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Abstract

Background Indications and outcomes in lumbar spinal fusion for degenerative disease are notoriously heterogenous. 

Selected subsets of patients show remarkable benefit. However, their objective identification is often difficult. Decision-

making may be improved with reliable prediction of long-term outcomes for each individual patient, improving patient 

selection and avoiding ineffective procedures.
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Methods Clinical prediction models for long-term functional impairment [Oswestry Disability Index (ODI) or Core Outcome 

Measures Index (COMI)], back pain, and leg pain after lumbar fusion for degenerative disease were developed. Achievement 

of the minimum clinically important difference at 12 months postoperatively was defined as a reduction from baseline of at 

least 15 points for ODI, 2.2 points for COMI, or 2 points for pain severity.

Results Models were developed and integrated into a web-app (https:// neuro surge ry. shiny apps. io/ fuseml/) based on a mul-

tinational cohort [N = 817; 42.7% male; mean (SD) age: 61.19 (12.36) years]. At external validation [N = 298; 35.6% male; 

mean (SD) age: 59.73 (12.64) years], areas under the curves for functional impairment [0.67, 95% confidence interval (CI): 

0.59–0.74], back pain (0.72, 95%CI: 0.64–0.79), and leg pain (0.64, 95%CI: 0.54–0.73) demonstrated moderate ability to 

identify patients who are likely to benefit from surgery. Models demonstrated fair calibration of the predicted probabilities.

Conclusions Outcomes after lumbar spinal fusion for degenerative disease remain difficult to predict. Although assistive 

clinical prediction models can help in quantifying potential benefits of surgery and the externally validated FUSE-ML tool 

may aid in individualized risk–benefit estimation, truly impacting clinical practice in the era of “personalized medicine” 

necessitates more robust tools in this patient population.

Keywords Predictive analytics · Outcome prediction · Machine learning · Spinal fusion · Neurosurgery · Clinical prediction 

model

Introduction

Degenerative disease of the lumbar spine, including chronic 

low back pain (CLBP), lumbar spinal stenosis, lumbar disc 

herniation, and degenerative lumbar spondylolisthesis, is 

part of the top-three causes of disability in Western societies 

and imposes significant direct and indirect socio-economic 

costs [1]. The gold standard treatment for these chronic 

degenerative diseases is multidisciplinary therapy includ-

ing components of exercise therapy, cognitive behavioural 

therapy, and pharmacological therapy, although certain 

patients who are unresponsive to long-term conservative 

treatment may benefit from fusion [2, 3]. Nonetheless, with 

some reports showing no benefit compared with conserva-

tive treatment in a randomized population, patient selection 

is vitally important [4]. Various prognostic tests exist to 

attempt to identify subsets of patients that might truly ben-

efit from surgery as a “last resort”, but the validity of these 

tests is unclear [5, 6]. A relevant proportion of patients with 

intractable, conservative therapy-resistant lumbar degen-

erative disease does finally benefit from lumbar fusion sur-

gery—the difficult question is how to identify these subsets 

reliably and how to avoid unnecessary, unsuccessful surgery 

[3].

Clinical prediction models can summarize a large number 

of factors into a single, potentially more accurate prediction 

of surgical risk or benefit, tailored to each individual patient 

[7–9]. The implementation of machine learning (ML) is 

increasing exponentially, although methodological rigour is 

only rarely upheld [8, 10]. Without thorough methodological 

foundations, development of clinical prediction models can 

very easily lead to pseudo-reliable predictions with seem-

ingly high-performance measures due to issues such as data 

leakage, class imbalance, and overfitting [8, 11]. If clinical 

prediction models are not externally validated properly, real-

world performance cannot be adequately estimated, and they 

should not to be applied in clinical practice [12, 13].

For patients with degenerative disease of the lumbar spine 

in whom spinal fusion surgery is considered, accurate pre-

diction of long-term outcome in individual patients has been 

demonstrated to be extraordinarily difficult [5, 14]. The aim 

of the FUSE-ML consortium was to assemble a large multi-

national dataset of patients undergoing lumbar spinal fusion 

for degenerative disease in order to create robust clinical 

prediction models that take into account surgical variables 

and that are thoroughly developed and externally validated 

in a range of international centres.

