
Pag 2

d i c h i a r a z i o n e s o s t i t u t i v a d i c e r t i f i c a z i o n e
(art. 46 D.P.R. 445 del 28.12.2000)

La/il sottoscritta/o

nata/o a .......... &A.&..1

residente a

è consapevole che in caso di dichiarazione mendace sarà punito ai sensi del Codice Penale
secondo quanto prescritto dall'art. 76 del succitato D.P.R. 445/2000 e che , inoltre, qualora
dal controllo effettuato emerga la non veridicità del contenuto di taluna delle dichiarazioni
rese, decadrà dai benefici conseguenti al provvedimento eventualmente emanato sulla base
della dichiarazione non veritiera ( art. 75 D.P.R. 445/2000).

D I C H I A R A

Che il file PDF allegato al Prodotto con codice UGOV ....... if.h.L.h.Lj

dal Titolo

è conforme all'originale

data -4 b -

La presente dichiarazione ha validità per 6 mesi (art. 41 D.P.R. 445/2000);
se i documenti che sosti tuisce hanno validità maggiore ha la stessa validità
di essi.
Tale dichiarazione può essere trasmessa via fax o con strumenti telematici
(art. 38 D.P.R. 445/2000)
La mancata acccttazione della presente dichiarazione costituisce
violazione dei doveri d'ufficio (art.74 comma 1 D.P.R. 445/2000).
Esente da imposta di bollo ai sensi dell'ari. 37 D.P.R. 445/2000



^A*

WSEAS TRANSACTIONS
OH BUSINESS and ECONOMICS

Issue 8, Volume 3, August 2006
ISSN 1109-9526 http://www.wseas.org

E-Marketing Tools in Promoting Tourist Products 563

Smaranda Cosma, Horea Adrian Grebla, Adina Negrusa

Behavior and Perceptions of Greek Consumers in Business Related 569

E-Communities

Nicholas Harkiolakis

Algorithms for thè Sum of Discrete Random Variables. Actuarial Applications. 577

Maria Giuseppina Bruno, Alvaro Tomassetti

A Comparative Analysis of thè Opportunity and thè Possibility of 586

Implementing some E-Learning Components at Fsega

Lacurezeanu Ramona, Bako E. Dana, Nistor Razvan, Chis George, Tiron TudorAdrìana

SOA Approach for E-Service 594

Zivile Petraviciute, Genadijus Kulvietis, Egidijus Ostasius

Apply Fuzzy Adaptive Networks to Credit Rating 597

Kuentai Chen, E. Stanley Lee

Collaborative Environments - A Framework for Business Intelligence 605

Mihaela Muntean, Camelia Muntean



WSEAS TRANSACTIONS ON BUSINESS AND ECONOMICS Issue 8. Voi. 3. August 2006 ISSN: 1109-9526 577

Algorithms for thè sum of discrete random variables. Actuarial
applìcations.

MARIA GIUSEPPINA BRUNO
Department of Matematica per le Decisioni Economiche, Finanziarie ed Assicurative

