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Abstract—Nonlinear calibration allows enhancing the 

performance of analog and radiofrequency circuits by digitally 

correcting nonlinearities. Often, calibration is performed in the 

complex baseband domain, and Volterra models are used. These 

models have hundreds of coefficients, and easily become 

computationally unfeasible. This is worse in complex Volterra 

models, because high-order Volterra terms require summing 

multiple products of the input signal. We propose a generalized 

complex Volterra model based on one relaxation of Volterra 

theory: all the nonlinear monomial terms in the model are 

considered separately, even if they correspond to a single real 

coefficient in complex Volterra theory. This produces more 

accurate models, though with a larger number of coefficients. We 

thus extensively prune the model by means of OMP and OBS 

techniques. The resulting models have fewer coefficients and/or 

better accuracy than conventional Volterra models, resulting in a 

significantly improved accuracy-complexity trade-off. These 

results are validated in the experimental calibration of a 

commercial IF amplifier. The resulting model achieves the same 

accuracy, with 9 free parameters and 34 multiplications, as the 

standard Volterra model with 12 parameters and 266 

multiplications, resulting in a 25% reduction in the number of 

parameters, and an 87% reduction in the number of multipliers. 

 
Index Terms—Digital calibration, nonlinear models, complexity 

reduction, amplifiers, analog circuits, optimal brain surgeon, 

orthogonal matching pursuit. 

I. INTRODUCTION 

MODERN electronic systems heavily rely on digital signal 

processing. The digital conversion of the signal allows 

calibration in the digital domain, enabling the so called 

digitally-assisted analog electronics, where digital algorithms 

improve the performance of analog blocks [1-2]. Power 

amplifiers [3-6], IQ mixers [7-8] and ADCs [9-13] can be 

digitally enhanced. Calibration can correct linear errors, as in 

time-interleaved (TI) ADCs [14-16], but can also be exploited 

to reduce the nonlinearity of system components [12], and of 

the system as a whole [11-13]. 

Volterra models are often used to describe weakly nonlinear 

continuous systems where memory effects have to be taken into 

account [17]. However, depending on their maximum order of 

nonlinearity and memory depth, these models often require a 

huge number of parameters, resulting in high computational 

complexity and estimation problems. 

These issues are particularly significant for Volterra models 

in the complex domain [18], because these models have much 

higher computational cost, as each high-order Volterra 
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coefficient multiplies the sum of multiple delayed, phase shifted 

and eventually frequency modulated product terms, which need 

to be computed in real time. Hence, setting up a complex 

Volterra model is computationally expensive. Furthermore, the 

theory is restrictive, yielding models that are not very accurate 

despite the huge resource cost. 

In this paper we propose a generalized class of complex 

Volterra models based on the removal of one key assumption: 

each monomial term in high-order Volterra kernels is assumed 

to be independent from the others, with a separate coefficient. 

The removal of this hypothesis yields a class of models which 

is more accurate than conventional complex Volterra models, 

at the cost of a significantly larger number of coefficients. 

Hence, computational costs are increased and estimation is 

more cumbersome. To compensate for this problem, pruning is 

used to reduce the computational complexity of the generalized 

complex Volterra models, yielding much more compact models 

with comparable linearity. Pruning is performed using a 

combination of the Orthogonal Matching Pursuit (OMP) [18-

20] and Optimal Brain Surgeon (OBS) [18, 21-22] techniques. 

The resulting pruned model can be either more accurate or 

simpler than the original model after pruning, and much easier 

to set up: in fact, a pruned Volterra model would require the 

computation of many polynomial basis functions, including 

phase shifts and frequency modulations, whereas generalized 

Volterra models only use monomials. Hence, the proposed 

model is more general, and thus more accurate, but also more 

flexible, and thus more easily pruned to a computational cost 

which is much lower than that of conventional complex 

Volterra models. It is thus possible to improve the accuracy-

complexity trade-off to obtain nonlinear models that are at the 

same time more accurate, computationally simpler, and easier 

and faster to estimate, owing to a lower number of nonlinear 

coefficients. 

This important result is verified experimentally in the 

calibration of an IF amplifier: a 25% reduction in the number of 

free parameters to estimate, and an 87% reduction in the 

number of complex multipliers required to correct the output, is 

achieved with respect to the conventional complex Volterra 

model. 

The contributions of this paper can thus be summarized as 

follows: 

 We propose a novel class of complex Volterra models 

which improves the accuracy-complexity trade-off. 

The new class of models is obtained by removing a 
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hypothesis from conventional complex Volterra 

theory and is therefore a generalization of the latter. 

 The new class of models is validated experimentally 

for the calibration of an IF amplifier. A performance 

comparison between the generalized and the 

conventional Volterra model is carried out, before and 

after pruning. 

