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A B S T R A C T   

Spatiotemporal changes in land surface temperature (LST) over South Asia were estimated using MODIS 
(moderate resolution imaging spectroradiometer) data from 2000 to 2021. We calculated the monthly and 
annual LST trends and magnitudes by applying the Mann–Kendall test and Sen’s slope estimator at both ecor
egion and pixel level. More ecoregions experienced daytime cooling than warming. Central and west South Asia 
showed the highest daytime cooling in December compared to the nighttime warming in the central and 
northwest in July and September. Nineteen ecoregions demonstrated monthly daytime cooling trends at the 99% 
confidence level (CL), with the highest record observed in ecoregion ‘Indus Valley desert’ in March with the 
magnitudes of − 0.26 ◦C/yr. While the monthly and annual nighttime warming magnitude was the maximum in 
‘Gissaro-Alai open woodlands’ in December (0.19 ◦C/yr at 95% CL), and ‘Indus River Delta-Arabian Sea mangroves’ 
at annual scale (0.06 ◦C/yr at 99% CL). To understand the influence of large-scale atmospheric oscillations on the 
trends, we also correlated the estimated LST trends with the selected oscillation indices. Sea surface temperature 
(SST) Niño 3.4 showed the most significant influence on the trends, where it was positively correlated with 38 
ecoregions during nighttime over the year. A better understanding of temperature trends and impacts on South 
Asia would guide sustainable development and ensures the excessive demands on food, water, and energy 
supplies coping with the growing population.   

1. Introduction 

The spatiotemporal variations in temperature (global, regional, and 
local scales) and related consequences of climate change are threatening 
human existence, ecological communities, and socioeconomic devel
opment across the world (Ahmed et al., 2019b; Di Cecco and Gouhier, 
2018; Luintel et al., 2019; Mallick et al., 2022a; Mondal et al., 2014). 
Over the past decades, the global temperature is mostly increasing at a 
notable rate (IPCC AR5, 2013), which plunders the living planet Earth 
by disrupting the normal nature balance and forcing extreme changing 
weather patterns. Understanding the principal driving factors of 
warming/cooling trends is the cornerstone for the better implementa
tion of appropriate adaptation and mitigation policies under the tem
perature changing scenario for a sustainable environment. However, the 
detailed perception, quantification, and interpretation of the tempera
ture variations, their driving factors, and related consequences have not 

been done yet for many regions of the world, including the South Asia 
region. The region consists of eight countries–Afghanistan, Bangladesh, 
Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka, and a living 
place for about one-fourth (~24%) of the world’s population (Babel and 
Wahi, 2008; The World Bank, 2020) in just ~3.5% of the world’s land 
surface area. The Himalayas, with Mount Everest–the highest mountain 
in the world, is a major geomorphic landform bordering the north of 
South Asia that plays a major role in shaping the climate and ecology of 
the region (Midhuna and Dimri, 2019). It is characterized by snowy 
peaks and tropical to subtropical climatic conditions at lower and higher 
altitudes, respectively (You et al., 2017), and controlling the regional 
weather. The Himalayan glaciers provide the major water supply to the 
river basins that have experienced volume and mass loss due to the 
accelerated rate of temperature variations since the mid-twentieth 
century (Charles, 2008; Nie et al., 2021; Pepin et al., 2015). Also, 
global warming potentially exerts additional stress on fresh water’s need 
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for safe drinking and irrigation, particularly with the rising population. 
Besides, under constant drying conditions in South Asia (Zhai et al., 
2020), it becomes a challenge to ensure the supply of food, freshwater, 
and energy for the world’s poor (40%) and food–energy deficient pop
ulation (51%) (Ahmed et al., 2007). It is crucial, therefore, to evaluate 
the long- and short-term patterns and magnitudes of temperature vari
ations for sustainable development in the region; although some 
country-specific studies were found in the literature for Bangladesh 
(Mallick et al., 2022a), India (Mondal et al., 2014), Nepal (Luintel et al., 
2019), and Pakistan (Ahmed et al., 2019b). 

Studying the patterns and magnitudes of spatiotemporal changes in 
temperature are essential to understand the associated climate change 
consequences. For instance, daily air temperature datasets from 21 cir
culation models were analyzed between 1871 and 2099 (Di Cecco and 
Gouhier, 2018) to understand how climatic changes would affect the 
trends. Also, the Intergovernmental Panel on Climate Change (IPCC) of 
the United Nations used three gridded global air temperature datasets, i. 
e., CRU TS 4.04, Berkeley Earth, and HadCRUT5 from CRUTEM5 and 
HadSST4 (Intergovernmental Panel on Climate Change (IPCC), 2022), 
for recent past periods to estimate the global warming of 1.5 ◦C above 
pre-industrial levels (IPCC, 2018). Weather stations around the globe 
measure air temperature for the station-point locations that were used 
for generating these gridded datasets. However, the generation of these 
datasets is based on the unweighted averaging of the station/location- 
specific temperature changes (Rahaman et al., 2017). It is because 
weather stations are densely populated usually in the population centres 
or agricultural lands and scarce in mountainous or desert areas (Cas
tellanos-Acuna and Hamann, 2020; Menne et al., 2012), and many 
countries have a very limited number of stations (Gubler et al., 2017). 
Therefore, it may fail to produce continuous surface temperature dy
namics over the non-populated areas of large geomorphic landforms, i. 
e., mountains and deserts, in the region. Another efficacious alternative 
is to use land surface temperature (LST) of space-borne remote sensing 
dataset because of its capacity to provide continuous surface tempera
ture in a finer spatial resolution (e.g., 1 km or better), covering nearly 
the entire globe. It also have the advantages of repetitive coverage, 
synoptic view, and near real-time capacities (Ahmed et al., 2019a; Akbar 
et al., 2019; Tan et al., 2021). It would also be helpful to correlate 
spatiotemporal dynamics in temperature with any land cover changes 
(Jiang et al., 2021; Tepanosyan et al., 2021) in South Asia region. 