University of Roma "La Sapienza"
Via del Castro Laurenziano, 9-00161 Roma

ITALY
giuseppina.bruno@uniroma 1 .it

AL VARO TOMASSETTI
Department of Scienze Attuariali

University of Roma "La Sapienza"
Viale Africa, 120-00100 Roma

ITALY
alvtomas@tin.it

Abstract: - In literature, thè sum of discrete random variables becomes a problem of heavy (and often
impracticable) computation no sooner does thè number of convolutions exceed few units (at most in actuarial
applications). In this paper, we show how this problem can be easily overcome when using random variables
with integer (positive, negative, or nuli) or referable to integer numerical realizations but not necessarily
identically distributed.
Under thè above-mentioned condition, we illustrate in particular two exact methods and an approximated one
for calculating convolution:
- thè first exact method is based on thè well-known Fast Fourier Transform (FFT);
- thè second exact method is derived from thè classical approach using Discrete Fourier Transform (DFT) by
means of algebraic manipulations;
- thè third method is derived from thè definition of convolution and it is approximated by neglecting thè
probabilities less than a given bound E =10"h (5 l<h<100)**.
As for thè error bounds of thè approximated method, it is worth noting that thè results obtained by this method
differ in relative terms from thè corresponding exact values of less than IO"9. This can be tested by comparing
thè convoluted probability distribution obtained by thè approximated method with thè one obtained by thè
other two methods and by also comparing thè first four moments with those computed directly on thè originai
random variables. The results (in particular thè exact and thè approximated probability distribution) are
identical in practice. It does not exist therefore thè problem of a difference along thè tail. As a consequence,
although thè proposed method is an "approximated method" under a mathematical point of view, it can be
considered an "exact method" in thè actuarial applications.
As for thè efficiency of calculation, we have to distinguish between thè simple sum of discrete random
variables and thè calculation of compound distributions with prefixed counting distributions (i.g. Poisson,
Negative Binomial, Parete):
- in thè first case, thè approximated method and thè second exact method are similar but thè approximated
method gives further information about thè random variables (for instance, thè information about thè
independence using some properties of thè characteristic functions);
- in thè second case, only thè approximated method is applicable in practice.
Finally, in thè conditions of interest, thè exact method using FFT is less efficient than thè other methods and it
has a more limited application field.

The paper is credited to M.G. Bruno (associate professor); A. Tomassetti (former full professor) has
coordinated thè research. The authors thank A. Manna (actuary) for inclusion in their software of thè FFT and
also S. Tumani (actuary) for a check of thè applications.
" The values of h>100 seldom concern thè actuarial applications.
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1. Theory and practice in computing
thè sum of random variables
As well-known, thè sum of independent but not
necessarily identically distributed discrete random
variables is generally speaking a problem of heavy
(and often impracticable) computation in actuarial
applications. The aim of this case study is to show
how to perform a fast computation using both exact
mathematical procedures and approximated
methods based on simple algorithms.

By considering that thè insured capitals, thè
claims amounts and thè other quantities useful in
actuarial applications can be expressed as integer or
referable to integer values, we illustrate two exact
methods and an approximated one (but with
controlied maximum approximation).

We show that thè approximated method can be
applied with great flexibility to any random
variables with thè above-mentioned type of
numerical realizations (for instance, it can be easily
generalized to thè computation of thè aggregate
claims distribution). Thus, it can be successfully
applied in thè actuarial field where getting results
with thè maximum generality and simplicity is
necessary. Obviously, it requires an ad-hoc software
edited in a fast and powerful language1.

1.1. The two exact methods and thè meaning
of "exact" convoluted probabilities
Both thè exact methods examined in this paper are
based on thè Discrete Fourier Transform (DFT).

This approach to thè computation of convolution
is well-known in literature but for a fast
computation one need introduce some simple
variants:

- in section 2.1, we make a brief reference to thè
exact method using thè Fast Fourier Transform
(FFT);

- in section 2.2, we derive a different exact
method by means of algebraic manipulations.

Before proceeding, however, it can be useful to
notice that any method, even if exact on thè
mathematical level, may cause approximation errors
on thè numerical level. Thus, given thè theoretical

4930

1 In our applications, we have specifically used thè
C++ language (just for now, with Builder 5 at 32
bits).

and practical nature of this case study, we need ask
ourselves: when a distribution can be defmed exact?

According to a long experience, in thè actuarial
applications a distribution can be considered exact if
thè sum of its probabilities is equal to one followed
by nine zeros. This means that each probability must
have at least nine exact decimai points.

This standard is consistent with thè software
(such as C++, Delphi and similar languages) and thè
hardware today commonly available.

1.2. The approximated method and thè
criteria to obtain a desired level of
approximation
The approximated method proposed in section 3
uses thè direct defmition of convolution.

The approximation consists in neglecting in thè
calculation thè probabilities (both originai and
convoluted) less than s=10"h (51<h<4930).

