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Abstract—Space exploration rovers are designed to 
investigate the surface of celestial bodies in the Solar System, 
seeking habitability conditions and biosignatures. These 
vehicles are equipped with instrumentation and sensors that 
allow accomplishing in-situ operations. To increase their access 
capability to harsh environments, onboard systems are included 
to enable obstacle avoidance and slip prediction that represent 
fundamental functionalities for safe navigation. This work 
focuses on the implementation of a method that accurately 
reproduces the wheel-soil interaction and predicts rovers’ 
performances in different scenarios (e.g., cloddy/drift terrain 
type, steep terrains). We implemented a 3D model of a rover to 
simulate its navigation with obstacles on the path. Our estimated 
trajectory is obtained through the Light Detection And Ranging 
(LIDAR) data processing, which enables the simultaneous 
localization and mapping (SLAM).  

Keywords—Navigation, path planning, obstacle avoidance, 
simultaneous localization and mapping, LIDAR  

I. INTRODUCTION  
Rover navigation on planetary surfaces is strongly 

affected by the explored environment. The effect of low–
gravity has a significant impact on the wheel-soil interaction, 
causing a reduction in traction [1]. High slippery terrains, 
slopes and obstacles could endanger the mission, limiting the 
rover locomotion [2]. The NASA’s rover Spirit, for example, 
got stuck in soft soil, descoping the mission to a stationary 
science platform [3]. To cope with these hazards, rovers host 
onboard subsystems devoted to obstacle avoidance and slip 
prediction [4]. Soil Properties and Object Classification 
(SPOC) is a software built upon a deep Convolutional Neural 
Network (CNN) that labels various terrain types analyzing 
Curiosity’s NavCam images and improves the mission path 
planning [5]. These capabilities expand rovers’ autonomy to 
enhance the number of sites they can visit and the 
experiments they can conduct. Predictions on the rover 
performances are usually based on empirical approaches (i.e., 
the model is built by learning a nonlinear approximation 
function that maps terrain slopes to the measured slip through 
a standard nonlinear regression technique [5]). A drawback 
of this method is that data must be collected through many 
experiments on Earth (data from past rover missions are not 
useful, mainly due to differences in size and mass of the 
rovers) [5,6]. An alternative approach is based on identifying 
soil parameters [7]. A better modeling of the terrain allows us 
to accurately define the dynamical equations [8]. By 
assuming a rigid wheel on soft soil to represent the wheel–
soil interaction [9], previous studies (e.g., [10]) carried out 
simulations of the traverses of the NASA’s Mars Exploration 
Rovers (MER) Spirit and Opportunity. An independent 

approach was proposed by Gibbesch & Schäfer [11] through 
the integration of the Multibody System simulation to  
investigate the dynamic of vehicle, including the suspension. 
This work is also based on the rigid wheel assumption, which 
is not adequate to simulate the trajectory of rovers equipped 
with flexible wheels, e.g., ESA’s ExoMars rover [12].  

Our numerical simulations were carried out with an 
accurate modeling of the compliance of both wheel and 
ground [13-14]. A 3D model of the rover was developed by 
using size and mass of the ESA’s rover ExoMars [15] (Fig. 
1). Different terrain types and slopes were also accounted for 
to investigate the discrepancies in the evolution of the rover 
trajectory. 

To enable an accurate estimation of the rover position 
across different environments that include hazards, we 
implemented a simultaneous localization and mapping 
(SLAM) system with a Light Detection And Ranging 
(LIDAR) instrument. The SLAM algorithm provides precise 
localization of the rover and identification of the hazards 
along the path [16]. The LIDAR range data are well-suited to 
measure the relative distance between the vehicle and the 
obstacles [17, 18], yielding higher accuracies compared to 
Wheel Odometry (WO).   

II. SPACE ROVER NAVIGATION MODELING  

A. Dynamical Model  
We modeled the rover’s dynamical equations by 

assuming compliant wheels on compliant ground. The 
resistance to the motion acting on the wheels is due to energy  

Fig. 1. 3D model of the rover with operative LIDAR sensor in the Gazebo 
Simulator.  

