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Abstract
This paper investigates a multivariate, dynamic, continuous-time optimal consump-
tion and portfolio allocation problem when the investor faces recursive utilities. The
economy we are considering is described through both diffusion and discontinuities
in the dynamics. We derive an approximated closed-form solution to optimal rules
by exploiting standard dynamic programming techniques. Our findings are manifold.
First, we obtain dynamic optimal weights, inversely proportional to volatility. Second,
we show that both co-jumps frequency and intensity play a crucial role, as they con-
siderably limit potential losses in the investors’ wealth. Third, we prove that jumps
in precision reinforce the effect of jumps in price, further reducing optimal alloca-
tion. Finally, we highlight how co-jumps may influence investors’ choices regarding
intertemporal consumption.

Keywords Asset allocation · Consumption · Stochastic volatility · Wishart process ·
Co-jumps · Recursive preferences · Dynamic programming

JEL Classification C61 · G11 · G12

1 Introduction

One of the critical dimensions in Finance is to tackle the long-standing issue of
uncertainty in decision-making, namely to comprise the investors’ behaviour among
variables describing the economy. From a mathematical perspective, defining the
agent’s preference for information is equivalent to providing a suitable form of the
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(expected) utility to maximize the latter. This paper studies a multivariate, dynamic,
continuous-time optimal consumption and portfolio allocation problem, assuming that
the economy is described in an incomplete market by diffusion and discontinuities in
the dynamics and that investors are represented through recursive preferences.
The literature has produced a considerable number of contributions within the port-
folio decisions’ framework, primarily when the investors’ preferences only rely upon
their risk aversion, see e.g. Lazrak (2004). Motivated by tons of empirical findings,
see e.g. Duffie et al. (2000) among others, several authors generalized the pioneering
work of Merton (1971) in incomplete markets: to name but a few, Liu (2007) exploits
affine models to face volatility risk, Buraschi et al. (2010) also consider stochastic
correlation in a multivariate framework, while Liu et al. (2003) provide a closed-form
formula for optimal portfolio allocation by assuming discontinuities in the state vari-
able dynamics: surprisingly, the optimal weights result to be independent of both the
instantaneous volatility and the long-runmean level, implying a static allocationmech-
anism. The latter shortcoming has been overcome in Oliva and Renò (2018), where a
Markowitz-compliant approximate solution is furnished for a Wishart model. In Jin
and Zhang (2012), the authors examine a multi-asset model with constant volatility
when the price can jump, also in the presence of ambiguity. Very recently, Jin et al.
(2021) investigate the impact of tail risk on portfolio selection, showing that the pres-
ence of jump ambiguity might imply wealth losses. In a complete market framework,
the optimal portfolio allocation in bank account, stock and non-redundant derivatives
within a stochastic volatility framework can be derived, both in the absence and in the
presence of jumps, see e.g. Liu and Pan (2003) and Branger et al. (2008), respectively.
In a similar context, Cheng and Escobar-Anel (2021) solve a commodity-based port-
folio allocation problem with separable preferences, including ambiguity, but without
considering jump effects. The most common choice in the economic literature is to
consider the so-called separable preferences where CRRA is undoubtedly the most
famous and widely used, due to its mathematical convenience. CRRA shares several
interesting features, such as the scale invariance and the dynamic consistency, see
e.g. Wakker (2008). On the other hand, when consumption is included among the
economic variables, a time-separable utility such as CRRA suffers from the drawback
of forcing the parameters characterising both investment and consumption (i.e., risk
aversion and intertemporal elasticity of substitution of consumption, respectively) to
undergo an inverse proportionality relationship, see e.g. Weil (1989).
In this perspective, the literature has long questioned what the ideal solution might be,
capable of providing analytical support for the observable investors’ behaviour. Hence,
decision-makers might consider suitable utility functions to disentangle the investors’
risk aversion from the growth rate of consumption reactivity to the interest rate trend.
To this end, the non-separable preferences have been introduced in the literature. As
stressed in Kreps and Porteus (1978), even relaxing the separability assumption, such
preferences continue to be scale-invariant and allow to use dynamic programming tech-
niques to solve any associated optimisation problem. For these reasons, in the present
paper, we focus on a particular family of non-separable preferences, known as stochas-
tic differential utilities (SDU), introduced in Epstein and Zin (1989) for discrete-time
models, and generalised in Duffie and Epstein (1992) in a continuous-time framework.
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With this in mind, Kraft et al. (2013); Xing (2017); Kraft et al. (2017); Pu and Zhang
(2021) provide suitable verification theorems for the associated Bellman equations
used to solve some consumption-portfolio decision problems in diffusive markets. In
contrast, Chen et al. (2021) examine the role played by information in continuous-time
optimal consumption-portfolio problems when stock returns are unobservable. Some-
time earlier, Chacko and Viceira (2005) introduce the precision process, intended as
the inverse of volatility, to obtain dynamic optimal rules. Within the same framework,
Faria and da Silva (2016) exhibit a small impact of the elasticity of intertemporal sub-
stitution of consumption (EIS) on optimal allocation, also in the presence of ambiguity.
This paper is part of the research strand dealing with optimal consumption-allocation
problems when recursive utilities describe investors’ preferences. Differently from the
extant literature, we assume an economy allowing for discontinuities in both the stock
price and the state variable in a multivariate framework. More precisely, we intend to
model the avowed empirical property such that peaks in volatility levels correspond to
drops in the asset prices, see e.g. Eraker (2004); Todorov and Tauchen (2011); Bandi
and Renò (2016). Moreover, since the changes mentioned above in price and volatility
occur simultaneously, we dub them co-jumps, and introduce a unique counting pro-
cess, typically a non-compensated Poisson, driving the non-diffusive component in
the dynamics.
The main goal of the present paper is to quantify the impact of jumps on optimal con-
sumption, as well as on the proportion of wealth invested in the risky asset, within the
non-separable preferences framework. Such aforementioned optimal fractions share
some important theoretical properties: first, the portfolioweights depend on the volatil-
ity through an inverse proportionality relationship. This is due to the choice to consider
a non-affine model by using the precision process instead of the volatility one, as in
Chacko andViceira (2005). Furthermore, the aforementioned dependence on volatility
makes the optimal weights genuinely dynamic, and guarantees a portfolio rebalanc-
ing after a market crash. Our theoretical results are obtained by exploiting classical
dynamic programming techniques. It is worth noting that co-jumps’ presence produces
a strongly non-linear Hamilton-Jacobi-Bellman equation, the latter being unable to be
solved in an analytical form. Hence, we impose a linearisation condition for the jump
component, as in Ascheberg et al. (2016) andOliva and Renò (2018), and a (log-)linear
expansion for the normalised aggregator of current consumption and continuation util-
ity, as in Chacko and Viceira (2005), ensuring an approximate solution. We further
analyse the economic implications of our theoretical results on real data, taking into
account the investors’ characteristics. We first show that co-jumps’ frequency and
intensity play a crucial role, serving as a further hedging tool. In detail, we find out
that: (i) infrequent jumps mainly influence the risky allocation, (ii) the impact of the
precision-jump size is less relevant than the price ones, although it is not negligi-
ble, (iii) the most significant effect on optimal allocation is due to frequent and large
jumps in price, instead of rare jumps of the same magnitude, and (iv) the presence
of co-jumps increases the consumption-wealth ratio for investors who are extremely
willing to substitute consumption over time, hence the more prominent the investor’s
propensity to save, the stronger this growth is. Finally, we measure the performances
of the optimal rules through a suitable economic metric, namely the Wealth Equiva-
lent Loss (WEL). Our findings show that investors who do not believe in the need to
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incorporate co-jumps can suffer significant losses in their investments. Furthermore,
as the results proposed in this paper provide analytical but approximate solutions, we
also measure the effectiveness of such approximations on possible investment losses.
We perform a numerical study on real data when we can solve the problem without
approximation; our findings guarantee that the proposed strategy is comparable to the
true one, making our proposal reliable even in the most general case.
The paper is organized as follows. In Sect. 2 we describe our model and the investment
problem we are going to solve. The main theoretical results are provided in Sect. 3.
In Sect. 4 we provide some numerical experiments on real data, both for a fund of
hedge funds and for a single index, to show how the presence of co-jumps might affect
the investment choices. In Sect. 5 we measure the reliability of approximate solutions
of the optimal allocation and consumption problem. Section 6 concludes. Technical
details and mathematical proofs are available in the Appendices.