Notice that, even if E can reach thè value of 10"
', thè procedure has sense for E at thè most equal

to IO"100. This is for two reasons:
- thè computation becomes heavier and heavier,

as h increases;
- as above said, today we could not be able to

obtain a better approximation in practice.
An important aspect of this method is to assure a

desired level of approximation for thè sum of thè
probabilities of each convolution and for thè first
four moments of thè final convolution. In particular,
reminding thè above-mentioned concept of exact
distribution, thè software is created in such a way
that thè sum of thè probabilities of each convolution
differs from 1 of less than IO"9 and, with thè same
error bound, thè first four moments of thè fmal
convolution differ in relative terms from thè
corresponding exact values.

Actually, thè software works in thè following
way:

a. when reading thè random variables to be
summed up, thè software computes thè first four
moments of their sum exactly;

b. after each convolution performed by
neglecting thè probabilities (originai or convoluted)
less than 10"h, supposed h=51, thè software performs
thè sum of thè probabilities corresponding to thè
same numerical realizations and checks that thè sum
of ali thè probabilities differs from 1 of less than 10"
9. If this condition is not fulfilled, thè software
signal an error and it re-starts from thè point b.
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using an higher value of h; on thè other case, it
proceeds in thè same way up to thè final
convolution;

e. in thè end, thè software gives thè fmal
approximated distribution. It computes thè first four
moments of this distribution and checks that they
simultaneously differ in relative terms from thè
corresponding exact ones computed at point a. for
less than IO"9. In thè negative case, thè software re-
starts from thè point b. with an higher value of h; in
thè positive case, thè software ends.

On this subject, we want to discredit a
commonplace about thè influence of thè above-
mentioned approximation on thè distribution tail.

As a matter of fact, it is easy to verify that thè
omission of thè probabilities smaller than e=10~h

(51<h<100) has not a significant weight on thè
distribution tail, since, according to thè point e., thè
product between thè neglected probabilities and thè
corresponding numerical realizations affects each of
thè first four moments of thè final distribution for
lessthen IO'9.

This has been confirmed in a number of
applications by thè comparison of thè distribution
obtained by thè approximated method with thè
distribution resulting from an exact method (see for
instance thè results in table 3. For further
comparisons, we can provide thè programs .exe on
request).

Finally, notice that a substantial simplification of
thè approximated method is obtained by summing,
after each convolution, thè probabilities
corresponding to thè same numerical realizations. In
many applications, this gives a contribution to thè
calculation efficiency sometimes even greater than
thè one given by thè omission of thè very small
probabilities.

1.3. The applications in life insurance
In section 4.1, we make a comparison between thè
exact method based on FFT and thè approximated
method.

In particular, by means of a numerical
exemplification using identically distributed random
variables, we compare thè number of multiplicatìons
required for computing convolution by FFT with
those required by thè approximated method.

The results show that, in thè hypothesis useful in
actuarial applications, such as s=10"51, thè number
of multiplications required by FFT is greater than
thè corresponding number required by thè
approximated method. This is verified even in thè
caseofE=10-4930.

In section 4.2, we compare thè other exact
method with thè approximated one. The application
concerns a portfolio of life insurance policies of
different types (that is random variables not
necessarily identically distributed) and thè
comparison is made in terms of processing time.

On this subject, it is useful to notice that thè
exact method computes only thè final distribution
while thè approximated method computes and gives
as output each convoluted distribution up to thè final
one. The complete calculation of each convolution
makes thè approximated method very efficient in
many other applications in life and non-life
insurance as, for instance, for calculating thè
aggregate claims distribution (see section 1.4).

Besides, thè exact method is extremely fast in
thè case of identically distributed random variables
or in thè case of few not identically distributed
random variables and with a restricted range of
numerical realizations. On thè contrary, thè
conditions necessary for running thè software of thè
approximated method do not restrict its concrete
applicability (see section 1.5).

In a future work, we will develop thè calculation
of thè ruin probability of an insurance company.
This problem is another typical example of actuarial
application based on discrete random variables
where thè exact method and thè approximated
method proposed in this paper can be easily applied.