Moderate resolution imaging spectroradiometer (MODIS) onboard 
Terra/Aqua satellite-derived LST products have been widely employed 
for local, regional, and global studies in delineating temperature trends 
since 2000, where both Mann-Kendall and linear regression techniques 
were commonly used for the time-series analysis (Dewan et al., 2021; 
Liu et al., 2020; Luintel et al., 2019; NourEldeen et al., 2020; Yan et al., 
2020). Processed MODIS LST products are available in three temporal 
resolutions– daily, 8 days, and monthly with spatial resolutions of 1 km 
and 0.05◦ (~5.6 km). These products are analyzed for diurnal (daytime), 
nighttime, daily, monthly, seasonal, and annual temperature changes. In 
South Asia, a study on Nepal used the MOD11C3 v006 product of 
monthly data at a 5.6 Km spatial resolution, and showed an increasing 
patterns of the nighttime LST (2000–2017) (Luintel et al., 2019). 
Another study in Bangladesh used MOD11A2 v006 product (8-day/ 1 
km) for the 2000–2019 period and reported the annual warming trends 
were greater in the larger cities than in the smaller cities (Dewan et al., 
2021). The MODIS LST datasets have been utilized for similar studies on 
the globe and other regions/countries since their availability in 2000, 
such as at the scale of entire world (Liu et al., 2020), North America (Yan 
et al., 2020), South Africa (NourEldeen et al., 2020), Gongga Mountain 
in China (Zhao et al., 2021), Tibetan Plateau (Yang et al., 2021), Jordan 
(Jaber and Abu-Allaban, 2020) and the forests in Aysén region of Chile 
(Olivares-Contreras et al., 2019). 

While the above studies showed mostly the warming trends, some 
also reported daytime cooling trends (sometimes both warming and 
cooling) for many countries/regions. For example, Eleftheriou et al. 

(Eleftheriou et al., 2018) reported the decrease in annual and seasonal 
trends (2000–2017) in Greece, except winter. Mao et al. (Mao et al., 
2017) found daily and seasonal cooling trends in northern regions of 
China, Mongolia, southern regions of Russia, western regions of Canada 
and America, eastern and northern regions of Australia, and the south
ern tip of Africa over the period 2001–2012. Also, Hassan et al. (Hassan 
et al., 2021) documented daytime cooling in July and August (summer), 
and November (early winter) for the southern and southeastern natural 
subregions (sub-ecoregions) of the Alberta province in Canada. The 
study indicated that ecoregions have a combined influence of climate, 
topography, and geology due to the variable landscape patterns (land 
cover), vegetation, soil types, and physiographic features, thus influence 
the LST trends. Therefore, it might be possible that some ecoregions in 
South Asia would show cooling trends due to the land cover dynamics 
and influences of large-scale atmospheric oscillations, in contrast to the 
global warming trend. 

Atmospheric oscillations were shown in the literature as an influ
ential factor of temperature changes in south Asian countries (Iqbal 
et al., 2016; Islam et al., 2021; Mallick et al., 2022b). In Bangladesh, 
warming trends were found significantly associated with Atlantic Mul
tidecadal Oscillation (AMO), Arctic Oscillation (AO), East Asian Summer 
Monsoon Index (EASMI), Sunspot, and South Asian Summer Monsoon 
Index (SASMI), and cooling trends were linked with AMO for the period 
1980–2017 (Islam et al., 2021). Another study showed a significant 
connection with multivariate ENSO (El Niño-Southern Oscillation) 
index (MEI), Sea Surface Temperature (SST), Southern Oscillation Index 
(SOI) and Indian Ocean Dipole (IOD) during the same period (Mallick 
et al., 2022b). A correlation analysis study in Pakistan was also carried 
out to depict the relationships of the maximum and minimum temper
atures between 1952 and 2009 with oscillation indices (Iqbal et al., 
2016). The highest correlations were reported in the pre-monsoon 
months, i.e., from January to March with North Atlantic Oscillation 
(NAO) and May with ENSO, and the late pre-monsoon month May with 
North Sea Caspian (NCP) index. The lowest correlation coefficients were 
observed with the AO pattern (Iqbal et al., 2016). Other studies were 
also conducted on Bangladesh, India, and Nepal in finding the re
lationships of atmospheric oscillations (ENSO, PDO—Pacific Decadal 
Oscillation, AO, and SST-Nino3.4) with drought events (Azad and 
Rajeevan, 2016; Shahfahad Talukdar et al., 2022; Sharma et al., 2021; 
Wang et al., 2013)— mainly a function of variations in precipitation and 
temperature; and precipitation (Azad and Rajeevan, 2016; Krishna
murthy and Krishnamurthy, 2013; Wahiduzzaman, 2012)— controls the 
temperature variations. While studies showed having the influences of 
atmospheric oscillations on temperature variations in some countries of 
South Asia, we did not find any similar study for the region as a whole. 

In this research, the main aim was to study the spatiotemporal var
iations of LST acquired from MODIS over the South Asia region from 
2000 to 2021, and its associated potential driving factors. It can 
contribute to a better understanding of temperature impacts on South 
Asia for a sustainable development to ensure the excessive demands to 
food, water (drinking and irrigation), and energy supplies with the 
tremendous growth of population. In this context, the detailed objec
tives were to: (i) estimate the magnitudes and trends of monthly and 
annual day and nighttime LST time-series over South Asia applying the 
Mann–Kendall test and Sen’s slope estimator, both object- (ecoregion) 
and pixel-based; and (ii) correlate the estimated LST trends with the 
selected indices of large-scale atmosphere oscillations, such as ENSO 
(includes SST - Niño 3.4, SOI, and OLR—outgoing longwave radiation), 
Dipole Mode Index (DMI), PDO, AO, and North Atlantic Oscillation 
Index (NAO), to determine any potential influence of atmospheric cir
culations on the temperature trends in South Asia. 
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2. Materials and methods 

2.1. Study area description 

The region South Asia was our study area, which is defined in many 
ways by multiple global organizations. We adopted the definitions of 
United Nations and World Bank of comprising eight countries— 
Afghanistan, Bangladesh, Bhutan, India, Nepal, Maldives, Pakistan, and 
Sri Lanka. It is located between 5◦ and 37◦ in the northern hemisphere 
with diverse geomorphic and geologic features (Sharma, 2012), 
including a mountain system (the Himalayas), a plateau (Deccan 
plateau), large rivers (Ganges, Brahmaputra, and Indus), a delta 
(Ganges), a large plain (Indo-Gangetic), and offshore Islands, i.e., Sri 
Lanka and Maldives (https://geography.name/south-asia-landforms-an 
d-resources/). The Himalayas constitutes the northern border, the In
dian Ocean to the south, the Arabia Sea to the west, and the Bay of 
Bengal to the southeast of South Asia (Fig. 1). It has three major climatic 
zones, such as (i) a dry continental, subtropical climate (northern India 
and upland zone of Pakistan), (ii) equatorial climates (southern India 
and southwest Sri Lanka), and (iii) tropical climate (the rest of South 
Asia) (Xue and Yanai, 2005). Abundant precipitation occurs during 
monsoon (June–September), particularly in July with 350 mm (Clemens 
et al., 2021), while March to May becomes the warmest summer months 
(i.e., long dry season). Winter typically spans from November to 
February. The region has a diverse range of ecosystems and known as a 
hotspot of biodiversity (Hughes, 2017) with 63 ecoregions. It is worth 
mentioning that we excluded Maldives from our analyses, because 
islands that constitute Maldives are smaller than the spatial resolution of 
the MODIS datasets we used in this study. 

