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INTRODUCTION

Wetting phenomena are widespread in both natural and tech-
nological contexts. Despite the well-established nature of this scien-
tific field and our extensive knowledge of its underlying principles,
wetting remains a dynamic and vibrant area of study. It continues
to pose fundamental questions while offering innovative avenues for
controlling these phenomena to develop novel applications.

By tailoring the wetting properties of surfaces, researchers and
engineers can design materials with specific functionalities, such as
self-cleaning surfaces, anti-fog coatings, and enhanced slipperiness.
Recent years have witnessed significant advancements in wetting
research, owing to the exquisite control achieved in surface topog-
raphy and chemistry and to the development of novel experimental
techniques. Additionally, simulations and theory have played a cru-
cial role in these advancements. They provide the fundamental
knowledge and quantitative tools to control wettability and design
surfaces with enhanced properties.

Given these recent breakthroughs, this special collection Chem-
ical Physics of Controlled Wettability and Super Surfaces becomes
particularly timely and significant. It serves as a platform to show-
case some of the latest developments in the field of wetting. It
highlights the exciting progress and potential applications in con-
trolling wetting properties that are enabled by the synergy between
theory, simulations, and experiments.

SUMMARY OF AREAS COVERED

This special collection covers 19 articles whose topics span the
fundamental scientific questions of the field and explore various
potential applications arising from the control of wetting properties.

These investigations employ a blend of preparatory, experimental,
numerical methodologies, and theoretical models to address diverse
questions concerning the manipulation of wetting properties.

This Collection demonstrates that several fundamental aspects
of wetting are still open to investigation. Reference 1 explores the
origin of hydrophobic solvation phenomena via theory, classical
density functional theory, and atomistic simulations. By consider-
ing strongly hydrophobic solutes of varying radii, the authors argue
that density depletion and enhanced fluctuations can be related
to the critical drying surface phase transition that occurs at bulk
liquid–vapor coexistence for a planar substrate. In the context of
machine learning applied to classical density functional theory,
Ref. 2 introduces a Bayesian inference approach to reconstruct the
external potential acting on a many-particle system. This approach
is tested on a simple one-dimensional case, which illustrates the
potential of such approaches in applications in which the wetta-
bility of surfaces is of interest. In Ref. 3, a phase field simulation
method is developed and used to systematically study liquid filling
on grooved surfaces. This approach allows the tuning of the nature
and range of the liquid–solid interactions, capturing different wet-
ting regimes (complete, partial, and pseudo-partial wetting states).
In Ref. 4, a classical nucleation theory is developed to predict the
effects of dissolved gasses, such as nitrogen and carbon dioxide, on
liquid behavior in cylindrical nanopores.

A fundamental thermodynamic question is addressed in Ref. 5.
They address the relation between vapor of a liquid, a finite contact
angle, and a possible wetting transition at saturation vapor pressure.
In order to have defined contact angles for liquids at saturated vapor
pressures, the corresponding adsorption isotherms need to have a
finite value at saturated conditions. They demonstrate that for water
on silica this is the case.
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Ink spreading and pattern formation are influenced by sub-
strate wettability. Printed lines are unstable on surfaces with low
wettability. To overcome the challenge of printing with precision on
hydrophobic surfaces, the authors have conducted a combination of
simulation and experimental work in Ref. 6.

References 7 and 8 exemplify the manipulation of wetting prop-
erties for the purpose of atmospheric water harvesting. In Ref. 7, the
authors realized different substrates capable of collecting water from
the atmosphere at low subcooling conditions, exploring the role of
contact angle and contact angle hysteresis. Although hydrophilic
and hydrophobic coatings were found to have a similar water col-
lection efficiency, on the former the droplet departure was much
faster. In Ref. 8, dynamic simulations were used to investigate
the flow of water within hydrophobic nanocones decorated with
hydrophilic rings. Their study encompasses an examination of the
spatial arrangement of these hydrophobic rings within an individual
nanocone and explores the synergistic effects of multiple nanocones
to enhance water flux across these structures.

Reference 9 explores the wetting properties to design anti-
fouling substrates. The authors study a very interesting phe-
nomenon where crystalline structures, forming from evaporating
saline water droplets, spontaneously detach—or self-eject—from
superhydrophobic materials. This phenomenon is better understood
when the water contains a specific concentration of salt. In this
study, they investigate how the presence of certain contaminants
affects the self-ejection. They show that certain contaminants can
facilitate ejection even under conditions where it was previously not
observed in pure sodium chloride solutions.