2 The investment problem and the financial setup

Let
(
�,F , {Ft }t ∈ [0,T ],P

)
a filtered probability space. Throughout the paper, we

denote by GLN (R) the set of invertible matrices in R
N×N and by SN (R) (resp.,

S+
N (R)) the set of the symmetric matrices (resp., the set of the symmetric and positive

definite matrices) in RN×N .

We first consider the process M = {Mt }t ∈ [0,T ] representing the riskless asset, such
that

dMt

Mt
= rdt, t ∈ [0, T ] ,

where r ∈ R is the instantaneous rate of return. We also consider N risky assets
St = (St,1, . . . , St,N )′ ∈ R

N×1 and assume a multivariate stochastic volatility model,
where we exploit the inverse of the instantaneous variance-covariance matrix through
a Wishart process. Such a state variable is dubbed co-precision. The dynamics are
given by
⎧
⎨

⎩
dSt = diag(St )

[
αdt +

√
Y−1
t d Zt + JdN (λ)t

]

dYt = (
��′ + KYt + Yt K ′) dt + √

Ytd Z̄t Q + Q′ (d Z̄t
)′ √

Yt + ξ(Yt )dN (λ)t

,

(2.1)

for any t ∈ [0, T ]. The dynamics of the risky assets include the square matrix
diag(St ), with St in the diagonal and 0 on the off-diagonal elements, the drift
α ∈ R

N×1 and the jump amplitude J ∈ R
N×1. A vector of Wiener processes

Zt ∈ R
N×1 drives the diffusive part and a non-compensated Poisson process N (λ)t

with intensity λ ∈ R describes the discontinuous component.
The Wishart stochastic (co-)precision includes K , Q ∈ R

N×N , while � ∈ GLN (R)

is such that ��′ = aQQ′, with a ∈ R and a > N − 1, ensuring that Yt is positive
definite and mean-reverting at each time, see e.g. Bru (1991). The matrix K represents
the speed of the mean-reversion of the co-precision to its mean-reversion level Ȳ ,

which satisfies
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aQQ′ + KȲ + Ȳ K ′ = 0 .

As highlighted in Oliva and Renò (2018), we expect the matrix K to be negative semi-
definite. Thediffusive part ofYt is drivenby amatrix ofWiener processes Z̄t ∈ R

N×N .

The Wiener processes are correlated according to

Zt = Z̄tρ + √
1 − ρ′ρ Z̃t , (2.2)

where ρ ∈ R
N×1, Z̃t is a Wiener process in R

N×1 and the elements of Z̃t and Z̄t

are all independent among them. Finally, we introduce a jump component for Y ,

driven by the same Poisson process appearing in the dynamics of the risky assets,
with a precision-jump amplitude ξ(Yt ) ∈ SN (R). Throughout the paper, we assume a
constant precision jump size, with

Y + ξ(Y ) ∈ S+
N (R) ,

for all Y ∈ S+
N (R).

We assume that the investor’s wealth W = {Wt }t ∈ [0,T ] is apportioned among the
risk-free asset M and the stock S, also considering the related consumption C =
{Ct }t ∈ [0,T ], so that we have

dWt

Wt
= w′

t
dMt

Mt
+ π ′

t
dSt
St

− Ct

Wt
, (2.3)

where πt ∈ R
N×1 is the vector of wealth invested in the risky assets at time t . We

define by 1 the N × 1 vector of ones, so that the proportion of wealth invested in the
riskless asset is given by w′

t = 1− π ′
t1. Replacing the dynamics (2.1) in (2.3), we get

the following budget constraint

dWt

Wt
= [

r + π ′
t (α − r1)Wt − Ct

]
dt + π ′

t

√
Y−1
t d Zt + π ′

t JdN (λ)t . (2.4)

Following Chacko and Viceira (2005), we consider a Duffie-Epstein recursive utility
function, see e.g. Duffie and Epstein (1992), to describe investors’ preferences, namely
we introduce a normalized aggregator of current consumption and continuation utility
of the form

f (C, V ) = β

1 − 1
ψ

(1 − γ )V

⎡

⎣
(

C

((1 − γ )V )
1

1−γ

)1− 1
ψ

− 1

⎤

⎦ , (2.5)

such that the investment problem to be solved is

V (t,W , y) = max{πt ,Ct }
E

[∫ +∞

t
f (Cs, Vs)ds

∣∣∣∣Ft

]
, (2.6)
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with (2.3) as intertemporal budget constraint. Eq. (2.5) depends on three parameters,
namely the rate of time preference β, the elasticity of intertemporal substitution of
consumption (EIS) ψ, and the risk-aversion parameter γ.

3 A closed-form formula for optimal allocation and consumption

To find a solution to the intertemporal optimization problem (2.6) we use standard
dynamic programming techniques, so that we consider the associated Hamilton-
Jacobi-Bellman equation (HJB, from now on), given by

0 = max
πt ,Ct

{
f (C, V ) + ∂V

∂t
+ ∂V

∂W

(
π ′
t (α − r1) + r

)
Wt − Ct

∂V

∂W

+ Tr
[(

��′ + KYt + Yt K
′)∇V

]

+ 1

2
W 2

t π ′
t Y

−1
t πt

∂2V

∂W 2 +
(
2πt∇Q′ρ ∂V

∂W

)
Wt + 1

2
Tr(4Yt∇Q′Q∇)V

+ λE
[
V (Wt + π ′

t JWt ,Yt + ξ) − V (Wt ,Yt )
] }

, (3.1)

where ∇ :=
(

∂
∂Yi, j

)

1≤i, j≤N
, and the expectation in the last term of (3.1) is over the

jump sizes. It is worth noting that, since we are considering constant values for J and
ξ, in what follows the expectation in (3.1) will be unnecessary. The HJB equation is
non-linear due to the aggregator f and the jump component. Besides, the non-linearity
mentioned earlier implies the absence of an analytical solution, apart from some par-
ticular cases, see Chacko and Viceira (2005) for further details. Therefore, since we
would like to carry our analyses on while remaining as general as possible, we propose
amethodology for determining an analytical but approximate solution. To achieve this,
we impose two restraints. Concerning the aggregator f , we proceed according to the
approach proposed in Chacko andViceira (2005), where the consumption-wealth ratio
is approximated using an appropriate log-linear expansion around the unconditional

mean c − w := E

[
Ct
Wt

]
, see Judd (1998) for further details. Concerning the jump

component, we exploit a first-order Taylor expansion around Jπt = 0, so that

(1 + Jπt )
1−γ = 1 + (1 − γ )Jπt + o

(
J 2π2

t

)
, (3.2)

and ignore the term o
(
J 2π2

t

)
, see Oliva and Renò (2018) for an in-depth analysis.

