defined by Eq. (8) admits an entropy
function (a state function), as defined in Eq. (6) that can be functionally expressed as a
function of the state of the system, x, as

s = s(x). (11)

The question addressed in this section is how the time rate of change of entropy, ds/dt,
can be related to the fast, active, and and slow dynamics of Eq. (8).

1G stands for Grappa, an Italian liquor produced by distillation.



As customary, one can decompose

g = gfast + gactive + gslow = ar f
r + aa f

a + as f
s (12)

where the mode amplitudes associated with the three subspaces are defined as

f r := br · g fa := ba · g f s := bs · g (13)

Now applying the chain rule to write the time rate of change of entropy as

ds

dt
= ∇s · dx

dt
= ∇s · g(x) = (∇s · ar)f r + (∇s · aa)fa + (∇s · as)f s (14)

Remark #1
Eq. (14) suggests that entropy production is controlled by the magnitudes of the mode
amplitudes spanning the fast, active, and slow subspaces, with weights that depend on
the projection of the entropy gradient onto each of these subspaces.

The Slow Invariant Manifold (SIM) of Eq. (8) is defined as the locus of state points
x which satisfy the algebraic condition:

f r(x) ≈ 0 (15)

In addition, as shown later, the contribution of the slow subspace to the the time rate
of change of entropy is usually small, that is

|f s| � 1 (16)

This means that the contribution of the fast and/or slow scales to the time rate of
change of entropy is negligible while moving along the SIM, independently of the details
of the state function defined in Eq. (11).

Subsequently, the implication is that the time rate of change of entropy is mostly
contributed from the active scales

ds

dt
≈ (∇s · aa)fa (17)

From Eq. (17), the process is isentropic if

∇s · aa ≈ 0 (18)

that is, when ∇s is orthogonal to aa.
Note that the time rate of change of entropy can be zero away from the SIM or when

|f s| ≈ O(1), if it holds ∇s · ar 6= 0 and ∇s · as 6= 0, that is, when ∇s is not orthogonal
to ar and as.

These results apply to any state function given that we have not used any other
entropy - specific property to reach this conclusion.

Entropy Production and the G-Scheme
In this section, we aim at finding a direct link between time scales and entropy production.
According with the G-Scheme framework, we will proceed by first performing a change of
variables in Eq. (8) from time t to τ and from x to δx defined by

t = tn + τ x = xn + δx (19)



where xn = ϕtn(x0). Next, we will account for the contribution of the slow, active, and
fast subspaces to the time rate of change of δx, according with the estimates provided by
the G-Scheme framework.

Let us start by first projecting δx over the three subspaces to obtain the following
expansion

δx = (arb
r + aab

a + asb
s) · δx =

ar (br · δx) + aa (ba · δx) + as (bs · δx) =

arδξ
r + aaδξ

a + asδξ
s.

(20)

where a new set of curvilinear coordinates δξj is introduced to describe the changes of the
vector δx within the three subspaces spanned by ar, aa, as, according with the definitions
δξr:= br · δx, δξa:= ba · δx, δξs:= bs · δx.

The dynamics of δx starting from the point xn and within a time period δτ having
an order of magnitude

δτ ≈ O

(
1

|λa|

)
(21)

is described by

d (xn + δx)

dτ
= g (xn + δx) δx(τ = 0) = 0

d(δx)

dτ
≈ g (xn) + ∇g (xn) · δx = g (xn) + Jxn · δx δx(τ = 0) = 0

(22)

where we used the definition
Jxn := ∇g (xn) (23)

Invoking the G-Scheme decomposition of the Jacobian matrix

Jxn = AxnΛxnBxn = arλrb
r + aaλab

a + asλsb
s (24)

allow us to write

d(δx)

dτ
≈ g (xn) + (AxnΛxnBxn) · δx ≈ g (xn) + (arλrb

r + aaλab
a + asλsb

s) · δx (25)

To leading order, one can express the entropy s(x) at x = xn + δx as

s(x) = s(xn + δx) ≈ s(xn) + ∇s δx (26)

Therefore, the time rate of change of entropy can be written as

ds(x)

dτ
≈ d

dτ
(s(xn)) + ∇s

d(δx)

dτ
= ∇s

d(δx)

dτ
(27)

In the formula above, we can replace the time derivative of δx using Eq. (22) to obtain

ds

dτ
= ∇s · d(δx)

dτ
= ∇s · (g (xn) + Ax0Λx0Bx0 · δx) =

∇s · g (xn) + ∇s · AxnΛxnBxn · δx.
(28)



We can further elaborate Eqs. (25) and (28) to obtain

(∇s · Axn) Λxn (Bxn · δx) =

(∇s · ar)λr (br · δx) + (∇s · aa)λa (ba · δx) + (∇s · as)λs (bs · δx) =

(∇s · ar)λrδξr + (∇s · aa)λaδξa + (∇s · as)λsδξs.