 



  

dissipation in both wheel and ground. This hypothesis is  
suitable to represent motion on unprepared ground, as 
planetary surfaces. The wheel-soil interaction results in a 
vertical force 𝐹! , a longitudinal force 𝐹" , a lateral force 𝐹# , 
and an aligning moment 𝑀! acting on each vehicle’s wheel 
[13, 14, 19]. We modeled these forces as follows: 

Fz=Rwb% [σz(θ) cos(θ)+τx(θ) sin(θ)]dθ
θ0

θ1
+2bxapgr= 

 = mg
nw

cos(i)        (1)
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  (3)
 Mz=	–	Rw2 b∫ τy(θ) sin(θ) dθθ0

-θ1
 (4)  

where 𝑅$ and 𝑏 are the radius and the width of the rover’s 
wheel, respectively; 𝑛$  is the number of the vehicle’s 
wheels; 𝜎!  is the normal load, and 𝜏"  and 𝜏#  are the 
longitudinal and lateral shear stresses, respectively; xa is the 
x-coordinate where the pressure exerted on the ground 
exceeds the pressure 𝑝%&  needed to deform the tire (that 
stands for an equivalent stiffness of flexible wheels); m is the 
vehicle’s mass, g is the gravitational acceleration of the planet 
and i is the slope angle. 𝐹#' is the bulldozing force per unit 
width and ℎ is the sinkage of the wheel; 𝜃(  and 𝜃)  are the 
angles that identify the portion of the wheel involved in the 
contact with the ground and must be computed at each step, 
solving Eq. (1).  

The longitudinal slip 𝜎  is a key measurement that 
constrains the traverse in highly-unstructured and natural 
terrains. This parameter measures the difference between the 
commanded speed of the vehicle Ω𝑅$  (controlled through 
the wheels angular speed) and its actual speed 𝑉:  

 σ=7
ΩRw–V
ΩRw

   in driving 
ΩRw–V
V

   in braking
        (5)  

Once all the interaction forces have been introduced, the 
method integrates the full set of equations of motion reported 
in the Model for High Speed Cornering [19, 20]. The 
vehicle’s trajectory and the evolution of the velocity 
components, angular speed and acceleration are obtained 
straightforwardly.  

 

B. Traversability of Demanding Terrains 
We present here the results of numerical simulations that 

account for extremely steep terrains (i.e., 21° and 26° slopes) 
with different properties (i.e., cloddy, mixed drift-cloddy and 
drift). These mission scenarios are consistent with ExoMars 
extreme operation conditions [15]. Table 1 reports physical 
and geometrical properties of the modeled rover [15]. Table 
2 reports the parameters that define a terrain type, including 
cohesion c, internal friction angle 𝜙 , soil cohesive and 
frictional moduli 𝑘* and 𝑘+, exponent of sinkage n, moduli 
of the shear deformation in x and y direction 𝐾" and 𝐾# and 
density 𝜌 [21, 22]. The properties of the soil directly affect 
the values of normal load 𝜎!  and longitudinal and lateral 
shear stresses 𝜏" and 𝜏#, determining the contact dynamics. 
The effects of the different terrains types are included in the 
dynamical model, impacting on the rover’s performances. 
Each simulation case is based on the assumption of 
homogeneous and constant soil properties.  

A Proportional Derivative (PD) control of the 
commanded speed was implemented to enable uphill and 
downhill motion, preventing from the locking condition and 
higher actual speed than 𝑣,-". The control was designed to 
maintain the actual speed of the vehicle as close as possible 
to the nominal speed 𝑣*. We assume a constant steering angle 
of the wheels (𝛿=4°) and initial speed 𝑉(=38 m/h.  