We show the reliability of such approximations in Sect. 5. We set H = 1−γ
1−ψ

and guess
that the solution to (3.1) is of the form

V (t,W , y) = exp {−H (Tr(FtYt ) + Gt )} W
1−γ
t

1 − γ
, (3.3)

where the matrix function Ft ∈ SN and the function G ∈ R have to be identified.
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Now, we are ready to prove the following

Proposition 3.1 Consider the investment problem (2.6) withψ �= 1 and the associated
HJB equation (3.1). Then, for t ∈ [0, T ], the value function is given in (3.3), while
the optimal consumption and portfolio rules are given by

Ct

Wt
= βψ exp {− (Tr(FtYt ) + Gt )} , (3.4)

πt = Yt

(
(α − r1)

γ
+ 2HFt Q′(−ρ)

γ
+ λJe−HTr(Ft ξ)

γ

)

=: Yt Bt , (3.5)

where Bt ∈ R
N×1 and F ∈ SN , G ∈ R satisfying the following system of ODEs

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ḟt = h1Ft + (1 − ψ)(α − r1)B ′
t − Ft K − Ft K ′ − γ (1−γ )

2H Bt B ′
t − 2(1 − γ )Ft Q′ρB ′

t

−2Ft Q′QFt + λ
(1−γ )
H e−HTr(Ft ξ) J B ′

t , FT = 0

Ġt = −h0 + βψ − h1 (ψ log(β) + Gt ) + (1 − ψ)r + λ
H

(
e−HTr(Ft ξ) − 1

)

+Tr(Ft��′), GT = 0
(3.6)

with h1 := exp
{
c − w

}
and h0 := h1 − h1 log(h1).

Proof See Appendix A.1. 	

An inspection of Proposition 3.1 shows that the optimal portfolio allocation, given
by (3.5), comprises three terms: more precisely, (α−r1)

γ
is the myopic component,

2HFt Q′(−ρ)
γ

is the intertemporal hedging demand, and λJe−HTr(Ft ξ)

γ
is the jump hedg-

ing demand. The first one depends on both the excess return and the risk-aversion
parameter and describes the agents who completely ignore the multi-period nature of
the investment. The latter is incorporated in the second term, relying on the invest-
ment opportunities σ, and the correlation between returns and volatility. The last term
quantifies the hedging against tail risk and is related to the jump frequency λ and mag-
nitudes J and ξ. While the absence of idiosyncratic risk ensures a positive myopic
component, we can discuss the sign of the remaining terms. For the intertemporal
hedging demand, we expect a negative correlation structure for correlated shocks to
price returns and their variance-covariance matrix, since variances and covariances
typically increase while prices decline. Assuming γ > 1, we distinguish two cases
according to the value of EIS. For ψ < 1, we have H < 0, then the impact of the
intertemporal hedging demand over the optimal consumption will be positive (resp.,
negative) when the function F is greater (resp., smaller) than zero. Vice versa, for
ψ > 1, we have H > 0, thus the impact of the intertemporal hedging demand over
the optimal consumption will be positive (resp., negative) when the function F is
smaller (resp., greater) than zero. However, an in-depth analysis of Eq. (3.6) for F
shows that Ft < 0, for all t ∈ [0, T ], if ψ < 1, so that the intertemporal hedging
demand curtails the optimal allocation, see Appendix B for further details. Concerning
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the jump hedging demand, we observe that its sign only depends on the price-jump
amplitude, being positive (resp., negative) for J > 0 (resp., J < 0). On the other
hand, the precision-jump component and the jump intensity affect the magnitude of
the reduction/increase of the optimal allocation. More importantly, each component
in (3.5) is proportional to the instantaneous precision, meaning that the allocation will
reduce during volatile periods, reconciling the Markowitz intuition.
Wewould like to point out that, although it is taken for granted thatmodelling precision
is equivalent to modelling variance (by assuming a 3/2-dynamics), this would still not
be sufficient to overcome the problem of the non-dynamic nature of the investment.
In the affine case, the optimal allocation depends neither on the long-run level nor
the instantaneous volatility because of the choice to set the variance-risk premium
proportional to volatility in the drift term. Therefore, using precision to model the
state variable is not a trivial mathematical gimmick; instead, it is a requirement to
obviate the imperative to impose a constraint on the drift architecture.
In addition, our investment strategy implies that, after a precision jump of size ξ,

investors will change their allocation in the risky asset from Yt St to (Yt + ξ)St . Since
we impose a negative precision-jump size (to comply with the empirical evidence of
positive peaks in volatility behind market crashes), we witness a reduction of risky
investments after a market collapse, consistently with the current market practice.
Such a circumstance is extensively discussed in Moreira and Muir (2017), where the
authors argue that the mean-variance trade-off weakens in high-volatility regimes.
Finally, we provide some comments regarding the optimal consumption (3.4). As in
Chacko and Viceira (2005), the log consumption-wealth ratio is an affine function
of instantaneous precision. Furthermore, the role of jumps on optimal consumption
cannot be directly inferred from (3.4), even though they affect Ct through functions
Ft and Gt , the latter being evaluated numerically.
From Proposition 3.1 we can obtain an approximated solution to the investment prob-
lem (2.5) when ψ = 1. In this case, the aggregator simplifies as

f (C, V ) = β(1 − γ )V

(
ln(C) − 1

1 − γ
ln((1 − γ )V )

)
. (3.7)

Hence, we have the following

Corollary 3.2 Under the hypotheses of Proposition 3.1 and assuming that (3.7) holds
true, the value function solving the investment problem (2.6) is

V (t,W , y) = exp
{
Tr(F̃tYt ) + G̃t

} W 1−γ
t

1 − γ
, (3.8)

where F̃t , G̃t are deterministic functions satisfying the following system of ODEs
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̃Ft = β F̃t − (1 − γ )(α − r1)B̃ ′
t − K F̃t − F̃t K ′ + 1

2γ (1 − γ )B̃ ′
t B̃t

−2(1 − γ )B̃ ′
t F̃t Q

′ρ − 2Tr(F̃ ′
t Q

′QF̃t ) − λ(1 − γ )eTr(F̃t ξ) J B̃t , F̃T = 0 ,
˙̃Gt = −β(1 − γ ) log(β) + βG̃t − (1 − γ )r + (1 − γ )β − Tr(�̃t �̃

′
t )

+λ(1 − eTr(F̃t ξ)), G̃T = 0 .

(3.9)

Moreover, the optimal consumption and portfolio rules are, for t ∈ [0, T ],

Ct

Wt
= β , (3.10)

πt = Yt

(
(α − r1)

γ
+ 2F̃t Q′ρ

γ
+ λJeTr(F̃t ξ)

γ

)

=: Yt B̃t . (3.11)

Proof See Appendix A.2. 	


4 The impact of jumps and recursive preferences on optimal policies

In this Section, we show how the theoretical results provided in Sect. 3 work on real
data. In particular, we focus on the general case ψ �= 1, and spotlight the role played
by preferences in optimal allocation.

4.1 Numerical example: themultivariate case

In the first numerical example, we consider a portfolio with N = 12 hedge funds from
the Credit Suisse Hedge Fund index, namely Convertible Arbitrage (CA), Emerging
Markets (EM), Equity Market Neutral (EMN), Event Driven (ED), Event Driven Dis-
tressed (EDD), Event Driven Multi-Strategy (EDMS), Event Driven Risk Arbitrage
(EDRA), Fixed Income (FI), GlobalMacro (GM), Long/Short (L/S),Managed Futures
(MF), and Multi-Strategy (MS).
The choice of considering hedge funds instead of the equity market is motivated by
considering that the former are more exposed to the tail risk, as explained e.g. in Kelly
and Jiang (2012). The numerical example is based on the parametrization provided in
Oliva and Renò (2018), under three kinds of models, depending on the presence of the
jump component. For the sake of completeness, we report the parameter estimates of
the three models in Table 1. Furthermore, to be compliant with the empirical evidence,
see e.g. Liu and Pan (2003) and Branger et al. (2008), we constrain the price-jump
amplitudes to be smaller than zero. The results for the optimal allocation are provided
in Table 2. We observe that the overall optimal allocation reduces as more sources
of risk are included in the model. We also observe that the reduction in the overall
allocation is minimal when only price jumps are considered (the variation is 0.4%).
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Table 2 Percentage of optimal portfolio allocation for the No-Jumps model (second column), the Jumps-
in-Price model (third column), and the Co-Jumps model (fourth column)