2.2. Data used 

We used three primary datasets in this study, such as (i) Terra/ 
MODIS LST image, (ii) ecoregions of South Asia, and (iii) tele
connections. Monthly Terra MODIS acquired daytime and nighttime LST 
(MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 
0.05 Deg CMG — MOD11C3 v061) images were downloaded from Na
tional Aeronautics and Space Administration’s (NASA) Land Processes 
Distributed Active Archive Center (LP DAAC) in Hierarchical Data 
Format (HDF) with a spatial resolution of 5.6 km. The start and end 
dates of the images were from 01 February 2000 to 31 December 2021. 
We used the latest version (v061) of MOD11C3 product because it has 
improvement over the previous versions with an enhance accuracy of 
LST estimations via different changes in the calibration processes. It 
changed to the response versus scan angle approach, adjusted for the 
optical crosstalk in Terra MODIS infrared bands, corrected Terra MODIS 
forward look-up table, and polarization correction of the reflective solar 
bands. 

The 63 ecoregions of South Asia were extracted from the global 
RESOLVE Ecoregions 2017 dataset consisting of 846 terrestrial ecor
egions of our living planet Earth that represents the biological diversity 
of fauna and flora (Dinerstein et al., 2017). The dataset was introduced 
in 2001 to support the analyses of the global climate change influence on 
nature by ecologists towards the modern conservation planning for a 
sustainable global environment. Monthly anomalies of the atmospheric 
oscillation indices (teleconnections data) were retrieved from the 
NOAA’s (National Oceanic and Atmospheric Administration) National 
Centers for Environmental Information— NCEI (NOAA, 2022) and 
Climate Prediction Center— CPC (NOAA/NWS, 2022) from 2000 to 
2021. It was used to find any relationships of LST trends with the large- 
scale oscillations in South Asia. 

2.3. Preparation of MODIS LST time series 

From the downloaded MOD11C3 v061 data, four layers, i.e., daytime 
LST, quality Layer of daytime LST, nighttime LST, and quality layer of 

nighttime LST, were extracted to generate the monthly images and 
clipped them for South Asia. The LST layers in each image were multi
plied by the scale factor of 0.02 to convert the LST values into Kelvin (K). 
The quality control layers in each image were used to determine the 
unqualified pixels and gaps resulted from the presences of cloud and 
aerosols during the time of acquisition. The pixels with LST average 
errors greater than or equal to three Kelvin (K) were excluded from the 
LST layers. The percentages of eliminated pixels for the day and night
time images were insignificant, i.e., 0.059 and 0.077%, respectively. 
Finally, time-series of monthly and annual day and nighttime LSTs were 
prepared by stack-layering the monthly images with qualified pixels for 
the period 2000 to 2021. 

2.4. Estimation of the pixel- and object-based LST trends 

We followed two different approaches in estimating the trends from 
the day and nighttime LST time-series— pixel-based and object-based. 
The pixel-based approach was carried out over each pixel in the time- 
series for both monthly and annual. For the object-based approach, we 
estimated the average values of the monthly and annual day and 
nighttime LSTs in the time-series for each of the 63 ecoregions. In both 
approaches, we utilized two non-parametric statistical methods, such as 
Mann–Kendall (MK) test (Mann, 1945) and Sen’s slope estimator (SSE) 
(Sen, 1968). MK analyzed difference in signs between observations, and 
SSE evaluated the magnitude and direction of the trends— warming or 
cooling. Through MK, we also determined the significance of the trends 
at 95 and 99% confidence levels. 

MK test statistic S was calculated by the following equation (Eq. 1): 

S =
∑n− 1

k=1

∑n

j=k+1
sgn

(
xj − xk

)
(1)  

where 

sgn
(
xj − xk

)
=

⎧
⎨

⎩

+1 if
(
xj − xk

)〉
0

0 if
(
xj − xk

)
= 0

− 1 if
(
xj − xk

)〈
0

(2) 

n is the number of observations, and xj and xk are from k = 1, 2, …, n- 
1 and j = k + 1, …, n in the LST time series. The mean of S is 0, and the 
variance of S is calculated as follows: 

var(S) =
n(n − 1)(2n + 5)

18
(3)  

when n > 10, the standard normal test statistic Z is computed as follows: 

Z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ if S > 0

0 if S = 0
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ if S < 0

(4) 

Positive and negative values of Z indicate increasing and decreasing 
trends, respectively. 

The magnitudes of trends in LST time-series were calculated by Sen’s 
slope estimator as follows (Eq. 5): 

β = Median
(

xj − xi

j − i

)

, j > i (5)  

where β is the Sen’s slope for the set of pairs (i, xi) in xi time series with 
the elements (xi,xj) fulfilling j > i. The outcomes of β > 0 indicates 
upward trend (warming), otherwise downward trend (cooling) during 
the LST time-series. 
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Fig. 1. Study area showing the ecoregions of South Asia.  
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2.5. Correlations of the atmospheric oscillation indices with LST trends 

The atmospheric oscillations linked with south Asia climate were 
initially discussed in the introduction part. Moreover, in the following 
sentences, the definition of each index is introduced (NOAA), 2022). El 
Niño and the Southern Oscillation (I.e., ENSO) is a periodic swing in sea 
surface temperature (El Niño) and the air pressure of the superimposing 
atmosphere (Southern Oscillation) over the equatorial Pacific Ocean and 
it includes SST, SOI, and OLR. SST denotes the average ocean temper
ature in the upper few meters. SOI is a standardized index to estimate the 
large-scale fluctuations in sea-level pressure between the western and 
eastern tropical Pacific. Long periods of positive (negative) SOI values 
overlap with anomalously cold(warm) ocean waters over the eastern 
tropical Pacific distinctive of La Niña (El Niño) phases. OLR is measured 
via the NOAA Advanced Very High-Resolution Radiometer (AVHRR) 
polar satellite to estimate the energy radiated from the warmer earth 
surface to cooler space. Positive (Negative) OLRs are denotative of 
improved (suppressed) convection, and accordingly, less (more) cloud 
tops’ coverage stands for La Niña (El Niño) phases. DMI indicates the 
anomalous east-west temperature gradient across the Indian Ocean. 
PDO is a reoccurring pattern of large-scale climatic variations due to the 
atmosphere and ocean interactions within the mid-latitude pacific basin 
that happens over multiple decades timescale (i.e., not seasons). The 
PDO extremes have either the positive (i.e., warm) phase or the negative 
(i.e., cold) phase, as described by anomalies in the ocean temperature at 
the northeast and tropical Pacific Ocean. AO is a pattern that fluctuates 
between the differences in atmospheric pressure in the polar and middle 
latitudes. During the positive phase, pressure differences are above 
average above the central Atlantic Ocean and below average over the 
arctic territories. In the negative phase, the circumstances are inverted. 
NAO is a periodic fluctuation in the atmospheric sea-level pressure 