(29)

Let now consider the contribution of the 3 subspaces to the time rate of change of
entropy

(∇s · ar)λrδξr

(∇s · aa)λaδξa

(∇s · as)λsδξs
(30)

According with the G-Scheme framework, we can estimate the magnitude of the change
of the slow curvilinear coordinate, δξs, as

δξs ≈ δτ bs · g (xn) = δτ f s (xn) , (31)

of the change of the active curvilinear coordinate, δξa, as

δξa ≈ ba · g (xn + aaδξ
a) δτ ≈ ba · g (xn) δτ + ba · Jxnaaδξ

aδτ ≈ (fa (xn) + λaδξ
a) δτ

(32)

which yields an implicit definition of δξa

(I − λaδτ)δξa = fa (xn) δτ

δξa = (I − λaδτ)−1 fa (xn) ∆t,
(33)

and of the change of the fast curvilinear coordinate, δξr, when x0 is on the SIM as

δξrSIM (x) ≈ − (brJxnar)
−1 br · g (x) ≈ −λ−1r f r (x) ≈ 0 (34)

where
λr = br Jxnar (35)

and the amplitude of the fast modes, f r(x), is negligible when x is taken on the SIM

f r (x) = br · g (x) ≈ 0 (36)

so that on the SIM
δξrSIM ≈ 0 (37)

The second term in (25) can thus be estimated as:

(∇s ·Rxn) Λxn (Bxn · δx) =

(∇s · ar) λrδξrSIM + (∇s · aa) λaδξa + (∇s · as) λsδξs =

− (∇s · ar) · f r (xn) + (∇s · aa) · λa (I − λaδτ)−1 fa (xn) ∆t + (∇s · as) · λsδτ f s (xn) =

− (∇s · ar) · f r (xn) + (∇s · aa) ·
λa
|λa|

(I − λaδτ)−1 fa (xn) + (∇s · as) ·
λs
|λa|

f s (xn)

(38)



After these considerations, the time rate of change of entropy can be rewritten as

ds

dτ
= ∇s · d(δx)

dτ
= ∇s · g (xn) +

+ (∇s · as) ·
λs
|λa|

f s (xn)

+ (∇s · aa) ·
λa
|λa|

(I − λaδτ)−1 fa (xn) +

− (∇s · ar) · f r (xn)

(39)

We can also elaborate on the first term by projecting g (xn) in the 3 subspaces (as in
Eq.(12))

∇s · g (xn) = ∇s · (ar f r (xn) + aa f
a (xn) + as f

s (xn)) (40)

Therefore, Eq.(39) becomes:

ds

dτ
= ∇s · (ar f r (xn) + aa f

a (xn) + as f
s (xn)) +

+ (∇s · as) ·
λs
|λa|

f s (xn)

+ (∇s · aa) ·
λa
|λa|

(I − λaδτ)−1 fa (xn) +

− (∇s · ar) · f r (xn)

(41)

which can be recast as:

ds

dτ
= (∇s · as) ·

(
I +

λs
|λa|

)
f s (xn)

+ (∇s · aa) ·
(
I +

λa
|λa|

(I − λaδτ)−1
)
fa (xn) +

+ (∇s · ar) · (f r (xn)− f r (xn))

(42)

Remark #2
Eqs. (41) and (42) are the sought after result that relates entropy production to the time
scales associated with the slow, active, and fast subspaces.

Let us now assume that there exists a large spectral gap between the slow and active
subspaces so that |λs| � |λa|, λa/|λa| ≈ O(1). Under these assumptions, Eq. (42)
simplifies into:

ds

dτ
≈ (∇s · as) · f s (xn) + (∇s · aa) ·

(
I + (I − λaδτ)−1

)
fa (xn) (43)

In summary, inspection of Eq. (43) reveals that the time rate of change of entropy is
zero if the following two conditions hold

∇s is orthogonal to as or f s (xn) = 0

∇s is orthogonal to aa or fa (xn) = 0
(44)



The fast subspace does not contribute to the time rate of change of entropy when the
state is on the SIM.

The contribution of the slow subspace to the time rate of change of entropy

(∇s · as) ·
(
I +

λs
|λa|

)
f s (xn)

is proportional to the ratio |λs|/|λa| and to the magnitude of the slow mode amplitude
f s (xn).

Results
The specific test case considered refers to a methane/air system, using GRI 3.0 kinetics
(53 species). The batch reactor model is adiabatic and at constant volume. The initial
conditions for the test case are defined by prescribing the initial temperature T0 = 1000 K
and pressure p0 = 1 atm of a stoichiometric mixture of reactants. The constant density
in Eq. (1) is set on the basis of the thermal equation of state.