Methods

Overview

A substantial multinational (7  countries), multicentre 

(11 centres) dataset (FUSE-ML) of patients who had under-

gone lumbar spinal fusion for degenerative disease was used 

to develop and externally validate a ML-based prediction 

tool for mid-term patient-reported outcomes. We then briefly 

compared the performance to that of the—to our knowl-

edge—only other comparable, externally validated, clinical 

prediction model [14]. This study adheres to the transparent 

reporting of a multivariable prediction model for individual 

prognosis or diagnosis guidelines and is registered on Clini-

calTrials.gov (NCT05161130) [7]. The use of patient data 

for research purposes was approved by each local institu-

tional review board (IRBs), and patients provided informed 

consent or informed consent was waived, depending on the 

demands of the local IRB.

https://neurosurgery.shinyapps.io/fuseml/
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Inclusion and exclusion criteria

Patients with the following indications for thoracolumbar 

pedicle screw placement were considered for inclusion: 

degenerative pathologies (one or multiple of the following: 

spinal stenosis, spondylolisthesis, degenerative disc dis-

ease, disc herniation, failed back surgery syndrome (FBSS), 

radiculopathy, pseudarthrosis). Exclusion criteria were: sur-

gery for—as the primary indication—infections, vertebral 

tumours, as well as traumatic and osteoporotic fractures or 

deformity surgery for scoliosis or kyphosis; moderate or 

severe scoliosis (Coronal Cobb’s > 30°/Schwab classification 

sagittal modifier + or + +); surgery at more than 6 vertebral 

levels; missing endpoint data at 12 months; lack of informed 

consent; age < 18 years old.

Data collection

Each centre either extracted data retrospectively, from a 

prospective registry, or collected data in a prospective reg-

istry supplemented by retrospectively collected variables, 

with complete mid-term follow-up. The following data were 

collected: age, gender, surgical indication, index level(s), 

height, weight, BMI, smoking status, American Society of 

Anesthesiologists (ASA) Score, preoperative use of opi-

oid pain medication, bronchial asthma as a comorbidity, 

prior thoracolumbar spine surgery, race/ethnicity, surgical 

approach, pedicle screw insertion and minimally invasive 

technique. PROMs included preoperative (baseline) and 

12-month postoperative Oswestry Disability Index (ODI) 

(scaled from 0 to 100) or Core Outcome Measures Index 

(COMI) for multidimensional subjective functional impair-

ment, numeric rating scale (NRS) for back pain severity, and 

NRS for leg pain severity [15, 16].

Primary endpoint definitions

Clinically relevant improvements in terms of functional 

impairment (ODI or COMI) and back/leg pain were dichot-

omized using the minimum clinically important difference 

(MCID) according to validated thresholds (Improvement 

from baseline to 12 months postoperatively of ≥ 15 points 

for ODI, ≥ 2.2 points for COMI, and ≥ 2 points for NRS pain 

severity) [17–19]. Thus, improvements from baseline that 

were greater than these validated thresholds were counted 

as achievement of MCID in the respective score.

Clinical prediction modelling

Numerical input variables were standardized using centring 

and scaling, and Yeo–Johnson transformation, and highly 

correlated variables (Pearson correlation coefficient ≥ 0.8) 

were filtered. A preoperative or postoperative ODI of ≤ 22    

[20], COMI of ≤ 3.05  [21], or NRS pain severity of ≤ 3 [16] 

was considered as a probable “patient acceptable symptom 

state” (PASS) [22] based on established cut-offs. Patients 

with a preoperative PASS (minimal symptoms) in one of 

the three outcome dimensions were excluded from training 

for that respective dimension. Recursive feature elimina-

tion based on generalized linear models (GLMs) was car-

ried out to identify the optimal, parsimonious set of inputs 

for each of the 3 models. Subsequently, GLMs were trained 

using Elastic Net Regularization using the Caret [23] library. 