between the Icelandic low-pressure system and the subtropical (Azores) 
high-pressure in the Atlantic Ocean. The pressure differences control the 
types of dominating winds. 

Correlation analyses were carried out between the anomalies of 
monthly atmospheric oscillation indices (SST Nino3.4, SOI, OLR, DMI, 
PDO, AO, and NOA) and the estimated LST trends for monthly day and 
nighttime. It was calculated by Pearson’s correlation coefficients (r) 
using the following equation (Eq. 6) (Deshmukh et al., 2022a, 2022b; 
Schober et al., 2018) with the significance at 95% confidence levels. It 
identified the impact of large-scale atmospheric circulations on the 
monthly temperature trends in South Asia. 

r =

⎡

⎢
⎣

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(yi − y)2

√

⎤

⎥
⎦ (6)  

where n is the number of observations, and the values and mean values 
of x and y variables are (xi and yi) and (x and y), respectively. 

To assess the performance of the coefficient values, we adopted a 
commonly used classification scheme, such as unsatisfactory (r ≤ 0.4), 
acceptable (r = 0.40 to 0.60), satisfactory (r = 0.60 to 0.70), good (r =
0.70 to 0.85), and very good (r = 0.85 to 1.00) (Hassan et al., 2021). 

3. Results 

3.1. LST trends in the ecoregions 

3.1.1. Daytime trend 
In general, more ecoregions in South Asia experienced both monthly 

and annual daytime cooling than warming during the period 2000–2021 
at the statistically significant level with 95% (Fig. 2A) and 99% (Fig. 2B) 

Fig. 2. Daytime cooling and warming trends in the ecoregions of South Asia. The confidence levels of the MK test and Sen slope estimator at 95% (A), and 99% (B). 
Time-step for months are January (Jan) to December (Dec), and the annual (Ann). Labels of the bars are the ecoregion number used in this study. 
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confidence. Twenty-five ecoregions showed monthly daytime cooling 
against fifteen warming ecoregions at the 95% confidence level, and 
nineteen ecoregions showed cooling against the six warming ecoregions 
at the 99% confidence level. At the 95% confidence, all months showed 
the daytime cooling at least in one ecoregion with the highest nine 
ecoregions in April, followed by eight ecoregions in December. February 
and June to October did not show any cooling ecoregion at the 99% 
confidence, where the highest nine ecoregions showed cooling in 
December. In contrast, January and March to November were warming 
at least in one ecoregion at the 95% confidence with the highest seven 
ecoregions in November. At the 99% confidence, warming was found in 
January, May, July, and October to December, where the highest in 
October for three ecoregions. Cooling was the highest in the ecoregion 
59: Indus Valley desert in March with the magnitudes of − 0.25 ◦C/yr 
(95%) and − 0.26 ◦C/yr (99%), and the lowest in the 50: Sundarbans 
mangroves in December with the magnitudes of − 0.03 ◦C/yr (95%) and 
− 0.04 ◦C/yr (99%). Monthly daytime warming was the highest for the 
ecoregion 8: Thar desert (0.15 ◦C/yr) in May and for the 6: Rann of Kutch 
seasonal salt marsh in July with the magnitudes of 0.15 ◦C/yr (95%) and 
0.18 ◦C/yr (99%), respectively. The lowest monthly daytime warming 
was observed in the ecoregions of 56: Mizoram-Manipur-Kachin rain 
forests and 34: Northeast India-Myanmar pine forests in October with the 
magnitudes of 0.02 ◦C/yr (95%) and 0.04 ◦C/yr (99%), respectively. 

In the case of daytime annual trends, we identified five cooling 
ecoregions (i.e., 2: Himalayan subtropical pine forests, 36: Deccan thorn 
scrub forests, 46: Western Himalayan subalpine conifer forests, 48: 
Western Himalayan broadleaf forests, and 54: Indus River Delta-Arabian 
Sea mangroves) against one warming (50: Sundarbans mangroves) at 
the 95% confidence level (Fig. 2A). Also, 11 ecoregions (i.e., 10: North 
Western Ghats moist deciduous forests, 18: North Deccan dry deciduous 
forests, 31: North Western Ghats montane rain forests, 32: Orissa semi- 
evergreen forests, 40: Narmada Valley dry deciduous forests, 43: East 
Deccan moist deciduous forests, 45: Godavari-Krishna mangroves, 49: 

Central Deccan Plateau dry deciduous forests, 51: Aravalli west thorn 
scrub forests, 53: Khathiar-Gir dry deciduous forests, and 59: Indus 
Valley desert) showed cooling trends opposed to the three ecoregions 
(20: Nicobar Islands rain forests, 23: Sri Lanka lowland rain forests, and 
30: Andaman Islands rain forests) with warming, at the 99% confidence 
level (Fig. 2B). The highest and lowest magnitudes of annual daytime 
cooling trend were − 0.07 and − 0.04 ◦C/yr for the ecoregions 36: 
Deccan thorn scrub forests and 2: Himalayan subtropical pine forests, 
respectively, at the 95% confidence level, and − 0.12 and − 0.03 ◦C/yr 
for 53: Khathiar-Gir dry deciduous forests and 45: Godavari-Krishna 
mangroves, respectively, at the 99% confidence level. On the contrary, 
the only annual warming ecoregion (50: Sundarbans mangroves) 
showed the magnitude of 0.01/yr ◦C at the 95% confidence, and the 
highest and lowest magnitudes at the 99% confidence were 0.05 and 
0.02 ◦C/yr shown by the ecoregions 20: Nicobar Islands rain forests and 
23: Sri Lanka lowland rain forests, respectively. 