It should be remarked that the generalized class of models 

includes Volterra models as a special case, and thus cannot be 

less accurate than Volterra models: it is in fact more accurate, 

as experimentally shown in this paper. The problem of the 

increased number of free coefficients can be effectively solved 

by extensive pruning, with experimental evidence that the 

generalized models are more accurate for the same number of 

free coefficients. The main reason for the significantly reduced 

computational complexity is that a single term of order � in 

conventional Volterra theory requires the sum of 2��� 

monomials of order �, whereas in the generalized model only 

one monomial needs to be computed. 

The paper is organized as follows. Section II summarizes 

Volterra models in the real and complex domains. Section III 

proposes a new generalized Volterra model, and summarizes 

the pruning technique employed to reduce its complexity. 

Section IV describes the experimental setup and discusses the 

experimental results. Section V concludes. 

II. VOLTERRA MODELS IN THE REAL AND COMPLEX DOMAINS 

Nonlinear calibration techniques attempt to correct linear and 

nonlinear errors arising in electronic systems owing to active 

devices. There is no standard model for nonlinearities, 

especially for dynamic nonlinearities, i.e., nonlinear effects 

with memory: Volterra series are often used, but these models 

easily become unmanageable owing to the large number of 

coefficients. 

In this paper we define a subclass of linear-in-the-parameters 

(LIP) feedforward models, a class of models which also 

includes feedforward Volterra models, FIR filters, polynomial 

nonlinear models, but also functional link artificial neural 

networks (FLANN) models with linear output layers [23], 

Hammerstein models [24], and others. Since they are linear in 

the parameter space, such models allow using linear estimation 

techniques, which are convex, numerically simple, and well-

posed [25]. 

As we assume the system is sampled, we model the block 

under calibration as a discrete-time system. The input signal is ���	, sampled at a rate 
�, and produced by a DAC whose 

linearity and noise are assumed to be better than that of the 

amplifier under calibration. The output of the device to be 

calibrated is ���	, which is sampled, at the same rate, by an 

ADC, whose accuracy is also supposed to be better than that of 

the device to be calibrated. The input is considered to be an IF 

signal of bandwidth � around the carrier 
�, with  
0 < 
� − ��

� < 
� + ��
� < ��

� . 

In general, the nonlinear function describing the device will 

not be known, but it will be nonlinear and with memory, so that 

the output of the system is a nonlinear function of the present 

and past values of the input. Of course, noise shall also be 

considered. 

Digital calibration consists in approximating the inverse 

function of the system in the digital domain, so that the 

calibrated output ���	 will be as close as possible to the 

(known) input ���	. In this way, the deterministic errors 

affecting ���	 will ideally be removed, if the system is 

invertible: 

 ���	 = �����	, … , ��� −  	! ≈ ���	 (1) 

 

Since such a model is unworkable, we focus on models which 

are linear-in-the-parameters and feedforward: 

 

���	 = ∑ $%�%&���	, … , ��� −  	'(��)  (2) 

 

This model has * unknown parameters, $% , which are the 

coefficients of the linear combination of the known linear and 

nonlinear functions �%�∙! of the input signal, including its past 

values, up to a delay  . The use of LIP models ensures that a 

wide array of estimation algorithms for linear models can be 

employed: batch least squares, recursive least squares (RLS), 

least mean squares (LMS) [25], etc. In fact, linear estimation 

techniques, which are well known, numerically efficient and 

stable, and globally optimal, can be used to estimate any LIP 

model. 

Another assumption implicit in (2) is that the output only 

depends on the input, i.e., it does not depend on the past values 

of the output. Such models are called feedforward, as there is 

no feedback of the output toward the input, and are a 

generalization of finite impulse response (FIR) linear filters. 

For instance, if �%&���	, … , ��� −  	' ≡ ��� − -	, and  
* =  + 1, the model in (2) becomes a FIR filter, which is the 

workhorse of linear equalization techniques in 

telecommunications. On the other hand, if  
�%&���	, … , ��� −  	' ≡ �%��	, the model in (2) becomes a 

standard polynomial model with static nonlinearities. Volterra 

models are an example of LIP feedforward models. 

A. Real Volterra models 

The Volterra model is the sum of kernels of degree  / = 1, … , �, where monomials of order / are obtained from the 

input ���	 using lagged terms up to a delay  �/!, where the 

memory length can be a function of the degree, to minimize 

model complexity. Since products are commutative, delays can 

be put in non-decreasing order. Hence, we focus on non-

decreasing tuples, and write the output of the kernel of degree / as: 

 

�0��	 = ∑ ⋯ ∑ $23…24��� − 5�	 ⋯ �&� − 50'642472483
64237)  (3) 

 

Finally, the output of the Volterra model is the sum of the 

outputs of the Volterra kernels, up to the highest order �: 

 ���	 = ∑ �0��	�07�  (4) 
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The model may include a term of order 0, which represents the 

dc offset. 