During training, hyperparameters were tuned using fivefold 

cross-validation with 10 repeats, maximizing area under the 

curve (AUC). A k-nearest neighbour imputer was trained to 

impute missing data. The threshold for binary classification 

was selected based on the “closest-to-(0, 1)-criterion” and 

rounded. The models were then integrated into a web-app 

and underwent external validation. No recalibration was 

carried out. Quantile-based 95% confidence intervals (CIs) 

of the discrimination and calibration metrics were obtained 

from 1000 bootstrap resamples. Standardized model coeffi-

cients are reported to allow for explanation. [23] Finally, the 

models reported by Khor et al. [14] were reconstructed from 

the published coefficients, and external validation perfor-

mance was compared. Notably, the Khor et al. model takes 

insurance status, which was not available within the FUSE-

ML consortium. As has been done previously and due to 

the fact that virtually all inclusions in the FUSE-ML dataset 

stem from countries with either single-payer healthcare or 

compulsory health insurance, we adopted “Medicare/Med-

icaid” as the most appropriate choice for the entire cohort. 

[12] All analyses were carried out in R version 4.1.1.

Results

Patient cohort

Data from 1115  patients were provided by 11  partici-

pating centres in total. The development cohort was 

made up of 8  centres (817  patients, 42.7% male, age: 

61.19 ± 12.36 years), while the remaining 3 centres were 

used for external validation (298 patients, 35.6% male, age: 

59.73 ± 12.64 years). Achievement of MCID at 12-months 

was recorded in 761 (68.3%) patients for functional impair-

ment, 862 (77.3%) patients for back pain severity, and 796 

(71.4%) patients for leg pain severity. An overview of patient 

characteristics is provided in Table 1, and detailed patient 

characteristics including missingness and data per centre are 

shown in Supplementary Table 1. Overall, 3074 of 52′405 

baseline data fields (5.9%) were incomplete.
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Table 1  Summary of patient 

characteristics and outcome 

measures

Centre Overall (pooled) Development cohort External 

validation 

cohort

N 1115 817 298

Male gender, n (%) 455 (40.8) 349 (42.7) 106 (35.6)

Age, mean (SD) [yrs.] 60.8 (12.5) 61.2 (12.4) 59.7 (12.6)

Height, mean (SD) [cm] 166.5 (9.8) 167.6 (9.6) 162.1 (9.4)

Weight, mean (SD) [kg] 73.5 (14.9) 74.7 (14.8) 69.1 (14.6)

Body mass index, mean (SD) [kg/m2] 26.6 (4.61) 26.8 (4.9) 26.1 (3.9)

Smoking status, n (%)

 Active smoker 306 (27.4) 236 (29.0) 70 (24.1)

 Ceased smoking 192 (17.2) 166 (20.4) 26 (9.0)

 Never smoked 607 (54.4) 413 (50.7) 194 (66.9)

ASA score ≥ 3, n (%) 324 (29.1) 251 (31.4) 73 (24.5)

Opioid analgetic use, n (%) 364 (32.6) 314 (43.9) 50 (16.8)

Bronchial asthma, n (%) 63 (5.7) 51 (7.1) 12 (4.0)

Race/ethnicity, n (%)

 White 861 (77.2) 667 (93.0) 194 (65.5)

 Black 30 (2.7) 29 (4.0) 1 (0.3)

 Asian 106 (9.5) 6 (0.8) 100 (33.8)

 Other 16 (1.4) 15 (2.1) 1 (0.3)

Prior thoracolumbar surgery, n (%) 257 (23.0) 204 (25.0) 53 (26.8)

Indication(s) for surgery, n (%)

 Spondylolisthesis 599 (53.7) 414 (50.7) 185 (62.1)

 Lumbar disc herniation 202 (18.1) 139 (17.0) 63 (21.1)

 Radiculopathy 323 (29.0) 230 (32.1) 93 (31.2)

 Discogenic CLBP/DDD 457 (41.0) 337 (41.2) 120 (40.3)

 FBSS 47 (4.2) 31 (4.3) 16 (5.4)

 Lumbar spinal stenosis 618 (55.4) 429 (52.5) 189 (63.4)

 Pseudarthrosis 56 (5.0) 55 (7.7) 1 (0.3)

Surgical index level(s), n (%)

 T12/L1 39 (3.5) 36 (4.4) 3 (1.0)

 L1/L2 24 (2.2) 19 (2.3) 5 (1.7)

 L2/L3 126 (11.3) 114 (14.0) 12 (4.0)