Fig. 2 (a) and Fig. 2 (c) show the trajectories of the rover 
with different terrain properties. When the rover traverses a 
21° slope with cloddy soil, it turns around reaching the initial 
orientation. A mixed drift-cloddy soil leads to a different path 
that diverges from a closed loop. The steering angle adopted 
in this simulation is not sufficient to deviate the rover’s path 
from a straight line in case of a drift terrain. Different 
trajectory configurations were also obtained with a steeper 
terrain with 26° slope for both mixed drift–cloddy and cloddy 
soil. Fig. 2 (b) shows that the longitudinal slip for a 21° slope 
reaches the maximum value in the case of drift soil (𝜎=0.71), 
which suggests the harsh conditions due to this terrain. Fig. 2 
(d) reports the longitudinal slip for the 26° slope traverse, 
indicating similar slippage for a mixed drift–cloddy soil 
(𝜎=0.70) compared to a drift soil with 21°.  

TABLE I.  ROVER PARAMETERS: L IS THE WHEEL BASE AND 𝑡 IS THE DISTANCE BETWEEN THE KINGPIN AXES OF THE WHEELS. 𝑣!"# AND 𝑣$  REPRESENT 
THE ROVER’S MAXIMUM AND NOMINAL SPEED, RESPECTIVELY. 

Parameter m [kg] 𝑝%& [kPa] 𝑅'  [m] b [m] L [m] t [m] 𝑣!"# [m/h] 𝑣$	[m/h] 

Value 310 14.6 0.1425 0.12 1.35 1.2 100 40 

 
TABLE II.               TERRAIN PARAMETERS 

Soil 
Properties 

Soil Types 

Cloddy Mixed Drift-
Cloddy Drift 

c [Pa] 170 220 530 
Φ [deg] 37.0 33.1 26.4 

n [-] 1 1 1 
k( [N/m)*+] 1400 1400 1400 
k, [N/m)*-] 820000 820000 820000 
𝐾#, 𝐾. [m] 0.016 0.016 0.016 
ρ [kg/m/] 1550 1350 1150 

 



  

Our results demonstrate the trafficability limits across 
terrains with different properties [23]. Higher slopes would 
yield slip ratios close to 1. Therefore, slopes ≤26° and ≤21° 
are the thresholds for mixed drift-cloddy soil and for drift 
soil, respectively. These results are in full agreement with 
previous works (e.g., [15]).  

III. SIMULATED TRAJECTORY AND MEASUREMENTS  
An accurate modeling of the surface properties and its 

interaction with the rover’s wheels allow us to simulate the 
traverse of wheeled vehicles across a Martian-like 
environment. A thorough definition of the dynamical model 
is fundamental to determine the evolution of the rover’s 
trajectory from a starting point to a target, and to simulate the 
measurements of the instruments that are used to reconstruct 
the path. A precise knowledge of the rover’s position across 
the environment is a key factor for safe navigation.  

The mission scenario was conceived by accounting for a 
coarse soil (cloddy) with several hazards, such as rocks, 
randomly distributed across the site. The local reference 
frame (X, Y) is supposed to be centered in the initial position 
of the rover. The X axis points eastwards and the Y axis 
northwards. The rover path was planned to reach a specific 
target located at (𝑋.∗, 𝑌.∗ )= (100.0, 350.0) m in the local 
reference frame. The rover’s initial speed was 𝑣(𝑡() =38 
m/h=1.056∙ 1001	m/s. To achieve this objective by avoiding 
the obstacles, whose coordinates, in this phase, are supposed 
to be perfectly known, we implemented the following control 
strategy. We adopted a sequence of steering techniques that 
allows the rover to follow a fixed direction and to move with 
constant steering angle. When the distance between the rover 
and the target is less than 20 m, a proportional control is used 
for the steering angle and reducing the commanded speed 𝑣*. 

Once the path was obtained, the resulting trajectory was 
simulated by computing and integrating Eqs. (1-4) to account 
for the interaction forces acting on each wheel [19]. The state 
of the rover was updated at each time step. During the 
traverse, we simulated the LIDAR range measurements that 
were used as input in our trajectory estimator. 