The main problem with Volterra models is the number of 

coefficients: a 5th-order model with  = 4 would have 126 free 

parameters. The computational cost of Volterra models depends 

on the number of free parameters which need to be estimated, 

plus a setup cost to compute all the monomials in the Volterra 

kernels. The number of free parameters to estimate has a direct 

impact on the complexity of the estimation technique, on 

estimation convergence time, and on the stability of estimation 

algorithms. Hence, model pruning is of the essence to reduce 

model complexity and improve numerical stability and 

convergence time, i.e., the number of known samples required 

to identify the system. 

Furthermore, real-time correction, even with fixed (already 

identified) parameters, requires a fixed cost per sample, 

comprising the computation of the basis functions which form 

the Volterra kernels and the calculation of the linear 

combinations of basis functions which allow computing the 

corrected output, as in Eq. 2.  

B. Complex Volterra models 

Usually, equalization in communication systems is 

performed in the complex domain [26], after demodulation and 

carrier and timing recovery. The goal is to minimize the linear 

and nonlinear Inter-Symbol Interference (ISI) and allow symbol 

decision with the lowest Error Vector Magnitude (EVM) and 

Symbol Error Rate (SER). Hence, we define the intermediate 

frequency (IF) and baseband frequency (BF) signals, where :) 

is the normalized carrier frequency :) = 2;
�<�, with 
� the 

carrier frequency in Hz, and <� the sampling period: 

 �=>��	 = ℜ@��>��	ABCDEF (5) 

 

A FIR filter can be written in the IF domain as: 

 

�=>��	 = ∑ ℎ%�=>�� − -	(��%7) = ℜH∑ ℎ%��>�� − -	ABCD�E�%!(��%7) I
 (6) 

 

If we rewrite the second expression, we obtain: 

 

��>��	 = ∑ ℎ%��>�� − -	A�BCD%(��%7)  (7) 

 

Hence, a linear filter in the IF domain is equivalent to a linear 

filter in the BF domain, with the same (real) coefficients ℎ%, if 
the BF samples are phase rotated by A�BCD% and delayed by -. 

Similar calculations hold for Volterra kernels of higher 

degrees. For instance, a generic quadratic term can be written 

as: 

 �=>�� − -	�=>�� − J	 = 

= ℜH��>�� − -	ABCD�E�%!IℜH��>�� − J	ABCD�E�K!I (8) 

 

Using the identity ℜ@�F = �
� �� + �∗!, we get Eq. (9) reported 

at the bottom of the page. 

Hence, a second-order kernel is the sum of two second-order 

monomials, one frequency modulated by ABCDE, the other by 

A�BCDE, which correspond to the terms around 2
� and dc, 

respectively. 

Similar relations can be obtained for higher-order kernels. 

Hence, IF kernels can be expressed in terms of the BF 

components, and the Volterra coefficients remain real and have 

the same value. The higher-order terms can be modulated 

around frequencies 0, :) or multiples. 

From the above equations we notice several important 

aspects. First, the complex Volterra kernel has the same number 

of (real) parameters than the real Volterra kernel, with the same 

coefficient values, because they are equivalent models. But 

complex Volterra kernels of the second-order require the sum 

of two complex products (9) to compute the basis functions, and 

these products also require phase shifting and frequency 

translation. This is even worse in higher-order kernels: third-

order kernels require the sum of four terms, and fifth-order 

terms the sum of sixteen terms: the product of � terms such as 

ℜ@�F = �
� �� + �∗! creates 2� products, which are paired into 

2��� terms when the final real value is computed. Hence, 

complex Volterra models are more expensive to set up, 

requiring more operations to compute all the basis functions. 

Some of these terms are modulated around carriers different 

from 
� and may be removed in narrowband systems, but in 

general this is not possible in wideband systems. 

These issues are solved in the next Section, where 

generalized Volterra kernels are defined, which are more 

general, and thus more accurate, and can be pruned to smaller 

models, and thus are less expensive in terms of resources (after 

pruning). Their higher accuracy is due to their higher generality, 

whereas the lower computational cost depends on two factors: 

first, the setup cost is significantly reduced because each 

parameter of the model is only multiplied by a monomial, 

instead of the sum of 2��� monomials; second, the number of 

coefficients which remain after pruning is lower, for the same 

accuracy. 

III. GENERALIZED VOLTERRA MODELS 

Complex Volterra models are equivalent to real Volterra 

models but operate on the baseband complex components 

instead of the intermediate frequency signal. 