1.4. The applications of thè approximated
method in non-life insurance
In section 4.3, we show two applications in non-life
insurance. The first one concerns thè calculation of
thè aggregate claims distribution using a Poisson
distribution as counting distribution; thè second one
concerns thè calculation of thè aggregate claims
distribution using a Negative Binomial distribution
as counting distribution. In both cases, we apply
only thè approximated method since thè exact ones
are less efficient and not flexible at ali.

1.5. The conditions for running thè software
of thè approximated method and thè other
Utilities
The conditions necessary for running thè software2

of thè approximated method are not restrictive.
As a matter of fact:
a) thè maximum number of random variables

that can be summed up (without considering thè

Using a specific software in C++ and hardware
PC Pentium 4 HyperThreading 3.4 GHz, 1024 KB.
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weight that is thè possibility that each random
variable can be convoluted more than ones with
itself) is 100,000;

b) each random variable can have any number of
numerical realizations not lower than two and not
greaterthan 100,000;

e) thè maximum numerical realization is
20,000,000.

A limit today existing (but that should be
eliminated using a software at 64 bits for thè
language C++) is that thè mean value of thè sum of
thè random variables, each one taken with its own
weight, must be not greater than 2,500,000. If not,
we have to reduce thè amounts of each random
variables or thè number of numerical realizations.

Before concluding, we mention a further use of
thè approximated method in addition to thè classical
applications. This is thè possibility to verify thè
independence among given random variables by thè
well-known result according to which thè random
variables are independent if thè product of their
characteristic functions is equal to thè characteristic
function of their sum.

1.6. Notation
Let X|,X2,...,XN be thè discrete (with integer
numerical realizations) and independent (but not
necessarily identically distributed) random variables
to be summed up and let:

(1) for

For each random variable X(n), let:

- AR^ be thè greatest numerical realization;

- ARJ^ be thè smallest numerical realization; and

let:

(2) M(n)

which is thè maximum number of possible
numerical realizations.

As for thè probability distribution of each
random variable X(n) (n=l,...,N), that is thè
convolution of order n, we use two different
notations. In particular:

- in thè case of thè exact methods, fy(n) (r)

denotes thè probability (even nuli) corresponding to

thè integer number (AR + r ) for r=0,l,...,(M(n)-

- in thè case of thè approximated method,
fx ( n )(xn) denotes thè (non nuli) probability

corresponding to thè integer numerical realization xn

The reason of a different notation is due to thè
fact that when using thè exact methods we have to
consider ali thè integer values from thè minimum to
thè maximum numerical realization. On thè
contrary, when using thè approximated method, we
can consider only thè integer numerical realizations
with non nuli probability.

2. The two exact methods
Both thè exact methods for calculating convolution
mentioned in this paper are based on thè classical
approach by DFT.

According to this approach, for calculating thè
final convolution, we proceed in thè following way:

a) we calculate thè DFT of each random variable
Xi(i=l,...,N),thatis:

for u = 0,l,...,( -1)

where fx. is thè probability distribution of X;. For

r=0,l,...,(M(N)-l), fx.(r) is in particular thè

probability corresponding to thè numerical

realization (AR^ + r) of X,;

b) then, we calculate thè DFT of thè convolution
of order N. Given thè independence of thè random
variables X; (i=l,...,N), we have:

N

(4)

for u = r(N)

c) finally, we obtain thè probability distribution
of thè final convolution by calculating thè IDFT,
that is:
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(5)

fx(N) (r) = •

for r = 0,l,...,
(10)

N

2.1. The exact method using FFT
The FFT is a fast algorithm for thè calculus of DFT
and its inverse IDFT. Thus, thè exact method using
FFT just consists in applying this algorithm to
Equations (3) and (5).

As well known [1], thanks to this algorithm, thè
number of (real) multiplications necessary to
develop thè calculus of each transform with M(N)

data points reduces to:

(6)

where M=2y is thè smallest integer (expressed as a
power of 2) not less than (M^-l).

We will use thè above mentioned number of
multiplications as a measure of efficiency in order to
compare this method with thè approximated one.