Hedge fund No-jumps (%) Jumps-in-price (%) Co-jumps (%)

CA 7.8328 7.9276 7.0144

EM 2.1976 2.1866 2.1372

EMN 9.7140 9.6576 8.2937

ED 7.9774 7.9344 7.3218

EDD 8.5607 8.5233 7.9016

EDMS 6.5082 6.5047 6.1320

EDRA 11.6174 11.6437 10.5577

FI 10.1383 10.0992 8.6735

GM 4.7001 4.7022 4.6266

L/S 3.8061 3.8118 3.4474

MF 1.4062 1.1577 1.0893

MS 10.9068 10.8845 10.3487

Total Allocation 85.3654 85.0334 77.5439

The maturity of the investment is 1 year, the rate of time preferences is β = 6%, the risk aversion parameter
is γ = 3, the elasticity of intertemporal substitution of consumption is ψ = 0.8, the jump intensity is equal
to λ = 0.0120 for models with jumps, and 0 otherwise. The remaining parameters are given in Table 1

The presence of co-jumps, on the other hand, causes a sizeable decrease in the optimal
investment in risky securities, equal to 10%.
Thus, we extend this analysis to different types of investors. As discussed in Sect. 3,
a crucial role is played by the log-linearization coefficient appearing in (3.6). In what
follows, we apply the scheme proposed in Chacko and Viceira (2005) and implement
a recursive numerical procedure so that we fix an initial value for h1, we use it to cal-
culate (3.4) and update h1 until the convergence is reached. Furthermore, we consider
investors with coefficients of relative risk-aversion ranging in [2, 40], and elasticity
of intertemporal substitution spanning between 1/2 and 1/40.

Remark 4.1 It is worth stressing that, while for the risk-aversion parameter, the empir-
ical evidence suggests γ > 1, the literature does not express a uniform agreement
for the estimation of ψ, as highlighted in Kraft et al. (2013). Hall (1988), Campbell
and Viceira (1999, 2001, 2002), and Vissin-Jorgensen (2002) provide a value for
EIS smaller than one and justify this result on extensive analyses of aggregated and
disaggregated data. On the other hand, Bansal and Yaron (2004); Bansal (2007) and
Hansen andSingleton (2002) argue that such an estimate of the parameterψ is based on
misspecification of the model, showing that ignoring the effects of time-varying con-
sumption volatility and excluding fluctuating economic uncertainty leads to a severe
downward bias in EIS estimates. However, while recognising the importance of an
appropriate specification of the parameters characterising recursive preferences, it
must be pointed out that this is beyond the scope of this paper. This is why in the
following we will not address the estimation of the risk aversion and EIS parameters,
but will provide a detailed sensitivity analysis of our numerical results w.r.t. changes
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Table 3 Percentage of Optimal Portfolio weights, for total funds, evaluated at t = 0 for Co-Jumps Model,
Jumps-in-Price Model and No-Jumps Model, for different risk-aversion coefficients and elasticities of
intertemporal substitution of consumption

Co-jumps model Optimal allocation weight (%)

E.I.S. (ψ)

R.R.A (γ ) 1/2 1/3 1/5 1/10 1/20 1/40

2 120.1778 120.5374 120.9167 121.2331 121.4216 121.5315

3 78.0377 78.4475 78.8628 79.2447 79.4717 79.5963

5 45.7806 46.1425 46.5233 46.8650 47.0663 47.1516

10 22.5196 22.7411 22.9836 23.1979 23.3192 23.3766

20 11.1586 11.2853 11.4210 11.5400 11.6092 11.6447

40 5.5588 5.6236 5.6931 5.7572 5.7924 5.8104

Jumps in price model Optimal allocation weight (%)

E.I.S. (ψ)

R.R.A (γ ) 1/2 1/3 1/5 1/10 1/20 1/40

2 127.9925 128.0254 128.0622 128.0924 128.1119 128.1215

3 85.0789 85.1217 85.1622 85.2003 85.2246 85.2364

5 50.9311 50.9680 51.0055 51.0402 51.0620 51.0724

10 25.4236 25.4478 25.4716 25.4963 25.5092 25.5161

20 12.7015 12.7151 12.7292 12.7427 12.7500 12.7534

40 6.3479 6.3554 6.3630 6.3698 6.3735 6.3760

No-jumps model Optimal allocation weight (%)

E.I.S. (ψ)

R.R.A (γ ) 1/2 1/3 1/5 1/10 1/20 1/40

2 128.3049 128.3287 128.3538 128.3768 128.3898 128.3967

3 85.3936 85.4191 85.4463 85.4716 85.4858 85.4934

5 51.1689 51.1900 51.2129 51.2341 51.2461 51.2525

10 25.5596 25.5728 25.5871 25.6005 12.8006 12.8028

20 12.7737 12.7810 12.7890 12.7964 12.7500 12.7534

40 6.3853 6.3892 6.3973 6.3698 6.3995 6.4007

The rate of time preferences β is set equal to 6% annually, the risk-free rate is set to r = 0%. The remaining
parameters are given in Table 1

in the parameters.Wewill also set specific values for γ andψ when this will be strictly
necessary for our study.

The optimal allocation is highest when there are no jumps in the dynamics, implying
that the optimal allocation is mainly affected by co-jumps. When we consider both
jumps in price and precision (top panel in Table 3), the optimal allocation reduces,
compared to the no-jump case (bottom panel). For example, for γ = 2 and ψ = 1/2,
in the absence of jumps, the investment guarantees 7% more of the wealth allocated
in the stock. Our findings confirm that price and volatility jumps can overshadow the
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skewness effect. Furthermore, the impact of EIS on the optimal portfolio weights is
negligible. At the same time, the risk aversion parameter strongly affects the results.
For example, ifwe quadruple γ (moving from γ = 5 to γ = 20), the optimal allocation
is reduced by more than 75% of the previous value. The reduction proportion remains
almost the same evenwhen only price jumps are considered or if no jumps are assumed.
We carry on a similar analysis for optimal consumption. More precisely, we evaluate

C0

W0
= eE[c0−x0] × 100 ,

i.e., we consider the (exponentiated) optimal mean log consumption-wealth ratio for
several values of EIS and risk-aversion parameter. The results are shown in Table
4, for a relative risk-aversion coefficient ranging in [0.75, 10], and an elasticity of
intertemporal substitution spanning between 1/0.75 and 1/3.
When the elasticity of intertemporal substitution ψ is small, investors are unwilling
to substitute consumption in time. Instead, they prefer investing in portfolios with a
higher consumption-wealth ratio. A bigger EIS corresponds to a lower value of the
consumption-wealth ratio. We first focus on the last column of Table 4, namely, we
comment on results for investors who are extremely reluctant to intertemporally sub-
stitute consumption. These investors wish to keep their expected consumption growth
rate constant, regardless of the current investment opportunity set, by consuming the
average return of their portfolios with a precautionary-savings adjustment for risk.
Then, we study another borderline case, and we focus on extreme risk-averse param-
eters (last row in each panel of Table 4). In this case, investors are more likely to
choose safer portfolios, thus achieving smaller returns. The polar opposite is repre-
sented by risk-tolerant investors, who are encouraged to allocate a more significant
part of their wealth into risky assets so that an extreme risk-return profile will char-
acterize the corresponding portfolios. This is why the consumption-wealth ratio is
higher when investors are less risk-averse. Furthermore, we examine investors more
willing to substitute consumption in time and assume ψ > 1. This implies that we
concentrate on the first column in Table 4, so that, assuming β > 0, market play-
ers would rather face higher savings but lower consumption, instead of those who
are reluctant to substitute consumption. In such a situation, an investor with low-risk
aversion γ will result in a portfolio with higher expected returns: the higher EIS,
the lower the consumption-wealth ratio. The reasoning above can be summarized by
focusing on the percentage variation of the optimal consumption wealth ratio: if we
halve EIS, e.g. going from 1/(1.25) to 1/(2.5), the optimal consumption experiences
an increase by 78% if the investor is very risk-loving (γ = 0.75). Such an increment
reduces to 76% if the investor’s risk aversion is high enough (γ = 10). Finally, by
comparing the Co-Jumps, Jumps in price, and No Jumps models, we detect that the
presence of jumps affects the optimal consumption when ψ < 1. The effect is even
more intense the smaller the EIS value. By comparing the mid and bottom panels in
Table 4, we find that jumps in price reduce the optimal consumption, regardless of the
risk aversion level, because of the greater risk investors are exposed to. However, the
impact of jumps in volatility (or precision) is significant, as stressed by the comparison
between the top andmid panel in Table 4. Therefore, we can state that jumps in volatil-
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Table 4 Percentage of consumption-wealth ratio for each models (Co-Jumps Model, Only Jumps in Price
and No-Jumps Model) for different risk aversion coefficient and elasticities of intertemporal substitution of
consumption