There is one hypothesis behind the derivation of complex 

Volterra model: all the monomials of the basis functions are 

multiplied by the same parameter. To keep the explanation 

simple, we consider a third-order Volterra model with no 

delays: 

 

.

�=>�� − -	�=>�� − J	 = 1
2 ℜH��>�� − -	��>�� − J	ABCD��E�%�K! + ��>�� − -	��>∗ �� − J	ABCD��%MK!I = 

= �
� ℜHN��>�� − -	��>�� − J	ABCD�E�%�K! + ��>�� − -	��>∗ �� − J	ABCD��E�%MK!OABCDEI (9) 
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��>��	 = ∑ ��>0 ��	P07�  (10a) 

��>� ��	 = $)����	 (10b) 

��>� ��	 = �
� $))� �����	ABCDE + |���	|�A�BCDE! (10c) 

��>P ��	 = �
R $)))P ��P��	AB�CDE + 3|���	|����	! (10d) 

 

Three of the four terms in the third-order kernel are 

equivalent for 0 lags, but are in general different. Also, all phase 

shifts are 0 for 0 lags, but in general will not be so. This simple 

model has 1 first-order term, 2 second-order terms and 2 third-

order terms (instead of 4), plus three frequency modulators. The 

model has only three unknowns, $@)F0
, because  

 �/ = @1,2,3F! = 0. Of course, such model would be much 

more complex for larger delays and orders. 

The hypothesis in complex Volterra theory is that the 

polynomial terms for the same kernel and lag shall be 

multiplied by the same coefficient. By removing this hypothesis 

we obtain a new generalized model, that has 20�� − 1 more free 

coefficients for each term of degree /. In our toy example (Eq. 

10), there would be 1 additional term for the 2nd-order kernel, 

and 3 for the third-order kernel (actually, for zero lags two such 

terms are identical). 

This relaxation will yield a more complex model with better 

accuracy, because it has more degrees of freedom: the original 

model can be obtained by constraining the related coefficients 

to be equal. The fact that the obtained model is more general 

implies that it will be more accurate, if there are no estimation 

problems due to the larger number of free parameters. Such an 

issue will be tackled through pruning in the next sub-section. In 

the same simplified assumptions seen above, the proposed 

model will be: 

 

��>��	 = ∑ ��>2 ��	P07�  (11a) 

��>� ��	 = $)����	 (11b) 

��>� ��	 = $))T� ����	ABCDE + $))U� |���	|�A�BCDE (11c) 

��>P ��	 = $)))TP �P��	AB�CDE + $)))UP |���	|����	 (11d) 

 

There are now five unknown terms instead of three. The 

original model can be obtained if $)))TP = �
P $)))UP = �

R $)))P  and 

$))T� = $))U� = �
� $))� . 

The generalized model will have a much larger number of 

free parameters. Because of the large increase in model 

coefficients, pruning is required to reduce model complexity. 

A. Pruning via OMP and OBS 

Though pruning of the model is of the essence to reduce 

model complexity, there is another approach that is widely 

exploited in the literature for the same reason: restricting the 

Volterra models with a priori hypotheses on the structure of the 

nonlinear kernels. 

For instance, forcing  � = 0 will yield a model with static 

nonlinearities, which is the simplest (though usually inaccurate) 

nonlinear model which can be used: the number of nonlinear 

coefficients would be � − 1, one for the 2nd-order term, one for 

the 3rd-order term, and one for each order up to �. A static 

nonlinear model is a subset of Volterra models, but based on 

very restrictive hypotheses on the nature of nonlinearities. 

A less restrictive class of models are memory polynomial 

(MP) models [27], which force distortions terms to have the 

same delay, so that 5� = 5� = ⋯ = 50 for each kernel of order 

/, with 5� = 0, … ,  0. Hence, there would be  0 terms of order 

/, instead of a number of terms which grows as  00//! as in 

Volterra kernels. Also these models are included in Volterra 

theory, though they represent a small subset of Volterra models, 

given the strong restrictions on the delay indexes. 

Generalized memory [28] polynomials are even less 

restrictive because they allow products with the leading and 

lagging terms of the samples. 

Other models lift the hypothesis of linear dependence of the 

parameters and are thus not LIP, such as modified generalized 

memory polynomials (MGMP) [27], and are not considered in 

this paper. 

Pruning uses a different approach: the choice of the 

parameters to consider is not made a priori, as in restricted 

Volterra models, but results from some algorithm which 

chooses the most promising subset of parameters from the data. 