3.1.2. Nighttime trend 
We did not find any monthly and annual nighttime cooling trend in 

the ecoregions of South Asia during the period 2000–2021 at the con
fidence levels of 95% (Fig. 3A and B) and 99% (Fig. 3C and D). The 
monthly warming magnitude was the maximum in 9: Gissaro-Alai open 
woodlands in December and 53: Khathiar-Gir dry deciduous forests ecor
egions in July with the values of 0.19 and 0.16 ◦C/yr, and the minimum 
in 45: Godavari-Krishna mangroves in September and 62: East Deccan dry- 
evergreen forests in June with 0.02 and 0.04 ◦C/yr at the confidence 
levels of 95 and 99%, respectively. In the annual nighttime warming 
magnitude, 59: Indus Valley desert (0.04 ◦C/yr at 95%) and 54: Indus 
River Delta-Arabian Sea mangroves (0.06 ◦C/yr at 99%) ecoregions were 
the highest, and 60: Chhota-Nagpur dry deciduous forests (0.02 ◦C/yr at 
95%) and 47: Lower Gangetic Plains moist deciduous forests (0.03 ◦C/yr at 
99%) were the lowest. 

Fig. 3. Nighttime cooling and warming trends in the ecoregions of South Asia. The confidence levels of the MK test and Sen slope estimator at 95% (A and B), and 
99% (C and D). Time-step for months are January (Jan) to December (Dec), and the annual (Ann). Labels of the bars are the ecoregion number used in this study. 
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3.2. Spatial trend 

The spatial analysis (pixel based LST trends) exhibited significant 
trends (over 95% confidence level) during the daytime in December and 
annual (Table 1, and Fig. 4A and B), and nighttime in July, September 
and annual (Table 1, and Fig. 4C to E) in at least 30% area of South Asia. 
Daytime in November was also very close, where the significant trends 
were observed in 29.79% area (Table 1). The highest spatial coverage of 
significant trends (35.56% in Table 1) was found in the daytime of 
December, with the areas of 34.42% cooling and 1.14% warming. In 
December, daytime cooling was mostly prevailed in the central, central- 
west, and central-east regions of South Asia, with the higher magnitudes 
in the central-west (Fig. 4A). The most dominant and higher magnitude 
(≤ − 0.3 ◦C/yr) of daytime cooling was in the 53: Khathiar-Gir dry de
ciduous forests ecoregion in the west of South Asia, followed by 40: 
Narmada Valley dry deciduous forests and south part of the 51: Aravalli 
west thorn scrub forests. The northern parts of 36: Deccan thorn scrub 
forests and 49: Central Deccan Plateau dry deciduous forests ecoregions 
also showed moderate to higher daytime cooling (less than − 0.11 ◦C/yr) 
in December, and the central-east ecoregions (e.g., 16: Upper Gangetic 
Plains moist deciduous forests, 18: North Deccan dry deciduous forests, 47: 
Lower Gangetic Plains moist deciduous forests, and 60: Chhota-Nagpur dry 
deciduous forests) represented moderate to low magnitudes (<0 to 
− 0.20 ◦C/yr). Annually, the daytime cooling followed the similar spatial 
patterns of December, but with lower magnitudes. The exception was in 
the central-east with limited areas of cooling in 16: Upper Gangetic Plains 
moist deciduous forests and 47: Lower Gangetic Plains moist deciduous 
forests, and an additional daytime cooling was observed in 2: Himalayan 
subtropical pine forests and the northern part of 51: Aravalli west thorn 
scrub forests. 

In July, the significant nighttime warming (over 95% confidence 
level) was demonstrated in the central-west, north central, and north
west of South Asia (Fig. 4C) with the higher magnitudes (>0.11 ◦C/yr) in 
the ecoregions of central-west (e.g., 51: Aravalli west thorn scrub forests; 
northern parts of 8: Thar desert, 38: Sundarbans freshwater swamp forests, 
and 53: Khathiar-Gir dry deciduous forest; western part of 49: Central 
Deccan Plateau dry deciduous forests; and southern parts of 8: Thar desert, 
16: Upper Gangetic Plains moist deciduous forests, 40: Narmada Valley dry 
deciduous forests, and 53: Khathiar-Gir dry deciduous forest). Moderate to 
low magnitudes of nighttime warming in July (>0 to 0.2 ◦C/yr) were 
observed in the north central and northwest ecoregions (e.g., 7: Afghan 
Mountains semi-desert, 24: Central Persian desert basins, 25: South Iran 
Nubo-Sindian desert and semi-desert, 29: Baluchistan xeric woodlands, 33: 
Paropamisus xeric woodlands, 37: Ghorat-Hazarajat alpine meadow, 42: 
Central Afghan Mountains xeric woodlands, 51: Aravalli west thorn scrub 
forests, 52: Registan-North Pakistan sandy desert, 57: Badghyz and Karabil 
semi-desert, and 59: Indus Valley desert), and extreme southern island 
with the ecoregions of 23: Sri Lanka lowland rain forests, 44: Sri Lanka 
montane rain forests and 58: Sri Lanka dry-zone dry evergreen forests. 
Nighttime in September (Fig. 3D) showed moderate to low warming (0 

to 0.2 ◦C/yr) mostly in the ecoregions of North central (e.g., 8: Thar 
desert, 16: Upper Gangetic Plains moist deciduous forests, 29: Baluchistan 
xeric woodlands, 37: Ghorat-Hazarajat alpine meadow, 42: Central Afghan 
Mountains xeric woodlands, 51: Aravalli west thorn scrub forests, 59: Indus 
Valley desert, and the northern parts of 2: Himalayan subtropical pine 
forests and 43: East Deccan moist deciduous forests), and some in the east 
(e.g., 63: Meghalaya subtropical forests, northern part of 56: Mizoram- 
Manipur-Kachin rain forests, and eastern part of 47: Lower Gangetic 
Plains moist deciduous forests). Annual nighttime warming (Fig. 3E) was 
observed in low magnitude (>0 to 0.1 ◦C/yr) in the north-central (e.g., 
8: Thar desert, 16: Upper Gangetic Plains moist deciduous forests, 25: South 
Iran Nubo-Sindian desert and semi-desert, 51: Aravalli west thorn scrub 
forests, and 59: Indus Valley desert), south (e.g., 4: South Western Ghats 
moist deciduous forests, 10: North Western Ghats moist deciduous forests, 
23: Sri Lanka lowland rain forests, 31: North Western Ghats montane rain 
forests, 44: Sri Lanka montane rain forests, 45: Godavari-Krishna man
groves, 55: South Western Ghats montane rain forests, 58: Sri Lanka dry- 
zone dry evergreen forests and 62: East Deccan dry-evergreen forests, and 
scattered in 19: South Deccan Plateau dry deciduous forests, 36: Deccan 
thorn scrub forests, 43: East Deccan moist deciduous forests and 49: Central 
Deccan Plateau dry deciduous forests), and east (e.g., 56: Mizoram- 
Manipur-Kachin rain forests and 63: Meghalaya subtropical forests, and 
scattered in 22: Brahmaputra Valley semi-evergreen forests, 26: Eastern 
Himalayan broadleaf forests, 27: Eastern Himalayan alpine shrub and 
meadows, 34: Northeast India-Myanmar pine forests, 41: Eastern Himalayan 
subalpine conifer forests, 47: Lower Gangetic Plains moist deciduous forests 
and 60: Chhota-Nagpur dry deciduous forests). 