Co-jumps model Consumption-wealth ratio (%)

E.I.S. (ψ)

R.R.A (γ ) 1/0.75 1/1.25 1/1.4 1/2 1/2.5 1/3

0.75 1.7669 12.6430 17.5656 39.9612 58.4263 76.8304

1.25 1.9554 12.0471 16.3623 36.4625 54.5553 72.0171

1.4 1.9841 11.9380 16.2277 35.9236 53.5491 71.3246

2 2.0584 11.7116 15.7729 34.6257 52.0020 68.9755

3 2.1128 11.5195 15.3992 33.6265 50.1415 67.1444

10 2.1870 11.2862 14.9703 31.9578 47.4859 63.3784

Jumps in price model Consumption-wealth ratio (%)

E.I.S. (ψ)

R.R.A (γ ) 1/0.75 1/1.25 1/1.4 1/2 1/2.5 1/3

0.75 1.7677 16.0520 23.1559 57.7313 88.0512 116.6679

1.25 2.1074 14.7027 20.3604 47.1304 71.1238 95.0293

1.4 2.1643 14.4651 19.8900 45.6892 68.4882 91.0613

2 2.3133 13.8875 18.8697 42.2475 62.9560 83.7390

3 2.4343 13.5094 18.1111 39.4521 58.8529 78.2802

10 2.6166 12.9568 17.0442 36.3073 52.7644 70.0088

No-jumps model Consumption-wealth ratio (%)

E.I.S. (ψ)

R.R.A (γ ) 1/0.75 1/1.25 1/1.4 1/2 1/2.5 1/3

0.75 1.2039 16.0147 24.5951 73.9475 124.5295 177.9226

1.25 1.5425 13.8906 20.1538 52.9806 85.4590 118.6873

1.4 1.6036 13.5660 19.4807 49.8798 80.1968 111.7709

2 1.7697 12.8252 17.9599 43.7385 68.3943 94.3549

3 1.9081 12.2476 16.8093 39.2259 60.3549 82.5620

10 2.1201 11.4995 15.3557 33.5010 50.2659 67.5364

The rate of time preferences β is set equal to 6% annually, the risk-free rate is set to r = 0%. The remaining
parameters are given in Table 1

ity further reduce optimal consumption in a very significant way. When ψ > 1, we
notice a different behaviour: investors exhibit more significant savings and negligible
consumption. Moreover, if jumps in price are included, the average portfolio return
reduces since investors consider a smaller portion of the risky asset. This implies that
investors choose portfolios with low expected returns, so a higher ψ corresponds to a
higher consumption-wealth ratio.
To assess the effect of jumps in volatility, we resort to the Wealth Equivalent Loss
(WEL), i.e. an economic metric that measures the possible loss suffered by an investor
who assumes only jumps in price (or the absence of jumps) as a condition for deter-
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mining the investment strategy. The WEL is defined as

WEL = 1 − W̃t ,

where W̃ is obtainedbyequating thevalue functionV (t, y, W̃ ) = exp{−H(Tr(FtYt )+
Gt )} W̃

1−γ
t

1−γ
associated with the strategy involving co-jumps and the value function

V̂ (t, y, 1) = exp{−H(Tr(F̂tYt ) + Ĝt )} 1
1−γ

for the sub-optimal strategy, where

H = 1−γ
1−ψ

. More precisely,

W̃t =
[
exp{−H(F̂tYt + Ĝt )}
exp{−H(FtYt + Gt )}

] 1
1−γ

=
[
exp{(F̂t − Ft )Yt + (Ĝt − Gt )}

]− 1
1−ψ

,

(4.1)

where Ft ,Gt (resp., F̂t , Ĝt ) are the solutions to the ODEs provided in Proposition
3.1, suitably modified according to the presence (resp., the absence) of the jumps in
volatility. Figure 1 shows the loss in wealth that an investor might suffer when she
does not believe in jumps in volatility, as a function of the risk-aversion parameter γ

and the elasticity of intertemporal substitution of consumption ψ. In particular, the
figure shows that not including volatility jumps in the model would result in non-
trivial losses in terms of wealth. For example, with a risk aversion parameter γ = 3,
the investor would suffer a monetary loss of about 5%. This result reinforces the point
that volatility jumps play a crucial role in determining the optimal behaviour of an
investor in hedge funds portfolios.

4.2 Numerical example: the univariate case

To highlight the impact of jumps on the optimal allocation, in this section, we provide
some analyses when a single fund (CA) is considered. The CA index displays a pos-
itive mean (6.89%) and low standard deviation (6.25%), making the fund attractive.
However, it has negative skewness (−2.73) and high kurtosis (21.58), transforming
the fund into a risky investment vehicle.
Our first analysis shows optimal portfolio allocation and consumption-wealth ratio,
evaluated at t = 0, as functions of the investment time horizon, for different risk-
aversion levels. The results are presented in Fig. 2. As expected, the optimal allocation
decreases over time due to the negative intertemporal hedging demand, see e.g. Liu and
Pan (2003) and Branger et al. (2008). Considering the parameters obtained through the
calibration procedure and assuming γ > 1, the function F results to be negative, see
Appendix B for further details. Furthermore, as the maturity becomes larger, both the
intertemporal and jump hedging demands rise (in absolute value) to compensate for the
additional risk by increasing the investment time horizon. Consequently, the value to
be subtracted from themyopic component is more significant as the maturity is pushed
back in time, leading to a reduction of the overall optimal allocation. Concerning the
optimal consumption, we note a shrinkage of the latter when the maturity becomes
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Fig. 1 Percentage of relative loss in wealth as a function of the risk aversion parameter with ψ = 0.8. The
maturity investment is 1 year, the rate of time preferences is β = 6%, the risk-free rate is set to r = 0%.

The remaining parameters are given in Table 1.

Fig. 2 Optimal portfolio allocation (left chart) and consumption (right chart) as functions of time horizon,
for several values of the risk-aversion parameter γ. The EIS parameter is fix to ψ = 0.8. The rate of time
preferences β is set equal to 6% annually, the constant risk-free rate is equal to r = 0%. The remaining
parameters are given in Table 1.

larger, assuming a fixed elasticity of intertemporal substitution of consumption equal
to ψ = 0.8. This is not surprising, since an EIS smaller than one conveys that the
agent is unwilling to base today.’s decision on events distant in time.
To further clarify to what extent jumps may affect the optimal policies, we study
the optimal portfolio weights and consumption-wealth ratio as functions of the risk
aversion parameter γ, for various price-jump sizes J , and keeping the precision-jump
size fixed. The results are shown in Fig. 3 (top charts). We note that when the price-
jump size reduces (in absolute value), the investor tends to take amore sizeable position
in the risky asset, especially when the investor’s risk attitude goes to one, for a fixed
value of EIS (ψ = 0.8). From an economic point of view, this means that assuming
a model with less exposure to the jump risk event leads to considering a considerable
position in the risky asset.
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Fig. 3 Optimal portfolio allocation (left charts) and consumption (right charts) as functions of γ (top) and
ψ (bottom), for different price-jump sizes. In top charts the EIS is fixed to ψ = 0.8, for the bottom ones
the risk-aversion parameter is fixed to γ = 3. The rate of time preferences β is set equal to 6% annually,
the constant risk-free rate is r = 0%.The remaining parameters are given in Table 1.