 L3/L4 305 (27.4) 245 (30.0) 60 (20.1)

 L4/L5 657 (58.9) 529 (64.7) 128 (64.6)

 L5/S1 401 (36.0) 344 (42.1) 57 (28.8)

Surgical technique, n (%)

 TLIF 373 (33.5) 199 (27.8) 174 (58.4)

 PLIF 449 (40.3) 325 (45.3) 124 (41.6)

 ALIF 7 (0.6) 7 (1.0) 0 (0.0)

 Lateral 73 (6.5) 73 (10.2) 1 (0.3)

Minimally invasive, n (%) 310 (27.8) 207 (25.3) 103 (34.6)

Pedicle screw insertion, n (%) 1081 (97.0) 783 (95.8) 298 (100.0)

Baseline patient-reported outcome

 Baseline ODI, mean (SD) 50.2 (17.9) 51.5 (17.5) 47.4 (18.6)

 Baseline COMI, mean (SD) 7.5 (1.7) 7.5 (1.7) –

 Baseline back pain, mean (SD) 6.8 (2.3) 6.9 (2.3) 6.7 (2.4)

 Baseline leg pain, mean (SD) 6.3 (2.8) 6.2 (2.8) 6.5 (2.7)

 Baseline  PASSa for function, n (%) 58 (5.2) 29 (3.8) 29 (9.7)

 Baseline  PASSa for back pain, n (%) 102 (9.1) 68 (8.4) 34 (11.4)

 Baseline  PASSa for leg pain, n (%) 192 (17.2) 152 (19.0) 40 (13.4)
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SD standard deviation, ASA American society of anesthesiologists, CLBP chronic low back pain, DDD 

degenerative disc disease, FBSS failed back surgery syndrome, TLIF transforaminal lumbar interbody 

fusion, PLIF posterior lumbar interbody fusion, ALIF anterior lumbar interbody fusion, ODI Oswestry 

Disability Index, COMI Core Outcome Measures Index, MCID Minimum clinically important difference, 

PASS Patient acceptable symptom state
a PASS (Patient acceptable symptom state) was defined as a ODI of ≤ 22, COMI of ≤ 3.05, or a NRS of ≤ 3 

for back and leg pain
b MCID (Minimum clinically important difference) was defined as a 15-point or greater improvement in 

ODI or a 2.2-point or greater improvement in COMI (function), or as a 2-point or greater improvement in 

NRS pain scores at 12 months compared to baseline, respectively

Table 1  (continued) Centre Overall (pooled) Development cohort External 

validation 

cohort

12-month patient-reported outcome

 12-month ODI, mean (SD) 21.6 (16.5) 21.6 (16.7) 21.6 (16.1)

 12-month COMI, mean (SD) 3.4 (2.9) 3.4 (2.9) –

 12-month back pain, mean (SD) 3.1 (2.4) 3.1 (2.4) 3.1 (2.4)

 12-month leg pain, mean (SD) 2.5 (2.5) 2.5 (2.5) 2.5 (2.6)

 12-month  MCIDb for function, n (%) 761 (68.3) 563 (74.4) 198 (66.4)

 12-month  MCIDb for back pain, n (%) 862 (77.3) 640 (80.2) 222 (74.5)

 12-month  MCIDb for leg pain, n (%) 796 (71.4) 564 (71.2) 232 (77.9)

Table 2  Discrimination and calibration metrics of the machine learning-based prediction models for clinically relevant improvement

Metrics are provided with bootstrapped 95% confidence intervals based on 1000 samples with replacement. Reported development performance 

is the resampled cross-validation performance

MCID Minimum clinically important difference, GLM generalized linear model, AUC  area under the curve, PPV positive predictive value, NPV 

negative predictive value

Metric Models for improvement

Functional impairment [ODI/COMI] 

(MCID)

Back pain (MCID) Leg pain (MCID)

Development External validation Development External validation Development External validation

Model Elastic net-regularized GLM Elastic net-regularized GLM Elastic net-regularized GLM

Dichotomization 

cutoff

0.75 0.85 0.80

No. observations 730 269 724 264 640 258

No. input variables 10 8 8

Sampling – – – – – –

Discrimination

 AUC 0.75 (0.73–0.76) 0.67 (0.59–0.74) 0.71 (0.69–0.73) 0.72 (0.64–0.79) 0.72 (0.71–0.73) 0.64 (0.54–0.73)