Really, thè number of multiplications necessary
to develop thè calculation by FFT is considerably
greater (as one can see by thè routine in [6,pp.507-
508].

2.2. The exact method derived algebraically
This exact method is derived from thè classical
approach based on DFT by means of algebraic
manipulations.

First of ali, we write Equation (3) in thè
following way:

(7)
Pi(u)exp(iaj(u))

for u =

where PJ is thè module and_ccj _the argument of thè
characteristic function of each random variable Xj.

Equation (4) therefore becomes:

(8)

where:

( N )

for u =

= p(u)exp(ict(u))

and Equation (5):

(11)

(N)

for r = 0,l,...,

Then, we calculate thè difference between two
successive values of thè cumulative distribution of
thè fmal convolution.

In particular, for integers m and k (with k>m),
we calculate:

(12)
Fx(N)(k)-Fx(N)(m)

h=m

According to Equation (1 1), we have3:

(13)

FX<N) (k) - FX(N) (m) = — — [(k - m)
]Vr '
- m)

7ui(m + k - 1)

For m=r and k=r+l, Equation (13) gives thè
probability distribution of thè final convolution
f X<N) (r) .

In thè program, we further on simplify this
formula by curting thè summation interval by half.
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3. The approximated method
The principia underlying this method is to apply thè
definitici! of convolution in a direct manner by
using only real and elementary operations (basically,
multiplications and additions) for thè random
variables (initial or obtained by convolution).

For having thè same results of thè exact methods
(but with a greater efficiency), we apply thè
follo wing conditions:

a) we proceed step by step, that is we consider
thè first random variable (convolution=l), then we
add thè second (convolution=2), then we add thè
third (convolution=3) and so on until
convolution=N;

b) at each step, we neglect thè initial or
convolved probabilities less than 10~h with
51<h<4930 (in thè actuarial" applications 51<h<100
is sufficient);

e) for each convolution, we verify that thè sum
of thè probabilities is equal to 1 with a prefixed
error (in thè actuarial application an error less than
IO"9 is sufficient);

d) we verify that thè first four moments of thè
fmal convolution differ from thè corresponding
exact values by an error of thè same order (less than
IO'9).

Formally, thè method consists in considering, for
each n, bnly thè numerical realizations

yn:f x( n> ( yn ) < 1 < r h <>ith 51<h<4930) fulfilling
thè following conditions:

- after thè computation of thè convolution of
order n:

(14) •>-9

- after thè computation of thè fmal convolution:

(15) 1- <10"9 for k = 1,2,3,4

where E((X(N))k) is thè k-th exact moment of thè

fmal convolution and Ev (X(N))k thè

corresponding value obtained by only considering
thè realizations yn and their probabilities.

Given thè simplicity of this method, it is easy to
compute thè number of multiplications necessary to
develop each successive order of convolution.

Let NR; (i=l,2,...N) be thè number of thè
numerical realizations (with non nuli probability) of
thè i-th random variable X; and NR(n) thè number of
thè numerical realizations of thè random variable
X(n) obtained after n convolutions. Notice that,
generally speaking, NR(n)<M(n) for two reasons:

- thè random variables to sum up do not
necessarily have as many numerical realizations as
ali thè integers from thè minimum to thè maximum;

- as above said at point b), in thè calculation of
each convolution thè approximated method neglects
thè numerical realizations with probability (initial
and/or convoluted) less than a prefixed error.