The optimal consumption is affected by changes in the price-jump amplitude, albeit
to a lesser degree. By choosing again ψ = 0.8 and increasing (in absolute value) the
price-jump size, the optimal consumption-wealth ratio reduces as a consequence of
the lower expected portfolio returns. We further stress that the optimal consumption
decreases as the investor’s risk aversion increases, as she will choose safer portfolios
with a less expected portfolio return.
A similar study canbe accomplishedby analysingoptimal allocation and consumption-
wealth ratio as functions of EIS for different price-jump amplitudes, as shown in Fig.
3 (bottom charts). The numerical results confirm that the optimal allocation is not
remarkably affected by EIS variations if we keep the risk-aversion parameter fixed.
Moreover, in this case, the optimal allocation significantly increases if we consider
a price-jump size equal to J = −1%. Looking at the bottom-right chart of Fig. 3,
we note that for an investor extremely reluctant to substitute consumption over time,
a greater price-jump size (in absolute value) results in smaller consumption. As the
investor becomes more willing to substitute consumption over time, the impact of
jumps in price becomes negligible since these investors have more significant savings
and lower consumption.
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Fig. 4 Optimal portfolio allocation (left chart) and Optimal consumption-wealth ratio (right chart) as a
function of precision-jump size, for different price-jump sizes. The risk-aversion parameter is γ = 3, and
the elasticity of intertemporal substitution is set equal to ψ = 0.8. The rate of time preferences β is set
equal to 6% annually, the constant risk-free rate is r = 0%. The remaining parameters are given in Table 1.

To investigate the effect of jumps in precision on optimal policies, we study the latter
as functions of the precision-jump magnitudes, assuming different price-jump sizes.
We refer to Fig. 4 for the corresponding results.
We observe that introducing jumps in volatility produces a further effect for optimal
weights: a more remarkable volatility jump translates into a smaller jump in precision,
causing a reduction in the optimal portfolio allocation. However, such a curtailment
has little impact and depends on the value of the price-jump size. Concerning the
optimal consumption (right chart in Fig. 4), as expected, we witness a reduction for
wider price-jump magnitudes (in absolute value): as the amplitude of the jump in
precision rises (in absolute value), the consumption-wealth ratio decreases as well
due to the reduction of the expected portfolio return.
Finally,we investigate the role played by the jump-frequency over the optimal portfolio
weights, see Table 5.
We assume that f req = 1/(λ × 12), i.e., we consider the jump frequency expressed
in years and intended as the reciprocal of the jump intensity, adjusted by consid-
ering that the parameters are in the form of monthly estimates. More precisely,
optimal portfolio weights are obtained by considering four jump intensities, namely
λ = {0.007, 0.0033, 0.0016, 0.0008}. Such a set corresponds to a jump frequency
of 11.94, 25, 50 and 100 years on average, respectively. Our findings move along
three directions. First, we recover that the optimal portfolio allocation is significantly
affected by jumps in price. We further note that infrequent jumps mainly influence
the risky allocation. Moreover, we confirm that jumps in precision have little impact
on optimal policy, regardless of the jump frequency. More precisely, the impact of the
precision-jump size is less relevant but not negligible, especially when considering
variations in the jump intensity. The investor tends to take a more prominent position
in optimal allocation when the jump size is small: the smaller the jump intensity, the
higher the portfolio allocation. Third, we observe that frequent and large jumps in
price impact optimal allocation more than rare jumps of the same magnitude. Assum-
ing that a jump occurs every 12 years, the allocation decreases by approximately 6.5%
if the price jump increases by 5 percentage points, namely, we move from J = −20%
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Fig. 5 Percentage of relative loss in wealth for the sub-optimal strategy without jumps as a function of the
risk aversion parameter with different values for the elasticity of intertemporal substitution of consumption
(EIS). The maturity investment is one year, the rate of time preferences is β = 6% and the risk-free rate is
set to r = 0%. The remaining parameters are given in Table 1.

to J = −15%. For rare jumps (e.g., one jump every 100 years), the variation of the
optimal allocation is by 0.6%. The proportions remain almost unchanged as the jump
amplitudes in precision and/or the risk aversion parameter vary.
We conclude our study with a sensitivity analysis for WEL w.r.t. the parameters char-
acterising the preferences involved, namely the EIS and the risk-aversion parameters.
We consider a span for the risk aversion coefficient γ in [1.1, 10]. The results are
illustrated in Fig. 5. First, we observe that excluding jumps from the model always
results in a potential loss for investors, regardless of their risk attitudes and consump-
tion tendencies, since WEL is always negative as a function of γ, for any value of ψ.

Our qualitative analysis also shows that as the elasticity of substitution of consumption
increases and the investor’s risk aversion coefficient decreases, the loss suffered by
the investor increases. Therefore, the aggressiveness of an investor who believes in
the sub-optimal strategy (No-Jumps model) is rewarded through a maximum loss. As
the investor becomes less aggressive, the potential loss she may incur decreases until
a plateau is reached. When the investor’s propensity to consume increases (ψ ≥ 0.5),
we see a WEL trend similar to the previous one: the very aggressive investor reaches
a maximum loss, which is more significant as the EIS grows.

123



I. Oliva, I. Stefani

5 The accuracy of the approximate solution

To understand whether the solutions proposed in Sect. 3 are accurate, we assess the
reliability of the approximation assumptions.We recall that we are assuming two types
of linearization procedures: one for the jump component and one for the logarithmic
consumption wealth ratio.

5.1 Reliability of the jump-component linearization

To compare true and approximate solutions, we consider a simpler form of the model,
where we consider only a single risky asset and by assuming that the precision yt is
constant over time. More precisely, the dynamics (2.1) simplifies to the well-known
Merton’s Jump-Diffusion model

{
dSt
St

= αdt +
√
y−1
0 dBt + JdNt

dyt = 0
. (5.1)

Assume first ψ = 1. Under such assumptions, we write the investor’s indirect utility
function as

V (t,W ) = W 1−γ
t

1 − γ
exp{Ft } , (5.2)

for any t ∈ [0, T ].
If we do not linearize the jump component, the first order condition for the true optimal
allocation weights is

0 = (α − r) − γπt

y0
+ λ(1 + πt J )−γ J , (5.3)

while the function F appearing in (5.2) is the solution to the following ODE

Ḟt = −β(1 − γ ) log(β) + βFt − r(1 − γ ) − πt (α − r)(1 − γ ) + β(1 − γ )

+ 1

2
γ (1 − γ )

π2
t

y0
− λ

[
(1 + Jπt )

1−γ − 1
]
. (5.4)

Both Eqs. (5.3) and (5.4) can be easily solved by using ad-hoc numerical procedures.
Analogously, when we linearize the jump component, the first order condition for the
approximate optimal allocation weights is

0 = (α − r) − γπt

y0
+ λJ , (5.5)
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providing a closed-form expression for the optimal weights, while the function F
appearing in (5.2) is the solution to the following ODE

Ḟt = −β(1 − γ ) log(β) + βFt − r(1 − γ ) − 1

2

(α − r)2(1 − γ )

γ
y0 + β(1 − γ )

− λ2 J 2(1 − γ )

2γ
y0 − Jλ(1 − γ )(α − r)

γ
y0 . (5.6)

By indicating with V and π (resp., Ṽ and π̃) the value function and the optimal weight
for the true model (resp., the approximate model), we can evaluate the Relative WEL
(RWEL), i.e. the percentage of initial wealth that can be sacrificed by an investor using
the optimal strategy, in order to have the same indirect utility using the approximate
one, see Ascheberg et al. (2016) for further details. The RWEL is obtained by equating
V (t,W (1 − RWEL);π) = Ṽ (t,W ; π̃ ), hence, for t ∈ [0, T ], we get

RWEL = 1 − 1

1 − γ
exp{F̃t − Ft } . (5.7)

We execute a sanity check by comparing the true solution with the approximate one
in terms of RWEL.
The results are depicted in Table 6, for several risk aversion parameter values and
price-jump amplitudes. We note that the approximate optimal strategy overestimates
the true one, providing a potential loss. However, such a loss is minimal, varying
between 0.0038% (when γ = 10 and J = −10%) to 0.0482% (when γ = 2 and
J = −25%).