The desired response of the system, ���	, can be recorded in 

a column vector X of size Y × 1. The * linear and nonlinear 

functions of the system output ���	, which correspond to the 

monomials of the Volterra kernels, can be put in a design matrix [ of size Y × *, and the unknown parameters $ are a column 

vector of size * × 1. Hence: 

 X = [$ ↔ A = X − [$ (12) 

 

Model estimation consists in minimizing the energy of the 

error vector A, choosing the parameter vector $ optimally. Such 

an estimation problem can be performed using conventional 

least squares techniques, under the assumption that the model 

is well specified: Y ≫ *, and the columns of [ are not linearly 

dependent. If these hypotheses fail, $ cannot be robustly 

estimated. 

Orthogonal Matching Pursuit (OMP) is the standard 

technique for model pruning from the simplest to the most 

complex model: the algorithm is greedy, and thus suboptimal, 

and iterative, choosing one additional input vector per iteration 

[19-20]. The OMP algorithm computes the correlations 

between the desired output X and the columns of [, and selects 

the column with the highest correlation: this provides the 

optimal model of size 1, i.e., the model with only one parameter 

which minimizes the error energy. Once a first parameter is 

obtained, the selected column is used to regress both the desired 

output and all the remaining columns of [. This regression 

makes both X and [ orthogonal to the selected variable (the new [ will have * − 1 columns). The algorithm can be reiterated *^K0 ≤ * times, and selects a model with one additional 

parameter at each iteration. There is no guarantee that the 

algorithm will select the optimal model with *^K0 parameters, 

because the algorithm is greedy and optimal only for one step. 

However, OMP is robust, easy to use, and usually effective. 

Moreover, there is no computationally feasible alternative, 
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because there are 
N(M(`a4O!

(!(`a4!  possible subsets of *^K0 columns of 

the * columns of [, and it is unfeasible to try all the 

combinations, though a brute force method would yield the 

optimal model by exhaustive search. 

On the other hand, the Optimal Brain Surgeon (OBS) 

algorithm [18, 21-22] starts from the full model and removes 

one variable at the time, selecting the one that influences the 

residual error the less. The impact of each variable on the error 

depends on the curvature of the error curve and the value of the 

parameter, and variables which are either small or have small 

curvature are removed first. The goal is to reiterate the 

algorithm many times, to obtain a model of complexity  *^Ub ≪ * while retaining accuracy. 

The two techniques operate in opposite directions: the OMP 

from the simplest to the most complex model, and the OBS 

from the complete to the simplest model. The best technique is 

the one that selects the minimum-error pruned model for a 

given complexity: in general, none of the two techniques 

outperforms the other for all desired pruning levels, and 

combining the two allows finding a better approximation of the 

complexity-accuracy trade-off [18]. 

To the extent that *^K0 , *^Ub ≪ *, and that the pruned model 

is not much less accurate than the full model, the new pruned 

model will have much lower computational cost, lower 

estimation time, and better numerical stability and accuracy 

properties. Since heavily correlated columns are never selected, 

the resulting pruned models are usually well behaved: if a 

column were linearly dependent on the previously chosen ones, 

its residual would be zero, and it would be discarded. 

B. Estimating complex models 

Estimation in the complex domain always yields complex 

desired vectors X and design matrices [, but in the conventional 

Volterra model the unknown parameters $ remain real. We use 

the subscripts d and e for the real and imaginary parts of the 

vectors, respectively. The error is A = � − [$ = = ��f − [f$! + g��= − [=$!. The Euclidean norm of the error 

is AhA = AfhAf + A=hA=, where the superscript < is the transpose 

operator: minimizing the error implies minimizing the sum of 

the error on the real and imaginary terms. Hence, the optimal 

Euclidean norm model is: 

 

$ = i�[fh [=h! j[f[= kl
��

i�[fh [=h! jXfX= kl (13) 

 

Hence, complex models with real coefficients can be 

estimated as real models with real coefficients. In the case of 

Equation (13) the real equivalent model has * unknowns and 2Y equations. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

This Section describes the experimental setup and discusses 

the results. A commercial IF amplifier has been measured with 

QAM-64 input waveforms, and calibrated with and without 

pruning, using both the conventional and the proposed 

generalized Volterra models. 

A. Experimental setup 

The ZX60-100VH+ amplifier [27] has been tested. The setup 

includes 3dB of attenuation before the amplifier, and 30dB of 

attenuation [28] after the amplifier. The nominal gain of the 

amplifier is 36dB, hence the overall chain has an expected gain 

of about 3dB. The full-scale value of the DAC is 1Vpp and the 

input waveform has a peak-to-peak swing of 900mVpp. The 

full-scale value of the ADC is 2Vpp, so that the expected output 

swing of the received waveform is about 32% of the full swing 

of the ADC. The amplifier is driven close to the back-off input 

power, to make distortions evident. 