 Accuracy 0.70 (0.69–0.71) 0.61 (0.55–0.67) 0.68 (0.66–0.69) 0.70 (0.64–0.75) 0.74 (0.73–0.74) 0.71 (0.65–0.77)

 Sensitivity 0.70 (0.68–0.72) 0.59 (0.52–0.66) 0.68 (0.67–0.69) 0.72 (0.65–0.77) 0.77 (0.76–0.78) 0.76 (0.71–0.82)

 Specificity 0.70 (0.68–0.72) 0.66 (0.55–0.77) 0.63 (0.60–0.66) 0.64 (0.51–0.78) 0.58 (0.56–0.60) 0.42 (0.26–0.57)

 PPV 0.88 (0.87–0.89) 0.81 (0.74–0.88) 0.91 (0.91–0.92) 0.90 (0.85–0.94) 0.90 (0.89–0.91) 0.88 (0.83–0.92)

 NPV 0.43 (0.41–0.45) 0.39 (0.31–0.48) 0.26 (0.24–0.27) 0.34 (0.24–0.44) 0.34 (0.33–0.36) 0.23 (0.14–0.33)

F1 score 0.54 (0.52–0.55) 0.49 (0.41–0.58) 0.37 (0.34–0.39) 0.45 (0.34–0.54) 0.43 (0.42–0.45) 0.30 (0.19–0.41)

Calibration

 Intercept 0.00 (− 0.05–0.06) − 0.07 (− 0.36–

0.22)

− 0.00 (− 0.07–

0.07)

− 0.38 (− 0.70–

0.06)

0.00 (− 0.04–0.05) 0.14 (− 0.22–0.51)

 Slope 0.89 (0.84–0.95) 0.63 (0.34–0.93) 0.86 (0.77–0.94) 1.10 (0.62–1.57) 0.84 (0.79–0.89) 0.49 (0.12–0.86)
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Performance evaluation

Detailed model performance, including resampled develop-

ment and external validation performance, is summarized 

in Table 2, and standardized model coefficients—enabling 

judgement of variable importance—are provided in Table 3. 

Calibration plots generated from the external validation 

cohort are shown in Fig. 1 including resampled training 

calibration, external validation calibration, and calibration 

from the Khor et al. model applied to the FUSE-ML external 

validation cohort. A detailed performance comparison with 

the Khor et al. model is available in Supplementary Table 2.

Prediction of functional impairment

At external validation, the FUSE-ML prediction model for 

clinical success in terms of functional impairment (ODI/

COMI) achieved an AUC of 0.67 (95% CI: 0.59–0.74), sen-

sitivity of 0.59 (95% CI: 0.52–0.66) and specificity of 0.66 

(95% CI: 0.55–0.77). In terms of calibration, we measured a 

calibration intercept of − 0.07 (95% CI: − 0.36–0.22) and a 

calibration slope of 0.63 (95% CI: 0.34–0.93). When study-

ing the standardized model coefficients, it was clear that pre-

dictions were mostly driven by greater baseline ODI/COMI 

scores, age, and lower back pain severity preoperatively, and 

application of a lateral surgical approach. The Khor et al. 

model achieved an AUC of 0.71 (95% CI: 0.64–0.77) on the 

same external validation cohort.

Prediction of back pain severity

Prediction of clinical success in terms of back pain sever-

ity in the external validation dataset was achieved with an 

AUC of 0.72 (95% CI: 0.64–0.79), sensitivity of 0.72 (95% 

CI: 0.65–0.77) and specificity of 0.64 (95% CI: 0.51–0.78). 

The calibration intercept was − 0.38 (95% CI: − 0.70–0.06) 

and slope, 1.10 (95% CI: 0.62–1.57). Higher baseline back 

pain and a lateral surgical approach were assigned the high-

est importance by the model. The Khor et al. model dem-

onstrated an AUC of 0.73 (95% CI: 0.65–0.79) at external 

validation.