Now assume ψ �= 1. The investor’s indirect utility function is

V (t,W ) = W 1−γ
t

1 − γ
exp{−HFt } , (5.8)

for any t ∈ [0, T ]. As for the true strategy, the first order condition for the optimal
allocation weights is given in (5.3), while the function F appearing in (5.8) is the
solution to the following ODE

Ḟt = h1Ft − h1ψ logβ + βψ − h0 + r(1 − ψ) + πt (α − r)(1 − ψ)

− 1

2
γ (1 − ψ)

π2
t

y0
+ λ

H

[
(1 + Jπt )

1−γ − 1
]

. (5.9)

As for the approximate strategy, the first order condition for the optimal allocation
weights is given in (5.5) and the function F appearing in (5.8) is the solution to the
following ODE

Ḟt = h1Ft − h1ψ logβ + βψ − h0 + r(1 − ψ) + πt (α − r)(1 − ψ)
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− 1

2
γ (1 − ψ)

π2
t

y0
+ λ(1 − ψ)Jπt .

The RWEL for t ∈ [0, T ] is

RWEL = 1 − 1

1 − γ
exp{−H [F̃t − Ft ]} . (5.10)

We compare true and approximate solutions in terms of RWEL. The results are
depicted in Table 7, for several values of risk aversion parameter γ, elasticity of
intertemporal substitution of consumptionψ, and price-jump amplitudes. In this case,
the potential loss is always lesser than 0.02%.As expected, the loss reduces for higher
values of ψ and γ, while heightens for larger price-jump magnitudes.

5.2 The accuracy of the consumption-wealth linearization

We recall that, in this paper, the consumption-wealth ratio is approximated using an

appropriate log-linear expansion around the unconditional mean c − w := E

[
Ct
Wt

]
.

The reliability of such an approximation moves along the lines of Chacko and Viceira
(2005) and can be measured by calculating the unconditional standard deviation of
the optimal log consumption-wealth ratio, given by

| Ft | √Var(yt ) =| Ft |
√

σ 2

2k

(
θ + ξλ

k

)
.

Figure 6 shows that the optimal consumption-wealth ratio exhibits high volatility only
for investors with small values for γ andψ. For example, whenψ = 0.2, the standard
deviation is about 1.5%, while, for ψ = 0.9, it is about 0.16%, when γ = 2. Our
results are corroborated by the discussion in Campbell and Koo (1997), where the
authors explain that the approximation error can be considered bearable when the
standard deviation of the log consumption-wealth ratio is smaller than 5%.

6 Conclusions

In this paper, we propose an approximated solution to a dynamic allocation problem in
multivariate incomplete markets, where the investor can access bonds and stock under
the simultaneous jumps in price and volatility hypothesis. We further assume that
investors have recursive preferences over intermediate consumption. Our theoretical
results show that the optimal portfolio weights consist of three terms: a myopic com-
ponent, an intertemporal hedging demand and a further illiquidity term depending on
co-jumps. Such three components are inversely proportional to instantaneous volatil-
ity, generalizing the well-known Markowitz economic intuition. Moreover, investors
will rebalance their portfolio after a market crash, decreasing their investment in risky
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Fig. 6 Percentage values of the unconditional standard deviation of the optimal log consumption-wealth
ratio.

assets. The presence of event risk significantly changes the optimal allocation. Our
analysis suggests that jumps in prices and volatility have essential effects on optimal
allocation strategy. Not including jumps leads to a hazardous attitude for the investor
in considering a much larger risky stock allocation. The interplay between jumps in
price and volatility reveals that they act as a hedging tool, significantly reducing the
optimal allocation.
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A proof of theoretical results

A.1 Proof of Proposition 3.1

To determine the optimal policies we start from the HJB (3.1) equation associated to
the investment problem, define H := 1−γ

1−ψ
, and guess

V (t,W , y) = exp{−H (Tr(FtYt ) + Gt )}W
1−γ
t

1 − γ
. (A.1)

Furthermore, we set Ḟt = ∂F
∂t and Ġt = ∂G

∂t , and evaluate the partial derivatives of
the value function appearing in the HJB equation, namely

∂V

∂t
= −H(Tr(ḞtYt ) + Ġt )V , (A.2)

∂V

∂W
= (1 − γ )W−1

t V , (A.3)

∇V = −HFtV (A.4)

∂2V

∂W 2 = −γ (1 − γ )W−2
t V , (A.5)

∇Q′ρ ∂V

∂W
= ∇ ∂V

∂W
Q′ρ = −HFt Q

′ρV (1 − γ )W−1
t . (A.6)

Moreover, we have

Tr(Yt∇Q′Q∇)V = −HTr(Yt Ft Q
′QFt )V . (A.7)

Finally, we use the linearization (3.2), so that the jump component in the HJB equation
becomes

V (Wt +π ′
t JWt ,Yt + ξ)− V (Wt ,Yt ) = V

(
e−HTr(Ft ξ)(1 + π ′

t J )1−γ − 1
)

. (A.8)

Hence, we replace all the partial derivatives (A.2) –(A.6), the condition (A.7) and
(A.8) in (3.1), so that we obtain

0 = max{πt ,Ct }

{
f (Ct , Vt )

Vt
− HTr(F̂t Yt ) − HĠ + r(1 − γ ) + π ′

t (α − r1)(1 − γ ) − Ct

Wt
(1 − γ )

−HFtTr(��′ + KYt + Yt K
′) − γ (1 − γ )

2
π ′
t Y

−1
t πt − 2Hπ ′

t Ft Q
′ρ(1 − γ )

−HTr(2Yt Ft Q
′QFt ) + λ

[
e−HTr(Ft ξ)(1 + (1 − γ )π ′

t J ) − 1
]}

=: ϕ(πt ,Ct ) . (A.9)
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The first term in (A.9) can be written as

f (Ct , Vt )

Vt
= Hβψ − Hβψ

((1 − γ )V )

(
1

1−γ

)(
ψ−1
ψ

)C
ψ−1
ψ

t . (A.10)

Hence, we are able to determine the first order condition for optimal consumption

∂ϕ

∂Ct
= − Hβψ

((1 − γ )V )

(
1

1−γ

)(
ψ−1
ψ

)
ψ − 1

ψ
C

1
ψ

t − (1 − γ )

Wt
= 0 , (A.11)

and with some algebra we obtain (3.4). Similarly, we are able to determine the first
order condition for optimal portfolio allocation

∂ϕ

∂π ′
t

= (α − r1)(1 − γ ) − γ (1 − γ )πt Y
−1
t

− 2HFt Q
′ρ(1 − γ ) + λ(1 − γ )e−HTr(Ft ξ) = 0 , (A.12)

and (3.5) easily follows. Finally, we have to make explicit the expressions for F and
G appearing in the value function. To do this, we replace the optimal consumption
and portfolio allocation in (A.9) and we have

At

H
− Tr(ḞYt ) − Ġ + r(1 − γ )

H
+ B ′

t Yt
(α − r1)(1 − γ )

H
− FtTr(��′ + KYt + Yt K

′)