The experimental setup is composed of an FPGA board 

connected to an ADC-DAC FMC150 board [29]. The board has 

two 250MS/s 14-bit ADCs and two 500MS/s 16-bit DACs. 

Only one DAC and ADC are used, and both are clocked 

synchronously at 250MS/s. A file containing 16.384 samples is 

sent to the FPGA and then to the DAC, whereas the ADC 

records 131.072 samples, i.e., 8 copies of the same input (the 

DAC repeats the same waveform continuously). Several QAM-

64 waveforms have been acquired to allow averaging and 

investigate noise performance. 

The DAC includes a built-in 82MHz filter, and both the ADC 

and the DAC are AC-coupled, with a low cut-off frequency of 

3 and 0.4MHz, so that the effective bandwidth of the system is 

about 3-80MHz. The measurement chain includes an anti-

aliasing lowpass SLP-100 filter by Mini Circuits, with 100MHz 

bandwidth [30]. The DAC-ADC chain, including both filters, 

has an EVM of less than 0.4%, an order of magnitude lower 

than those of the amplifier under calibration, so that the error – 

nonlinear and stochastic – due to the setup is negligible. 

B. Characterization of the IF amplifier 

Figure 1 shows the transmitted and received signal spectra. 

The input has 50MHz bandwidth around a 50MHz carrier 

frequency, and spectral regrowth is clearly evident in the output 

spectrum (red) with respect to the input spectrum (black). 

The output spectrum has about 3dB gain loss at 80MHz, 

compatibly with the 80MHz pulse-shaping lowpass filter after 

the DAC. The nonlinear spectral regrowth after the amplifier is 

attenuated after 100MHz by the anti-aliasing lowpass filter 

before the ADC. 

Figures 2 and 3 show the EVM, SER and constellation after 

equalization with 9 coefficients. A linear model with 9 

coefficients only corrects linear errors, and it is evident that 

equalization alone is not enough for reliable reception of the 

QAM-64 waveforms. Longer filters do not reduce the EVM, 

because most errors are nonlinear, and the frequency response 

of the setup is rather flat over the 50MHz bandwidth. 

The residual error is not due to noise, because a total of 14 

waveforms have been acquired and averaged (with a theoretical 

process gain of 11.5dB), but no difference between the 

averaged and non-averaged EVM have been observed. Hence, 

most of the EVM is due to residual nonlinear ISI, and not to 

noise, otherwise the EVM would have fallen with averaging. 
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Fig. 1.  Input (black) and output (red) spectrum. Spectral regrowth is clearly 

visible at the output. Attenuation after 100MHz is due to the antialiasing filter. 

 

Fig. 2.  EVM (top) and SER (bottom) after equalization with 9 linear 

coefficients and offset correction. Transmission errors are evident, and the 
EVM is too large. Longer linear filters do not improve accuracy. 

 
Fig. 3.  Received constellation after equalization. The QAM-64 constellation 

should form a square of 8 dots per dimension. Noise is limited (the central dots 

are small), but heavy distortion occurs at the corners, owing to nonlinear effects. 

Such distortions produce transmission errors, as evidenced in Fig. 2. 

Hence, nonlinear models are required to improve EVM and 

SER, as the residual error is neither stochastic nor linear. 

C. Calibration with the conventional Volterra model 

Figures 4 and 5 show the SER, EVM and constellation after 

calibration with a conventional Volterra model with lag 

structure (8, 4, 4, 2, 2). This means that the linear section has a 

maximum delay of 8, the quadratic and cubic parts a maximum 

delay of 4, and the 4th- and 5th-order sections a maximum delay 

of 2. The model has 96 coefficients and needs pruning to reduce 

its computational cost, but EVM falls to 2.8% and SER to 0. 

Figure 6 shows the pruning of the conventional Volterra 

model using the OMP and OBS methods. Figure 7 shows the 

constellation after pruning to 22 coefficients. EVM is 3.1% and 

no transmission errors are present. 

D. Calibration with the generalized Volterra model 

Figures 8 and 9 show the impact of calibration with the 

generalized Volterra model. The lag structure of the 5th-order  

 

Fig. 4.  EVM (top) and SER (bottom) after calibration with the conventional 

Volterra model. No transmission errors are present, and EVM is 2.8%. 

 
Fig. 5.  Received constellation after calibration with the conventional Volterra 

model. The QAM-64 constellation should form a square of 8 dots per 

dimension. Noise is limited (the central dots are small), and distortion is still 

evident at the corners, but overall the symbols are well spaced. 

A
�

p
�it

u
d
e
 (
d
B

)
E

V
�

 (
%

)
S

y
�

b
�

� 
E

rr
�

rs

E
V

�
 (

%
)

S
y
�

b
�

� 
E

rr
�

rs



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

 

Fig. 6.  Pruning of the conventional Volterra model using the OMP and OBS 

methods. 