Prediction of leg pain severity

At external validation, long-term leg pain severity was pre-

dicted with an AUC of 0.64 (95% CI: 0.54–0.73), sensi-

tivity of 0.76 (95% CI: 0.71–0.82) and specificity of 0.42 

(95% CI: 0.26–0.57). The calibration intercept was 0.14 

(95% CI: − 0.22–0.51) and calibration slope, 0.49 (95% CI: 

− 0.12–0.86). Looking at model coefficients, it appeared that 

greater baseline leg pain, a posterior surgical approach, and 

the absence of prior thoracolumbar surgery contributed most 

to the predictions of leg pain. The Khor et al. model had a 

corresponding AUC of 0.63 (95% CI: 0.54–0.71).

Model deployment

The prediction model was integrated into a freely available, 

web-based application accessible at https:// neuro surge ry. 

shiny apps. io/ fuseml/.

Discussion

The rationale of the FUSE-ML study was to develop and 

thoroughly externally validate clinical prediction models 

for 12-month MCID in ODI/COMI, back pain, and leg 

pain in patients undergoing lumbar fusion for degenerative 

disease of the lumbar spine. Using data from 11 centres 

in 7 countries, a web-app was generated. After thorough 

external validation, we found that the fully trained clinical 

prediction models demonstrated only moderate ability to 

Table 3  Model coefficients of the fully trained models

Since centring and scaling were applied to the training data, the mag-

nitude of the coefficients corresponds to variable importance

MCID minimum clinically important difference, ASA American soci-

ety of anesthesiologists, CLBP chronic low back pain, DDD degen-

erative disc disease, TLIF transforaminal lumbar interbody fusion, 

PLIF Posterior lumbar interbody fusion, ODI Oswestry Disability 

Index, COMI Core Outcome Measures Index

Model coefficients (MCID)

Variable Function Back pain Leg pain

Model intercept 1.399 2.021 1.828

Male gender 0.214

Age 0.291

Height 0.190

ASA score ≥ 3  − 0.188

Opioid analgetic use  − 0.156

Prior thoracolumbar surgery  − 0.206  − 0.293

Indication(s) for surgery

 Lumbar disc herniation 0.157

 Radiculopathy  − 0.131  − 0.126

 Discogenic CLBP / DDD  − 0.238

Surgical index level(s)

 L4/L5  − 0.160

 L5/S1  − 0.211

Surgical technique

 TLIF  − 0.139 0.284 0.135

 PLIF 0.169 0.271 0.299

 Lateral 0.347 0.666

Baseline patient-reported outcome

 Baseline ODI/COMI 1.026

 Baseline back pain  − 0.340 0.725  − 0.187

 Baseline leg pain 0.812

https://neurosurgery.shinyapps.io/fuseml/
https://neurosurgery.shinyapps.io/fuseml/
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dichotomize patients who did and those who did not benefit 

from lumbar fusion surgery (discrimination performance). 

Calibration performance—the reliability of the predicted 

probabilities—was fair. Generally, our models performed 

comparably well to those published previously by Khor et al. 

although our models appeared to require only around half of 

the inputs to achieve the same performance, which stream-

lines implementation.

Our findings, coupled with those reported in the literature 

for patients with degenerative disease of the lumbar spine, 

demonstrate that the accurate prediction of long-term post-

operative PROMs in this patient population remains remark-

ably difficult, and that clinical prediction models should only 

Fig. 1  Calibration curves of the three clinical prediction models 

for function, back pain, and leg pain on the resampled development 

cohort (a–c), cross-validation performance), the external validation 

cohort (d–f), FUSE-ML models at external validation), as well as 

those generated from the performance of the Khor et al. [14] predic-

tion model applied to the FUSE-ML external validation cohort (g–i). 

The predicted probabilities for functional impairment (ODI/COMI) 

are distributed into five equally sized groups and contrasted with the 

actually observed frequencies of functional impairment. Calibration 

intercept and slope are calculated. A perfectly calibrated model has 

a calibration intercept of 0 and slope of 1. Metrics are provided with 

bootstrapped 95% confidence intervals
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have a minor role in clinical decision-making. It is well-

known that even expert surgeons can overestimate the ben-

efits and underestimate complications of certain procedures 

[24]. Clinical outcomes in degenerative disease of the lum-

bar spine and spinal fusion—and in particular CLBP, FBSS, 

and low-grade spondylolisthesis—are known as distinctly 

difficult to anticipate, and few independent predictors with 

a sufficiently large effect size are known [5, 14, 25]. Tak-

ing the example of discogenic CLBP, all recent randomized 

studies show that fusion surgery—overall—does not produce 

significantly better results than conservative treatment [4]. 