3.3. Correlation between LST trends and atmospheric oscillations 

We presented the Pearson correlation coefficients (r) for daytime and 
nighttime in Fig. 5 and Fig. 6, respectively, in the ecoregions. During the 
daytime (Fig. 5), both positive and negative correlations were observed 
with values of 0.50 to 0.74 (acceptable to good) and − 0.50 to − 0.73, 
respectively. Among the atmospheric indices, PDO showed positively 
correlated with 17 ecoregions in January (Fig. 5F), which was the 
highest in number for a single month. In contrast, negative correlations 
were found for 14 ecoregions (the highest number) with DMI in 
December (Fig. 5D), followed by 11 ecoregions with SST in November. 
Over the months of a year, PDO, SST, DMI and NAO exhibited the 
positive correlations with the highest number of ecoregions, i.e., 22, 21, 
10 and 10, respectively, in compared to the negatively correlated AO, 
DMI, SST and OLR with 22, 21, 19 and 12 ecoregions, respectively. The 
least number of positive correlations was noticed for AO, OLR and SOI 
with 6, 5 and 4 ecoregions, respectively, and negative correlations of 
SOI, NAO and PDO with 9, 6 and 1 ecoregions, respectively. 

During the nighttime (Fig. 6), positive and negative correlations 
were detected in the ecoregions with acceptable to good coefficient 
values ranged from 0.50 to 0.84 and − 0.50 to − 0.71, respectively. The 
highest positive correlation was spotted for SST with 16 ecoregions in 

Table 1 
Cooling and warming areas in South Asia. Spatial coverage (area) is in percentage with the statistical confidence levels of 95% and 99% for both monthly (Jan to Dec) 
and annual time-steps.  

LST Trend Confidence (%) Area (%) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Daytime Non-significant 84.07 76.95 81.23 80.05 79.93 89.55 90.04 91.16 83.54 79.10 70.21 64.44 67.26 
Cooling 95 7.73 9.25 9.50 11.61 7.82 2.55 1.29 3.32 7.27 10.87 10.71 12.99 11.36 

99 7.04 13.50 8.11 6.40 3.35 0.89 0.40 1.36 4.16 7.32 14.84 21.43 19.17 
Warming 95 0.80 0.22 0.82 1.39 6.09 4.95 4.85 3.15 3.29 1.87 2.64 0.99 1.34 

99 0.36 0.07 0.35 0.56 2.81 2.07 3.41 1.00 1.74 0.83 1.60 0.15 0.87 
Nighttime Non-significant 91.80 98.11 84.78 91.69 84.50 73.30 66.52 84.83 69.84 87.15 88.85 89.55 66.39 

Cooling 95 0.03 0.48 0.03 0.77 2.01 0.13 0.16 0.35 0.15 0.05 0.18 1.04 0.08 
99 0.00 0.08 0.01 0.12 0.24 0.01 0.02 0.05 0.02 0.01 0.04 0.11 0.03 

Warming 95 6.48 1.08 12.26 5.42 6.19 14.33 15.73 10.01 13.57 8.72 7.91 4.66 16.20 
99 1.70 0.26 2.91 2.00 7.06 12.23 17.58 4.77 16.42 4.07 3.02 4.64 17.29  
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Fig. 4. Spatial dynamics of the cooling and warming in South Asia in different time-step, at least 95% confidence level. (A) daytime in December, (B) daytime at 
annual scale, (C) nighttime in July, (D) nighttime in September, and (E) nighttime at annual scale. This figure shows the time-step that demonstrated the trends for at 
least 30% of South Asia. 
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April, followed by 14 ecoregions in January and March each (Fig. 6A). 
PDO also showed positive correlation with 13 ecoregions in January 
(Fig. 6F). In contrast, the highest negative correlation was observed for 
SOI with 13 ecoregions in January (Fig. 6C), followed by 11 ecoregions 
with AO in April (Fig. 6B) and OLR in March (Fig. 6G) each. Over the 
year, SST was positively correlated with the highest 38 ecoregions in 
compared to the highest negatively correlated SOI with 24 ecoregions. 
PDO, DMI and OLR were also found positively correlated with 25, 16 
and 12 ecoregions, respectively, where NAO, SOI and AO were with the 
least number of ecoregions, i.e., 3, 3 and 1, respectively. On the con
trary, OLR, NAO and AO were noticed for the negative correlations with 
14, 13 and 13 ecoregions, respectively. While DMI and SST were 
negatively correlated with the least number of ecoregions (i.e., 8 and 3, 
respectively), we did not find any ecoregions that showed the negative 
correlation with PDO. 

4. Discussion 

4.1. Cooling and warming trends 

The LST trend analysis of South Asia revealed that both warming and 
cooling trends occurred during 2000–2021, where most ecoregions (i.e., 
34 out of the total 63) showed daytime cooling than warming. The most 
pronounced daytime cooling was observed in December (a dry month in 
the winter season) and nighttime warming in July and September (wet 
months in the monsoon season), where the magnitude of annual cooling 
was more than annual warming (Fig. 4). Most of the cooling ecoregions 
are having tropical forests that could be the reason of strong daytime 
cooling effects during the dry season (Li et al., 2015). Forests, with their 
deeper roots and high leaf area, move heat and moisture away from the 
ground into the atmosphere very efficiently during the daytime to cool 
the land surface faster. Releasing heat energy stored in forests during the 
day causes nighttime warming (Michiles and Gielow, 2008; Peng et al., 
2014). Due to the larger heat capacity of forests, canopies stay warm at 
night by losing heat more slowly (Houspanossian et al., 2013). Stronger 

Fig. 5. Relationships of monthly daytime LSTs in the ecoregions with the large-scale atmospheric oscillations. The oscillation indices are: (A) SST, (B) AO, (C) SOI, 
(D) DMI, (E) NAO, (F) PDO, and (G) OLR, over 95% significance level. 
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night warming occurs when forests receive more energy during daytime 
(Li et al., 2015), e.g., summer and monsoon seasons. Transpiration rate 
decreases with the increasing relative humidity of the air surrounding 
the forests (Krause et al., 2010). Therefore, the high moisture in the air 
during the monsoon season further slowdown the heat loss process of the 
ground through forests, especially at night. It could be a reason for 
receiving warming nighttime LST during the wet months of July and 
September in South Asia. 