 

Fig. 7.  Received constellation after calibration with the conventional Volterra 

model after pruning to 22 coefficients, 10 linear and 12 nonlinear. 

model is (8, 4, 4, 2, 2), so that there are 9 linear coefficients, but 

many more nonlinear ones. The total number of coefficients 

before pruning is 636, making the model completely 

impractical. The resulting error is 2%, significantly lower than 

in the conventional Volterra model (Fig. 6), but at a much larger 

computational cost. The constellation in Fig. 9 is much better 

spaced and closer to the ideal square of 8 symbols per 

dimension than with the conventional Volterra model (Fig. 7), 

implying that the model is significantly more accurate. Pruning 

is of the essence, however, to make it practical. 

Figure 10 shows the effect of pruning with the OMP and OBS 

methods, while Fig. 11 shows the constellation after pruning to 

18 coefficients, 10 for the linear part and 8 for the nonlinear 

part. EVM is 3.1% and SER is 0, though the constellation is 

again distorted. 

Pruning to 9 nonlinear coefficients of the generalized 

Volterra model yields the same EVM as pruning to 12 of the 

conventional Volterra model. Furthermore, the basis functions 

of the generalized Volterra model are cheaper to compute,  

 

Fig. 8.  EVM (top) and SER (bottom) after calibration with the generalized 
Volterra Model with 636 coefficients. No transmission errors are present, and 

EVM is 2.0%. However, the model is expensive and impractical. 

 
Fig. 9.  Received constellation after calibration with the generalized Volterra 

model. The QAM-64 constellation should form a square of 8 dots per 
dimension. Noise is limited (the central dots are small), and some distortion is 

still evident at the corners, but overall the symbols are well spaced. 

Unfortunately, the model has 636 coefficients and is impractical without 
pruning. 

 

Fig. 10.  Pruning of the generalized Volterra model. 
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because they are just monomials, and not the sum of 20�� 

monomial terms for the conventional Volterra kernel of order /. Hence, there is a great advantage in terms of computational 

complexity, and also an advantage in terms of estimation time 

and numerical stability, as both depend on the number of the 

parameters to estimate. 

Figures 12 and 13 compare the results of pruning of the two 

models. The conventional Volterra model starts with 96 

coefficients, while the generalized Volterra model with 636. 

However, pruning is much more effective in the generalized 

Volterra model, resulting in a more accurate and cheaper model 

after extensive pruning. The two figures differ because Fig. 12 

considers complexity as the number of coefficients to estimate, 

whereas Fig. 13 reports the setup cost required to compute all 

the basis functions, as the number of complex products required 

to compute each of them. The setup cost in Fig. 13 is paid for 

each calibrated output (once per sample), whereas the number 

of coefficients in Fig. 12 influences the cost of the estimation 

algorithm to compute the optimal model coefficients. 

After pruning to 9 nonlinear coefficients (and 10 linear 

coefficients), only 1 of the 2nd-order term remains, plus 6 3rd-

order terms, and 2 5th-order terms. Hence, the setup cost 

consists in computing 9 monomial terms, most of them of the 

3rd-order. 

Compared with the conventional model, which achieves the 

same EVM and SER with 12 coefficients, 4 of the 2nd-order, 6 

of the 3rd-order, and 2 of the 5th-order, the setup cost is much 

lower, because there are 9 monomials to be computed, instead 

of 64 (20�� for each /-order term). 

Hence, not only 9 coefficients instead of 12 are to be 

estimated, but 9 monomial terms (of various orders) instead of 

64 are to be computed for each sample to perform the real-time 

computation of the calibrated output. 

Considering that the computation of each monomial of order / requires / complex multiplications (/ − 1 for the lagged 

input terms, and one for the phase shifter), plus eventually 

another complex multiplication for the terms that are frequency  

 

Fig. 11.  Constellation after pruning to 19 coefficients (10 linear and 9 

nonlinear). 

 

Fig. 12.  Comparison of pruning for the two models in terms of number of 
coefficients: conventional (black) and generalized (red) models. The 

generalized model is much more accurate for the same number of coefficients, 

yielding a significantly smaller model for the same accuracy. 

 

Fig. 13.  Comparison of pruning for the two models in terms of setup costs: 
conventional (black) and generalized (red) models. For the same accuracy, the 

generalized model has much lower computational complexity, if the setup costs 

are also included. With a few tens of complex multiplications per sample, the 
generalized model has the same accuracy as the conventional model, requiring 

hundreds of complex multiplications. 

modulated, the setup cost of the conventional model pruned to 

12 coefficients is 266 complex multiplications. On the other 

hand, the setup cost of the generalized model with 9 coefficients 

is only 34 complex multiplications: an 87% reduction in setup 

cost is thus obtained. 