While surgery may not provide a benefit compared to con-

servative treatment for CLBP in the general patient popu-

lation, there are subsets of patients that will truly benefit 

[5, 6]. Rigorous patient selection is the key to success in 

degenerative spine surgery.

In theory, clinical prediction models can provide valu-

able insights, since they enable calculation of individual-

ized likelihoods of improvements or complications for each 

patient—as opposed to informing patients about a general-

ized treatment success rate that is based on historical data 

in the literature [26]. The hopes of being able to predict the 

effects of fusion surgery more robustly by generating “objec-

tive” risk–benefit profiles for each individual patient have 

not been fulfilled to date [26]. Janssen et al. [27] achieved 

an externally validated AUC of 0.68 for prediction of MCID 

in the predominant pain complaint using a nomogram. Apart 

from this nomogram, to our best knowledge, the only other 

externally validated prediction tools that predict pain and 

functional outcomes for this population are the prediction 

models of Khor et al. [14]. The latter was developed using 

the data of 1965 adult lumbar fusion surgery patients col-

lected from a registry of fifteen Washington state hospitals. 

This model has recently been externally validated at a single 

Dutch centre, demonstrating AUCs of 0.71–0.83, sensitivi-

ties of 0.64–1.00, and specificities of 0.38–0.65, with fair 

calibration. [12] This analysis demonstrated that the discrim-

ination and calibration performance generalized relatively 

well to a new population, although this level of performance 

unfortunately still would not allow any reliable decision sup-

port in actual clinical practice. FUSE-ML is largely based 

on the same inputs as those used in the Khor et al. [14] tool, 

although we attempted to improve upon the predictions by 

introducing surgical variables. In our extensive, multina-

tional external validation study, the FUSE-ML models dem-

onstrated only moderate discrimination and calibration, both 

of which appeared similar to the performance of the Khor 

et al. models when applied to our external validation dataset. 

Still, judging by these performance measures, these models 

would likely not be very helpful in clinical practice. The dis-

crimination and calibration performance of expert surgeons 

has not been established as yet for lumbar fusion in degen-

erative disease. As long as these metrics remain unknown 

and as long as comparative or randomized studies do not 

demonstrate superiority of a decision-making approach inte-

grating machine learning, these supportive tools ought to be 

used only adjunctively and with great caution in this patient 

population.

Even with the considerable amount of development data 

available to us for FUSE-ML, and the application of, e.g. 

regularization techniques, outcomes after lumbar spinal 

fusion remained difficult to predict with high reliability. One 

likely contributing factor is the input data: while we included 

a wide range of relevant socio-demographic, disease-spe-

cific, and surgical variables, the addition of imaging data for 

radiomic analysis and the inclusion of psychological factors 

could potentially improve predictions. The rationale behind 

the current approach was to only include few simple, preop-

eratively and easily available variables, with the intention of 

keeping prediction tools simple, accessible, and quick to use. 

This goal was also achieved: we demonstrated that our mod-

els generalized to an external validation dataset as approxi-

mately equally well as previously published, robust models 

did—although the FUSE-ML models appeared to enable 

the same level of performance with only around half of the 

inputs required. [14] More parsimonious models, rather than 

more complex models that require hard-to-collect inputs, are 

more prone to overfitting and may not be interpretable at all 

(“black box”) [28, 29].