− γ (1 − γ )

2H
BtYt B

′
t − 2Ft Q

′ρYt B ′
t (1 − γ ) − 2Tr(Yt Ft Q

′QFt )

+ λ

H

[
e−HTr(Ft ξ) − 1

]
+ λ(1 − γ )

H
e−HTr(Ft ξ) J B ′

t Yt = 0 , (A.13)

where we set

Bt := (α − r1)
γ

+ 2HFt Q′(−ρ)

γ
+ λJe−HTr(Ft ξ)

γ
(A.14)

and

At = f (Ct , Vt )

Vt
− Ct

Wt
(1 − γ ) . (A.15)

With some algebra, we obtain At = Hβψ − Hβψ exp{−(Ft + Gt )} = Hβψ −
Hβψ X−1. The envelope condition ensures that

βψ X−1 = Ct

Wt
= exp{log (Ct ) − log (Wt )} = exp{ct − wt }, (A.16)
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so that

ct − wt = log (βψ X−1) = ψ log (β) − Tr(FtYt ) − Gt . (A.17)

Moreover, using the first-order taylor expansion of exp{ct − wt } around its uncondi-
tional mean c − w, we have

At ≈ Hβψ − H [h0 + h1(ct − wt )] , (A.18)

where h1 := exp{c − w} and h0 := h1− h1 log(h1). By replacing (A.18) and (A.17)
in (A.13), we have

(
−Ḟt + h1Ft + B′

t
(α − r1)(1 − γ )

H
− Ft K − Ft K

′ − γ (1 − γ )

2H
Bt B

′
t − 2Ft Q

′ρB′
t (1 − γ )

−2Ft Q
′QFt + λ

H
(1 − γ )e−HTr(Ft ξ) J B′

t

)
Tr(Yt )

+
(

−Ġt + βψ − h0 − h1
[
ψ log(β) − h1Gt

] + r(1 − γ )

H
+ λ

H

[
e−HTr(Ft ξ) − 1

]

−Tr(��′Ft )
) = 0 , (A.19)

implying that (3.6) holds.

A.2 Proof of corollary 3.2

To determine the optimal policies in the special case in which ψ = 1 we start from
the HJB Eq. (3.1). We guess

V (t,Wt ,Yt ) = exp{Tr(F̃tYt ) + G̃t }W
1−γ
t

1 − γ
. (A.20)

We evaluate the partial derivatives of the value function and obtain

∂V

∂t
= (Tr( ˙̃FtYt ) + ˙̃Gt )V , (A.21)

∂V

∂W
= VW−1

t (1 − γ ) , (A.22)

∇V = F̃t V (A.23)

∂2V

∂W 2 = −V γ (1 − γ )W−2
t , (A.24)

∇Q′ρ ∂V

∂W
= ∇ ∂V

∂W
Q′ρ = F̃t Q

′ρV (1 − γ )W−1
t (A.25)

where ˙̃Ft = ∂ F̃
∂t ,

˙̃Gt = ∂G̃
∂t , and Tr(Yt∇Q′Q∇)V = Tr(Yt F̃t Q′QF̃t )V . Thanks to

the linearization (3.2), the jump component in the HJB equation can still be written as
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V (Wt + π ′
t JWt ,Yt + ξ) − V (Wt ,Yt ) = V

(
eTr(F̃t ξ)(1 + π ′

t J )1−γ − 1
)

. (A.26)

When ψ = 1 the normalized aggregator (2.5) takes the following form

f (C, V ) = β(1 − γ )V

(
ln(C) − 1

1 − γ
ln((1 − γ )V )

)
. (A.27)

If we replace the partial derivatives (A.21) – (A.25) in (3.1) and the normalized aggre-
gator (A.27) in (3.1), we obtain,

0 = max{πt ,Ct }

{
f (Ct , Vt )

V
+ Tr( ˙̃FtYt ) + ˙̃Gt + (1 − γ )π ′

t (α − r1) + r(1 − γ ) − Ct

Wt
(1 − γ )

+Tr(��′ + KYt + Yt K
′)F̃t − 1

2
π ′
t Y

−1
t πtγ (1 − γ ) + 2π ′

t F̃t Q
′ρ(1 − γ )

+2Tr(Yt F̃
′
t Q

′QF̃t )) + λ
[
eTr(F̃t ξ)(1 + (1 − γ )Jπ ′

t ) − 1
]}

=: ϕ̃(πt ,Ct ) . (A.28)

We determine the first order condition for optimal consumption

∂ϕ̃

∂Ct
= β(1 − γ )

C
− (1 − γ )

Wt
= 0 (A.29)

and (3.10) easily follows. Similarly, we are able to determine the first order condition
for optimal portfolio allocation

∂ϕ̃

∂πt
= (1 − γ )(α − r1) − Y−1

t πtγ (1 − γ ) + 2F̃t Q
′ρ(1 − γ ) + λeTr(F̃t ξ)(1 − γ )J = 0 ,

(A.30)

so that we obtain the optimal portfolio rule (3.11). By using the optimal rules and with
some algebra we obtain

(−βTr(F̃tYt ) + Tr( ˙̃FtYt ) + (1 − γ )(α − r1)B̃ ′
t Yt + KTr(F̃tYt )

+ Tr(F̃tYt )K
′ − 1

2
B̃tYt B̃

′
tγ (1 − γ )

+ 2Q′ρ B̃ ′
t T r(F̃tYt )(1 − γ ) + 2Tr(Yt F̃

′
t Q

′QF̃t ) + λeTr(
˜Ft ξ)(1 − γ )J B̃ ′

t Yt
+ β(1 − γ )(ln(β) − 1)

− βG̃t + ˙̃Gt + r(1 − γ ) + Tr(��′) + λ(eTr(F̃t ξ − 1) = 0 . (A.31)
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B Properties of Ft

The properties of the function Ft are crucial to study the optimization problem. For
this purpose, we make a change of variable by considering τ := T − t, so that the
ODE (3.6) admits an initial condition. We have

Ḟτ = −h1Fτ − (1 − ψ)(α − r1)

(
(α − r1)

γ
+ 2HFt Q′(−ρ)

γ
+ λJe−HTr(Ft ξ)

γ

)

+ Fτ K + K ′Fτ + γ (1 − ψ)

2

(
(α − r1)

γ
+ 2HFt Q′(−ρ)

γ
+ λJe−HTr(Ft ξ)

γ

)

(
(α − r1)

γ
+ 2HFt Q′(−ρ)

γ
+ λJe−HTr(Ft ξ)

γ

)′
+ 2(1 − γ )Fτ Q

′ρ

(
(α − r1)

γ
+ 2HFt Q′(−ρ)

γ
+ λJe−HTr(Ft ξ)

γ

)′
+ 2Fτ Q

′QFτ − λ(1 − ψ)J

e−HTr(Fτ ξ)

(
(α − r1)

γ
+ 2HFt Q′(−ρ)

γ
+ λJe−HTr(Ft ξ)

γ

)′
, (B.1)

with F0 = 0, Ḟτ = ∂F
∂τ

and we set

Bτ := (α − r1)
γ

+ 2HFt Q′(−ρ)

γ
+ λJe−HTr(Ft ξ)

γ
.

Thanks to the updated boundary condition, the ODE (B.1) evaluated at τ = 0 can be
written as

Ḟ0 = −(1 − ψ)(α − r1)B(0) + γ (1 − ψ)

2
B(0)B(0)′ − λ(1 − ψ)J B(0)′

= −γ (1 − ψ)

2
B(0)B(0)′ . (B.2)

By assuming γ > 1 and ψ < 1, from (B.2) it is straightforward to verify that Ḟ0 < 0.
Since F is continuous in γ, the previous discussion ensures that Fτ < 0.Analogously,
we get Fτ > 0, for any τ, when γ > 1 and ψ > 1. Previous results are switched
when γ < 1.
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