In thè case of identically distributed random
variables, Xj=Xi (i=l,...,N), thè minimum and thè
maximum numerical realization of X(n) (n=l,...,N)
are respectively:

(16)

(17) (Dmax

and thè number of numerical realizations is at most:

(18) min-

In this case, thè number of multiplications
required for calculating thè n-th (n=l,...,N)
convolution is at most:

(19)

As a matter of fact:
a) thè random variable X(1) relative to thè first

convolution is equal to thè originai random variable
X]. Thus, it has:

(20) NR(1) =

possible values and thè corresponding probabilities
can be obtained without any multiplications;

b) thè random variable X(2) obtained after thè
second convolution of thè originai random variable
has at most:

(21)

possible values. The probabilities are calculated by
multiplying each probability of X(1)=Xi (for a total
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of NR(1)=NRi) for thè probabilities of thè same X,.
Then thè multiplications are:

(22) molt(A2?4=NR(1)NR1

e) thè random variatile X(3) obtaìned after thè
third convolution of thè originai random variable
has at most:

(23)

possible realizations. The probabilities are
calculated by multiplying each probability of X(2)

(for a total of NR(2)) for thè probabilities of Xi (that
is NRi). Then thè multiplications are:

(24) moltg, =

Generally speaking, thè random variable X(n)

obtained after thè n-th convolution of Xi has at most
NR(n) possible realizations given by Equation (18)
and thè probabilities are calculated by multiplication
of each probability of X(n'!) (that is NR(l>1)) by thè
probabilities of X, (that is NRi). Then thè
multiplications are given by Equation (19).

For thè final convolution, thè random variable
X(N) has at most:

(25) NR(N) =
ÌNIV

(1) -

possible realizations. The probabilities are
calculated by multiplying each probability of X(>M)

(that is NR(I>M)) for thè probabilities of Xj (that is
NR^. Then thè multiplications are:

(26)

In thè more generai case of not identically
distributed random variables, thè reasoning for
computing thè number of multiplications is similar
but with some merely formai complications.

4. Applications
In this section, we show some applications in life
and non-life insurance.

4.1. A single random variable convoluted
more times. Comparison between thè exact

method based on FFT and thè approximated
method
Let us compute thè convolution of order 1000 of a
random variable with 14 realizations with minimum
value 14 and maximum 60. Let therefore N=1000,

NR,=14, AR£> =60 and AR$n =14.

Using FFT, thè number of multiplications is
according to equation (6):

(27)

= M Iog2 M = 65536 • 16 = 1048576

where:

M >lOOOCAR^x - AR^) = 1000(60-14) = 46000

and exactly M=216=65536 as it must be a power of
2.

In thè approximated method, if we neglect thè
probabilities less than E=10"51, thè number of
realizations after 999 convolutions is (according to
thè program) equal to NR(999)=17111 (instead of
45955 according to thè theoretical formula, that is
999(60-14)+!).

In these conditions, according to equation (26)
thè number of multiplications is:

(28)

moltJJ,00' = NR<999>NR1 =17111.14 = 239554

If we take £=10"4930 (yet this is of no help in thè
applications since thè value is excessively little for
actuarial purposes), thè realizations after 999
convolutions become NR(999)=38252 and then thè
number of multiplications is:

(29)

molt^00) =NR("9>NRi =38252-14 = 535528

In conclusion, as for thè number of
multiplications (results being equal), thè more
efficient method for convolution is thè
approximated method.

In Table 1, we show some further results as thè
number of convolutions vary.

Table 1. Number of real multiplications
Num. Conv.
2
10
100

FFT
896
10240
106496

Approx. Meth.*
196
5446
57204
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1000
10000

1048576
20971520

239554
765940

Table 3. Tails of thè cumulative distribution
function

* The calculation is performed by neglecting thè
probabilities lower than e=10'51. The results
concerning thè single probabilities and thefirstfour
moments ofthefinal convolutìon are identica! (with
a spread of arder IO'9) to those obtained by FFT.

4.2. Many random variables convoluted
more times. Comparison between thè exact
method of section 2.2 and thè approximated
method.
Let us computa thè convolution of thè 13,500
random variables not necessarily identically
distributed used in [3] .

In Table 2, we show some results in terms of
processing times by varying thè weight of each
random variable.

Table 2. Processing times (in seconds)
Num. Conv.
1350
13500
27000

Exact Meth. Sec. 2.2,
1
11
25

Appr. Meth.*
1
11
29

* The calculation is performed by neglecting thè
probabilities lower than £=10'^. The results
concerning thè cumulative distribution functions
and thè first four moments of thè final convolutìon
are identica! (with a spread of arder IO'9) to those
obtained by thè exact method.