The temperature of the ground depends on the amount of incoming 
solar radiation and its interaction with the surface features. Literature 
indicated that the spatiotemporal local cooling and warming effects in 
the LST are mainly driven by the biophysical effects of evapotranspira
tion and albedo (Li et al., 2015). Albedo is the measure of the diffuse 
reflection part of the total incoming solar radiation that varies on 
different types of land surfaces, whereas evapotranspiration includes the 
combined process of evaporation from exposed soils/ground and tran
spiration through the vegetation. With the available water in the soil/ 
ground, the evapotranspiration process cools the land surface escaping 
the water into the atmosphere (Food and Agriculture Organization of the 

United Nations (FAO), 2022). All these driving factors are controlled by 
different types of land cover (LC). Therefore, to understand the rela
tionship of LST trends with different land cover types, we performed the 
Mann-Kendall test and Sen’s Slope estimator on the time-series of each 
land cover area in the ecoregions during the study period. Here, we used 
the MODIS Land Cover Type Yearly data (MCD12Q1 v006 at 500 m) and 
IGBP (International Geosphere-Biosphere Programme) land cover clas
sification system that defines ecosystems’ surface classifications. The 
analysis showed that croplands (i.e., “Croplands” and “Cropland/natural 
vegetation mosaics” classes of IGBP) were a major LC type (i.e., >50% 
coverage in an ecoregion) in eight of the 11 ecoregions, where cooling 
trends were observed three and more times on a 13-unit scale (i.e., 12 
months and annual) (Fig. 7). In general, all the cooling trends were 
noticed where the ecoregions had an increase in croplands, or an in
crease in other vegetation types like forests, shrublands, savannas, and 
grasslands. 

The population has increased approximately 31% in the region over 
the last 20 years (from 1.42 billion in 2001 to 1.86 billion in 2020) (The 
World Bank, 2020). Agricultural products had increased remarkably in 

Fig. 6. Relationships of monthly nighttime LSTs in the ecoregions with the large-scale atmospheric oscillations. The oscillation indices are: (A) SST, (B) AO, (C) SOI, 
(D) DMI, (E) NAO, (F) PDO, and (G) OLR, over 95% significance level. 
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the recent decades to secure the food demand for such a growing pop
ulation (Alexandratos and Bruinsma, 2012). It was because of the yield 
growth, and thus agricultural growth, of major cereals resulting from 
new agricultural technologies and management measures (e.g., irriga
tion, pesticides, and fertilizers) (Wu et al., 2018), genetic improvement, 
expansion in arable land (to a very limited extent though), and increase 
in the cropping intensity (Morita, 2021). Water availability is a major 
factor in raising agricultural production, where the tropical climate in 
the region provides the best environmental conditions for achieving 
high yields (Morita, 2021). Besides, agricultural growth due to the 
increasing cropping intensity, i.e., multiple cropping in a year, in the 
new era of globalization (1990 onward) caused extensive irrigation 
expansion (Pingali, 2012). The expansion of land area equipped for 
irrigation, from 89 to 101 m ha from 2001 to 2019 (FAO (Food and 
Agriculture Organization of the United Nations), 2019)— calculated by 
combining the country values, caused such growth. Irrigated agriculture 
is around 40% of the total cultivated area in the region, the highest in the 
world (Hasanain et al., 2013), which had been expanding rapidly over 
the past few decades through the construction of canals and storage 
dams for surface water, and the exploitation of groundwater (Barker and 
Molle, 2004). As a matter of fact, part of the irrigation expansion in the 
region took place on arid and hyper-arid lands like the ecoregions of 
Thar desert and Indus Valley desert, which are not suitable for rain-fed 
agriculture. 

In general, irrigation in the croplands is the most intensive during the 
dry period in the region that spans October/November through March/ 

April. Coupled with the availability of water in the croplands through 
irrigation, the evapotranspiration process into the growing agricultural 
crops during the dry months accelerates land surface cooling (Ghafarian 
et al., 2022; Sun et al., 2016; Yang et al., 2020). In the evapotranspi
ration process, the evaporation fraction from cropped soil is the highest 
during the sowing stage of a field crop, and it decreases over the growing 
period as the crop develops. In contrast, transpiration becomes the main 
process from the matured to the harvest stages of the crop when canopy 
shades more and more of the ground area, i.e., high leaf area index (LAI) 
(Fig. 8). Therefore, the increasing trend of irrigated croplands in South 
Asia is probably the reason of the daytime cooling in most of the ecor
egions during the dry months (Fig. 7). Matter of fact, we observed 
daytime cooling in an arid ecoregion, i.e., 59: Indus Valley desert, because 
of the increasing area of irrigated croplands. It supports by another study 
that reported that a rise in the LAI caused an increase of the evaporation- 
driven cooling effect in the arid areas of the southern hemisphere 
(Forzieri et al., 2017). In contrast, the daytime warming we observed in 
five ecoregions (with frequency three and more in a year), four of those 
showed decreasing trends in vegetation (Fig. 7; MLC of Forests or Sa
vannas). Here, vegetation decrease could be a reason of decreasing 
evapotranspiration process in the ecoregions to sufficiently lowering the 
LST. Besides, the ecoregion (30: Andaman Islands rain forests) showed 
warming trend most likely due to the presence of mature forests as a 
dominant coverage, which has the limited evapotranspiration capacity 
in compared to the young forests (Murakami et al., 2000). Interestingly, 
all five ecoregions prevail in the saline environment due to being close 

Fig. 7. Major land cover changing trend in the ecoregions that showed daytime cooling and warming (monthly and annual) during 2000–2021. Only those ecor
egions were considered here that exhibited the frequency of three and more in a year. 
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by or surrounded ocean. It contributes to higher salinity in both soil and 
the atmosphere of the ecoregions which hinders the normal growth and 
evapotranspiration of the forests (Al-Busaidi and Yamamoto, 2011; 
Tomar and Gupta, 1985). Reducing evapotranspiration in the ecoregions 
could be another reason for daytime warming trends. 