Droplet mobility is a relevant aspect in applications where min-
imizing adhesion and friction is essential to maintain the droplet
in a non-wetted state on the substrate. Several papers in this col-
lection delve into aspects related to droplet mobility to provide a
deeper understanding of these phenomena. In Ref. 10, the authors
conducted experiments on tilted surfaces to compare the velocity
of two distinct types of non-wetting water droplets. The first type,
referred to as “pearls,” exhibits hydrophobic properties originating
when a water droplet comes into contact with a rough substrate.
The second type, termed “marbles,” achieves a non-wetting state by
applying a hydrophobic powder to the droplet’s surface, effectively
isolating the water from the substrate. Reference 11 uses simulations
of a droplet’s dynamic behavior when subjected to a wetting gradi-
ent and external forces. These simulations enable a comprehensive
characterization of the droplet’s dynamics and provide insights into
the various mechanisms governing droplet mobility, particularly in
the context of competing forces. Reference 12 reports an experi-
mental study complemented by simulations to systematically study
and describe the dynamics of evaporating drops on surfaces with
micro-patterns of triangular posts.

In Ref. 13, the impact of substrate fractality on the wetting
behavior of droplets is investigated through a combination of a
simple theoretical model and simulations employing the three-spin
Potts model for surfaces featuring hierarchical structures. This study
provides insights into some open questions, including the relation-
ship between the fractal dimension of the substrate and the contact
angle of the droplet.

Reference 14 investigates numerically the pressure drop reduc-
tion in microchannels induced by the presence of liquid-infused
walls. The pressure drop was found to be most prominently affected

by the viscosity ratio between the two fluids. The phase field simula-
tion methods also allowed the authors to determine the shape of the
interface between the flowing liquid and lubricant.

Several papers address or apply surfaces with low contact angles
hysteresis. Low contact angle hysteresis implies that contact lines or
sessile drops move without much resistance. In Ref. 15, the authors
apply surfaces with low contact angle hysteresis to the evaporation
of drops of salt solutions. Usually salt crystals are formed as soon as
the salt concentration in the evaporating drop exceeds the saturation
concentration. The contact line is pinned and stains are formed on
the surface. The authors show that surfaces with low contact angle
hysteresis suppress crystallization of salt. Evaporation proceeds at
constant contact angle till all water has evaporated.

In Ref. 16, surfaces with low contact angles hysteresis are used
to study the contact between two immiscible droplets. When two
immiscible sessile droplets get into contact, two four-phase con-
tact points are formed. They show that the four-phase contact point
dynamics is faster on polydimethylsiloxane (PDMS) coated sur-
faces than on surfaces hydrophobized by silanes. In addition, the
corresponding position-vs-time graph follows a different power law.

Two papers address the wetting dynamics of polymer brushes.
These surfaces have attracted attention because they present low
contact angle hysteresis. In Ref. 17, the authors analyze the trans-
port of liquid at the rim of a hexadecane droplet on a hydrophobic
polymer brush. They place the drop on the brush and measure
the thickness of the brush around the drop interferometrically.
Although hexadecane has a low vapor pressure, transport through
the vapor phase occurs in parallel to lateral diffusion in the brush.
The experimental measurements are well described by a gradient
dynamics model.

The dynamic wetting of reactive brushes was further studied
in Ref. 18. They let water drops run down tilted surfaces coated
with a brush with hydrolysable side groups. They observe a transi-
tion in the advancing contact angle at a defined drop velocity. From
the transition velocity they can estimate the time constant for the
hydrolysis.

Large contact angle hysteresis surfaces were the topic of a con-
tribution in Ref. 19. They analyzed the wetting of a porous surface
formed by TiO2 nanoparticles and stearic acid on copper. By moni-
toring the electrical current through the water droplet to the copper
substrate, they verify that the water drops penetrate the porous layer
to make direct contact with the copper. This penetration enhances
the adhesion of the droplet to the film and helps to understand the
contact angle hysteresis.

CONCLUSIONS

The articles featured in this special issue offer an insight-
ful snapshot of the breadth within the realm of wettability and
its diverse applications in crafting surfaces with unique properties.
These papers shed light on various challenges tied to manipulating
surface wetting, aimed at leveraging them for a range of functions
and unraveling fundamental aspects underlying these phenomena.
We hope that this compilation will captivate the interest of our com-
munity, sparking fresh perspectives to overcome obstacles and ignite
innovative concepts for harnessing wetting principles in the creation
of novel material classes.
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