Figure 1 shows the evolution of temperature (solid, black line) as a function of the
number of iteration steps (to avoid the compression of the plot about the reaction time).
On the same figure, we plot the evolution of the dimension A of the active subspace (green
solid line) obtained by subtracting H (blue line) from T (red line), where H and T are the
mode numbers corresponding to |λH | and |λT |, respectively. The dimension of the active
subspace also corresponds to the number of non-stiff ODEs solved by the G-Scheme. The
modes comprised between 5 and H-1 span the slow subspace, those between H and T the
active subspace, and those between T+1 and N+1 the fast subspace.
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Figure 1: Time evolution of the dimension of the active (green), slow (blue), and fast (red) subspaces;
temperature (solid black line); rtol = 10−3.

Figure 2 shows the time evolution of the reciprocal of the modulus of the (complex)
eigenvalues of the 55 modes as a function of the number of iteration steps. On the same
figure, we plot the evolution of the characteristic scales of the G-Scheme, namely, the
reciprocal of |λH−1| (green), |λH | (red), |λT | (cyan), |λT+1| (blue), and |λN+1| (black).
The blue solid line reports the entropy evolution. The slow/active scale gap is is visually
comprised between the green and red lines, while the active/fast gap is between the cyan
and blue lines. The black line marks the fastest time scale at all times. The spectral
width of the fast subspace is between the black and blue lines. The width of the active



subspace is between the cyan and red lines. The width of the slow subspace is above the
red line. The invariant subspace is associated with the randomly scattered markers visible
at very large time scales.

Figure 2: Reciprocal of the modulus of the (complex) eigenvalues (light grey markers); reciprocal of
|λH−1| (green), |λH | (red), |λT | (cyan), |λT+1| (blue), and |λN+1| (black); the red solid line reports the
entropy evolution; rtol = 10−3.

The quantitative assessment of the relative contribution to the rate of entropy pro-
duction from the slow, active, and fast subspaces is carried out by considering that the
entropy of the mixture is a state function of temperature and composition. Therefore,
during the numerical integration of the batch reactor model, we evaluated the entropy
of the mixture before and after each of the changes of the system state due to the slow
(∆sh), active (∆sa), and fast (∆st) subspaces. With these definitions, we introduced the
following definitions:

sα(tn) = sα(tn−1) + ∆sα(tn) α = h, a, t

s(tn) = sh(tn) + sa(tn) + st(tn)
(45)

where sα(t0) = s(T0, p0, Yj,0).
Figure 3 shows the time evolution of the contribution to the entropy of the mixture

from the slow, active, and fast subspaces as obtained using three different accuracy levels
(rtol = 10−3, 10−4, 10−5), while Fig. 4 shows the entropy contribution of each subspace
scaled with respect to the overall contribution (sα(tn)/s(tn), with α = a, h, t).

It is apparent that the active subspace contribution is always very close to 100%, while
the slow contribution is generally larger than the fast contribution.

The sensitivity to the accuracy level of the contribution to the entropy of the mixture
can be appreciated with the help of Fig. 5, which indicates that the magnitude of the
overall entropy contribution, that is, evaluated at large times, of the fast subspace is of
the same order of the accuracy level specified by the user. Instead the overall entropy
contribution of the slow subspace is always smaller than the active contribution, but it
does not seem to depend much on the accuracy level specified by the user.

Figure 6 shows that the relative contribution to the rate of entropy production (∆sα(tn)
/ ∆s(tn)) of the slow and fast subspaces are approximately 10−3 and 10−4, respectively,
whereas that of the active subspace is always of order one. This indicates that the con-
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tribution to the rate of entropy production of the fast subspace is always negligible with
respect to that of the active subspace, whereas that of the slow subspace can occasion-
ally becomes comparable to that of the active subspace within the reaction period of the
auto-ignition process.

Acknowledgment
MV acknowledges the support of the Italian Ministry of University and Research (MIUR).

*
References



r
tol

E
n
tr
o
p
y
c
o
n
tr
ib
u
ti
o
n

10-5 10-4 10-3 10-2
10-6

10-5

10-4

10-3

10-2

10-1

100

Active

Head

Tail

Figure 5: Overall entropy production per each subspace; slow (sh(t∞), green), active (sa(t∞), red), and
fast (st(t∞), blue) subspaces.

samples

Te
m
p

100 200 300 400 500

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1000

1200

1400

1600

1800

2000

2200

2400

2600

del_entropy_active
del_entropy_head
del_entropy_tail
Temp

Figure 6: Contribution to the rate of change of entropy of the mixture from the slow (∆sh(tn)/∆s(tn),
green), active (∆sa(tn)/∆s(tn), red), and fast (∆st(tn)/∆s(tn), blue) subspaces (rtol = 10−3).
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