4.2. Influence of the atmospheric oscillations 

In general, SST (ENSO: Niño 3.4) had the most significant influence 
on the LST in the ecoregions of South Asia during both day and night 
over the months for the period 2000—2021 (Figs. 5 and 6). It has the 
most positive influence from March to October during the day (Fig. 5A), 
and January to April during the night (Fig. 6A). Lack of the significant 
influence (negative correlation) of SST and DMI during the daytime in 
November and December, coupled with the positive influence of OLR in 
December, might be related to the cooling trends observed in the winter 
months. Other studies also indicated a greater impact of SST (ENSO: 
Niño 3.4) on faster decrease in temperature during cooling in winter in 
the area than increasing temperature for warming (Mallick et al., 
2022b). The SST in South Asia comes as the easterly air from the Pacific 
Ocean (as Niño 3.4) and westerly from the tropical Indian Ocean (as 
DMI). The cold air from the Siberian High (circumpolar westerlies) ap
proaches South Asia starting in October (Xue and Yanai, 2005). It de
velops a subtropical westerly jet stream at the northwestern end of the 
Himalayas that further intensify and extends southeastward causing 
winter circulation during November and December (Hamilton, 1974; 
Yeh et al., 1959). The circulation limited the easterly jet stream 
(including westerly) that might be a cause of negative correlations with 
the Niño 3.4 SST in November and December. Further, the Himalayas in 
the north, which is the southern periphery of the vast and high Tibetan 
Plateau, block the advancement of cold polar air from the north to go 
around than over it (Xue and Yanai, 2005). It forces the cool polar air 
coming through the northwest of the Himalayas. It, coupled with limited 
westerly SST (negative DMI) and positive OLR, might be a reason of 
more intense cooling trends observed in December in the central and 
west of South Asia (Fig. 4A) in compared to the northeast. 

During the nighttime, we did not find any significant positive cor
relations of LST with SST (ENSO: Niño 3.4) in July and September, 
except with one ecoregion each for AO, NAO, PDO, and OLR in July, and 
PDO and OLR in September (Fig. 6). Tropical easterly jet in the summer 
season (continue through the monsoon) replaces the subtropical west
erly jet of the winter season (Koteswaram, 1958). The high temperature 
during the summer over the Tibetan Plateau leads to the formation of the 
tropical easterly jet over South Asia. Easterly subtropical jet stream 
brings temperature (SST) and moisture from the Pacific Ocean during 

monsoon, and monsoon depressions in the Bay of Bengal occurs from 
June to September that reach the central parts before weakening (Xue 
and Yanai, 2005). The monsoon rainfall minimizes the temperature in 
the area, especially in the eastern and southeastern parts. With the less 
influence of the monsoon during that time in the west and northwest, 
coupled with the cloud coverage and lack of the SST influence in July 
and September, the diurnal cooling process hinders at nights (absence of 
the Sun). It might be a reason of the warming trends at the nighttime 
more pronounced in the west and northwest of South Asia, especially 
during July and September (Fig. 4). Although, PDO has greater positive 
correlations with LST in the earlier months of a year, i.e., days in 
January (Fig. 5F) and nights from January to April (Fig. 6F), it did not 
show any influence with cooling and warming trends in South Asia. 

4.3. Ecological significance 

The 63 ecoregions of South Asia are a repository of terrestrial, 
freshwater, terrestrial-coastal (e.g., mangroves and salt marshes) and 
marine habitats, including the three world’s biodiversity hotspots of 
biologically rich land areas, i.e., the Himalayas, the tropical Indo- 
Burma, and the Western Ghats Mountain range and Sri Lanka (Saran, 
2021). The forest ecosystems in the ecoregions cover 17% of South Asian 
land, and 2.2% of the world (FAO, 2020), constituting an extensive and 
valuable global carbon storage. The carbon storage is considered for the 
species richness (Strassburg et al., 2010), and some threatened species 
rely on carbon-rich habitats in the subtropical and tropical regions (Sheil 
et al., 2016), like South Asian forests. These forests are home to thou
sands of wildlife species (i.e., mammals, birds, reptiles, and amphib
ians), which play a significant role in the ecosystem functions like 
pollinators, seed dispersal, and pest control (Rajpar, 2018). The cooling 
or warming (climate change) observed in many ecoregions of South Asia 
would ultimately drive them to terrestrial biodiversity loss and affect 
carbon storage (Malhi et al., 2020). It may have negative impacts 
(directly or indirectly) on the inhabit, forage, perch, loaf, and breed for 
the survival and existence of the wildlife species in the ecoregions 
(Rajpar, 2018). The change (cooling/warming) of typical climate in the 
ecoregions due to land use change, such as cropland expansion and 
deforestation, would likely negatively impacting biodiversity and car
bon storage in the biodiversity hotspots (Molotoks et al., 2020). The 
climate cooling/warming coupled with anthropogenic actions of land 
use change was apparent and likely to intensify over the coming decades 
(Hoffmann et al., 2019; Ohashi et al., 2019; Platts et al., 2019), resulting 
in habitat loss of wildlife species. Therefore, Therefore, it demands un
derstanding ecological dynamics in the ecoregions due to the cooling/ 
warming impacts and identify vulnerable hotspots. It would help to 
identify management interventions and formulate conservation and 
mitigation strategies that may assist biosphere resilience to such 
changes. 

5. Conclusions 

The spatiotemporal variations of LST in South Asia and its associated 
driving factors were demonstrated for 2000–2021. Estimated magni
tudes and trends of LST showed warming and cooling, with daytime 
cooling in December and nighttime warming in July and September in 
most ecoregions. Significant daytime cooling was in the central, central- 
west and central-east ecoregions, and nighttime warming in the central- 
west, north-central, and northwest. The magnitudes of the annual 
cooling trends were more than the warming trends in the ecoregions. 
Land cover with the natural vegetation, irrigated agriculture, and at
mospheric oscillations like PDO, SST, DMI and NAO exhibited positive 
correlations with the cooling trends and thus could be the main influ
ential factors. This study contributes to a better understanding of tem
perature impacts on the ecoregions due to the ongoing climate change 
that would be useful for the policymaker to plan for sustainable devel
opment in South Asia concerning the excessive demands of food, water, 

Fig. 8. Contribution of evaporation and transpiration in the evapotranspiration 
mechanism for an annual field crop over the growing period—modified 
from FAO. 
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and energy supplies for the massive population growth. We strongly 
recommend a careful evaluation before adopting this study results for 
the region. 
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