Still, even generally—in other patient populations—there 

is little to no high-quality evidence that clinical prediction 

models have any measurable clinical impact in their cur-

rent state. A simulation analysis by Joshi et al. [30] found 

that only if applied on a population scale, prediction models 

in adult spinal deformity may overall decrease healthcare 

costs by better redirection of resources. Prospective clini-

cal studies evaluating the real-world impact of integrating 

decision support tools into practice are currently not avail-

able. All of the above indicates a need for improving the 

methods, performance, and in silico/in vivo validation of 

clinical prediction models. However, caution must be exer-

cised: the publication of clinical prediction models has 

increased exponentially over the past few years, as a result 

of the equally exponential access to computing power and 

“big data”. [8] Exactly because it has become relatively easy 

to generate prediction models, many of these publications 

fall into common methodological ML “traps”, which can 

catch out reviewers of expert medical journals. An important 

notion is the fact that it is relatively easy to generate predic-

tion models with seemingly high-performance measures if 

certain concepts are disregarded—such as class imbalance, 

data leakage, adequate resampling, and proper validation, 

among others [8, 11]. Furthermore, the vast majority of pub-

lished models have not undergone external validation and 

would very likely perform considerably worse in external 

validation studies [10, 13]. A recent review by Lubelski et al. 
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highlighted the vast methodological deficits in the spinal 

prediction modelling literature [10]. Lastly, the hopes that 

ML may help improve predictive performance compared to 

“traditional statistical modelling” have not been fulfilled, 

as a systematic analysis by Christodoulou et al. concludes 

[31]. ML certainly has advantages when analysing highly 

dimensional data, imaging data, or in natural language pro-

cessing and time series analysis, but for “simple” tabulated 

clinical data as is the case with most prediction models, the 

advantages of ML over, e.g. “traditional” generalized linear 

models likely, do not outweigh their drawbacks [8, 31].

We do not recommend the use of clinical prediction mod-

els—even those with very high-performance metrics—as 

absolute “red light” or “green light” indicators, but advo-

cate carefully balancing all available clinical data against 

patient wishes and expectations as well as clinical expertise. 

There is a need for improved clinical prediction models in 

spinal fusion for degenerative disease of the lumbar spine, 

and development will require major international collabora-

tive efforts to collect larger amounts of data and to enable 

thorough validation of developed models. The FUSE-ML 

collaborators will continue investigating approaches to 

improving patient selection in this population.

Strengths and limitations

Our study used data from 11 centres in different countries, 

with unified variable definitions. The models have been 

made available as a web-based tool. Different degenerative 

spinal diseases were included. Consequently, our models 

may perform better for more common pathologies, whereas 

performance may be limited for the less prevalent ones. Con-

versely, this heterogeneity in training data may equip the 

models for the heterogenous presentations of spinal degen-

erative disease. We also directly compare the performance 

of our models to the current “benchmark” model in spinal 

fusion surgery and demonstrate approximate equivalence of 

our performance at external validation, as well as fair cali-

bration of our models.

Our data consisted of a mix of retrospectively and pro-

spectively collected data from institutional registries. Many 

definitions of MCID—and, in the same vein, of PASS—

exist, and their choice determines the interpretation of 

generated predictions [15]. We chose a MCID based on 

robust MCID studies[17–19], and we excluded patients 

unlikely to improve by determining a minimally sympto-

matic state (PASS) based on thresholds from analyses that 

were anchored to patient-rated symptom satisfaction [16, 

20, 21]. Our prediction tool does not include measures of 

quality of life and psychological factors, which may improve 

performance. Learning techniques rely on large amounts of 

development data and often improve their performance lin-

early with an increasing number of training samples. Thus, 

although we included a relatively large cohort of patients, 

further training with a larger sample is likely to improve the 

performance and generalization of the models. We excluded 

patients under the age of 18 and those with spinal deformity. 

Our models may not necessarily generalize when extrapolat-

ing to these patients.

Conclusions

With the great heterogeneity of outcomes after lumbar spinal 

fusion for degenerative disease and the countless physical 

and psychological factors that may modulate the effects of 

procedures, identifying those patients most likely to ben-

efit from surgical treatment in an objective fashion remains 

difficult. Although assistive clinical prediction models can 

help in quantifying potential benefits of surgery and the 

externally validated FUSE-ML tool (https:// neuro surge ry. 

shiny apps. io/ fuseml) may aid in individualized risk–ben-

efit estimation, truly impacting clinical practice in the era 

of “personalized medicine” will necessitate improvements 

in reliability of clinical prediction models in this patient 

population. When thoroughly externally validated, current 

approaches based on tabulated clinical data fail to break the 

performance barrier required to prevent ineffective surgery 

or to allow meaningful decisions that are at least partially 

informed by such clinical prediction models.
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