E. Comparison with other LIP feedforward models 

The generalized Volterra model with 9 coefficients, requiring 

34 complex multiplications, achieves a residual EVM of 3% 

and shows no SER in the dataset. We use the static nonlinear 

model, the MP model [27], a trigonometric [33] and polynomial 

[34] FLANN model as a comparison. 

Neural network models [35] typically involve multiple 

layered nonlinearities that make the models nonlinear in the 

parameter space, so that the LIP hypothesis is not fulfilled. An 
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exception are FLANN models with a linear output layer, 

including the random vector variant [36], but also radial basis 

function (RBF) models [37]. However, RBF models require a 

choice of the centers and width of the kernels which cannot be 

performed with linear estimation, whereas random vector 

functional link (RVFL) models have a random layer (chosen a 

priori) whose effectiveness depends on the choice of the 

random values. Hence, these models are out of scope for our 

comparison. 

Restricted Volterra models are subsets of Volterra models, 

and thus their extension to complex-valued data is 

straightforward. For FLANN models, we consider the real and 

imaginary parts of the input and output signals as two separate 

channels, thus losing the structure of complex arithmetic. 

Hence, trigonometric FLANN models have 8 real coefficients 

for each delay J and order /, with basis functions cos�;/��� − J	! and sin�;/��� − J	!. For polynomial 

FLANN models, terms are multiplied together alternating 

conjugated and non-conjugated complex terms to keep the 

terms around the carrier [38, 39]. 

As expected, static and restricted Volterra models are much 

less accurate, and though relatively simple, they are 

outperformed by pruned Volterra models. No such models 

achieve zero SER and EVM is larger. Static polynomials are no 

more effective than mere linear equalization. MP polynomials 

cause EVM to fall from 5.4% (equalization only) to 3.9%, at a 

cost of 26 parameters: hence, the models are more complex and 

less accurate. Trigonometric and polynomial FLANN models 

fare no better (EVM of 4.6 and 4.3%, respectively), with lower 

accuracy and larger complexity than the MP model. All these 

models have been tested with kernels up to the fifth order, and 

delays up to 4 terms. 

The lower accuracy of these models is likely due to their 

relatively simple time structure, because there are no product 

terms derived from different input samples, unlike in Volterra 

models. The problem of complexity in Volterra models is thus 

better solved by extensive pruning than by a priori restrictions. 

V. CONCLUSION 

A novel model for nonlinear systems has been proposed and 

experimentally validated. The model is a generalization of 

complex Volterra models, and provides better accuracy and/or 

lower computational cost after pruning with the OMP and OBS 

methods. Hence, the model provides a significant improvement 

in the accuracy-complexity trade-off for the calibration of 

nonlinear systems. 

The main idea is to perform calibration in the complex 

baseband domain with a model that is more general, more 

accurate, but more computationally expensive than the 

conventional Volterra model, and then prune the model to a 

much lower computational cost, though with the same accuracy 

as the pruned conventional Volterra model. 

The fact that the generalized Volterra model is more general 

than the conventional one, as conventional Volterra models are 

a subset of the proposed class od models, implies that the model 

is more accurate, but also more complex. However, pruning is 

more effective in the generalized model than in the 

conventional Volterra model, and the computational 

complexity of the proposed model is significantly lower. 

The computational cost advantage is due to two reasons: the 

number of free coefficients is lower for the same accuracy, and 

the setup cost is much lower. This is due to the fact that in the 

conventional Volterra model, a term of order 3 is computed as 

the time delayed, phase shifted and eventually frequency 

modulated sum of 4 different monomial terms, whereas in the 

generalized model there are 4 different coefficients, that are 

then pruned: hence, instead of computing four monomials of 

order 3, only one is needed. For 4th- and 5th- order kernels, the 

advantage is even more significant, as 8 and 16 monomials, 

respectively, are to be computed and summed together for every 

nonlinear coefficient, whereas the generalized Volterra model 

only uses one monomial. 

The experimental results prove that the same accuracy (in 

terms of EVM) can be obtained with 9 coefficients in the 

generalized Volterra model, requiring the calculation of 34 

complex products to compute all the basis functions. The 

conventional Volterra model requires 12 coefficients, but with 

a setup cost of 266 complex products. Hence, a 25% reduction 

in terms of number of coefficients to estimate, and an 87% 

reduction of setup costs, have been obtained. Such a large 

reduction in computational costs is mostly due to the fact that 

only one monomial term of degree / shall be computed for each 

coefficient of order /, instead of the sum of 20�� monomial 

terms of order / required in the conventional Volterra model 

for the same coefficient. 
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