Notice that in thè programs there are fixed
components having a great weight for a relatively
small number of convolution.

Besides, consider that, as anticipated in section
1.3, thè exact method takes thè indicated processing
times to compute only thè fina! convolution while
thè approximated method takes thè indicated
processing times to compute ali thè convolution up
to thè final one (it computes also thè product of thè
characteristic functions of each originai random
variables and thè characteristic function of their
sum).

It may also be interesting to make a specific
comparison between thè final convolution obtained
by thè exact method and thè one obtained by thè
approximated method. The results are identical (up
to thè tenth decimai digit).

In table 3, we show in particular thè "tails" of
thè cumulative distribution for 13,500 convolutions.

Realizations*
m -5.000
m-4.00a
m-3.50a
m-3.00a
m + 3.000
m + 3.50a
m + 4.000
m + 5.000
m + 8.000

Cumulative distribution
0.0000000017
0.0000033001
0.0000494136
0.0005507423
0.9976084881
0.9994448125
0.9998758140
0.9999966871
1.0000000000

* Where m=128575.052 is thè mean value and
a=736.935 is thè standarddeviation.

In addition to thè above mentioned results, thè
approximated method provides also both thè
characteristic function of thè sum of thè random
variables and thè product of their characteristic
functions. These values are identica! and, in
particular, thè real part is equal to - 0.000532462
and thè imaginary part is equal to - 0.000351474.

4.3. Computation of thè aggregate claims
distribution by means of thè approximated
method
In table 4, we show some results concerning thè
calculation of thè aggregate claims cumulative
distribution using a Poisson distribution wìth
parameter À,=4.841423259 as counting distribution.
In Table 5, we show some results concerning thè
calculation of thè aggregate claims cumulative
distribution using a Negative Binomial with
parameters r=23.43937917 and a=0.2065508316 as
counting distribution.
In both cases, we use thè distribution in [5,pp.l78-
229] as severity distribution and we apply only thè
approximated method since thè exact ones are less
efficient and not flexible at ali (results being equal).
On this subject, see also [2].

Table 4. Aggregate claims cumulative distribution
by thè approximated method using a Poisson

counting distribution*
Realizations**
m -20.000
m-1.50o
m-l.OOo
m -0.750
m-0.50a
m -0.250

Cumulative distribution
0.007895808
0.041573460
0.158407992
0.239006941
0.335345410
0.443531561
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m
m + 0.25c
m + 0.50a
m + 0.600
m + 0.750
m+ l.OOcr
m + l.SOa
m + 2.00a
m + 2.500
m + 3.000
m + 4.000
m + 5.00cj
m + 6.000
m + 8.000
m+ 10.000

0.543173551
0.628233889
0.713022866
0.745325000
0.781696707
0.839987301
0.921775029
0.965070471
0.985514660
0.994508388
0.999385086
0.999947238
0.999996345
0.999999991
1.000000000

* The calculation is performed by neglecting thè
probabìlities lower than s=10':>''.
** Where m=207.025055 is thè mean value and
a=102.602026 ìs thè standard deviation.

Table 5. Aggregate claims cumulative distribution
by thè approximated method using a Negative

Binomial counting distribution*
Realizations**
m -20.000
m- 1.500
m- l.OOa
m-0.75a
m-0.50a
m-0.25a
m
m + 0.25a
m + 0.500
m + 0.60c
m + 0.75a
m + l.OOa
m + 1.500
m + 2.000
m + 2.500
m + 3.000
m + 4.00a
m + 5.000
m + 6.000
m + 8.000
m + 16.00(1

Cumulative distribution
0.012263691
0.039570081
0.157682964
0.248705182
0.346776542
0.439798971
0.550177095
0.632109689
0.718709110
0.746800061
0.788076093
0.843476297
0.919629987
0.962628379
0.983628885
0.993394096
0.999069226
0.999891334
0.999989109
0.999999728
0.999999760
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