Fig. 3 shows the simulated trajectory. The rover is able to 
reach the final position G𝑋. , 𝑌.H = (100.152, 349.831)m 
with a limited approaching velocity, 𝑣G𝑡.H =1.340 ∙ 1002 
m/s. The selected path represents a safe option, whereas the 
shortest trajectory reported in magenta is discarded because 
of the presence of hazards.  

Fig. 3.   Simulated trajectory (blue) and straight-line path (magenta) across 
the landmarks (black dots) between starting (red dot) and target (green dot) 
position.  
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Fig. 2.  Rover’s trajectories (a-c) and slippage conditions (b-d) over different terrain types for 21° and 26° slope traverse, respectively. 
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Fig. 4.  Evolution of the rover’s speed vs time. 

The actual speed of the rover accurately follows the 
desired trend (Fig.4), and a small delay affects the interval 
when the rover slows down. 

IV. LIDAR BASED LOCALIZATION SYSTEM 
The localization system was designed with the goal to 

reconstruct the rover trajectory and to determine the hazards 
location. The sensors of this system consist of WO to measure 
the angular rate of the wheels and, consequently, the distance 
d travelled, Inertial Measurement Unit (IMU) with 
accelerometers and gyroscopes to provide the rover’s 
orientation (yaw angle, 𝜓), and an omnidirectional LIDAR to 
determine the relative distance between the rover and a 
landmark.  

First, the state of the rover 𝑞 = (𝑥, 𝑦, 𝜓)  and the 
covariance matrix P are propagated according to: 

 qTk+1=f	(𝑞Uk,	δk,	νk)        (6) 

 PVk+1=Fq𝑃XkFqT+FνVFνT        (7)   

where 𝛿3 = (𝛿4 , 𝛿5)	are the distance and yaw measurements 
provided by WO and IMU, respectively; and 𝜈  is the 
associated error. WO and IMU errors are modeled as a zero 
mean multivariate Gaussian noise (𝜎4=3 cm and 𝜎5=0.8°). 
The initial covariance matrix 𝑃T(  is a diagonal matrix with 
𝜎"=𝜎# =5 m and 𝜎#-$= 0.001°, V is the variance matrix and 
𝐹6 and 𝐹7 are the matrices of the partial derivatives of Eq. (6) 
with respect to q and 𝜈, evaluated considering zero noise [24]. 
By applying WO and IMU only, the estimated trajectory 
would diverge from the reference path (Fig. 5) because of 
systematic errors that accumulate over time. A further source 
of error is that WO does not include any information on the 
wheel slippage. The instability in the reconstructed trajectory 
is shown with the uncertainty ellipses of the rover’s state (Fig. 
5), whose size increases over time, leading to a poor 
knowledge of the rover’s position in proximity of the target.  

A more accurate estimation of the rover’s trajectory is 
then based on the processing of the LIDAR range 
measurements. These data are acquired onboard the rover 
with a 60-s sampling rate. The availability of these 
observables relies on the presence of landmarks within the 
instrument field of view (FOV) and their relative distance 
from  the  rover  that   should  be  lower   than  the   LIDAR  

Fig. 5.  Reconstructed trajectory (blue) and uncertainty ellipses based on WO 
and IMU measurements only vs simulated trajectory (green). 

maximum range (80 m). A new observable is processed to 
improve the estimation of the rover’s position and to identify 
the landmark location. The first time a landmark 𝑗 is detected, 
its coordinates are included in the state vector 𝑞T′ =
G𝑥, 𝑦, 𝜓, 𝑥), 𝑦), … , 𝑥8 , 𝑦8H [25]. These additional variables 
are computed according to:  

 𝑔G𝑞, 𝑧8H = G𝑥8 , 𝑦8H
9 = _":&!;<=	(5:@!)#:&!=BC	(5:@!)

` (8) 

where 𝑧8 = (𝑟8 , 𝛽8)  is the observed observable, i.e., the 
LIDAR range and bearing angle measurements associated 
with the j-th landmark; z is affected by the noise w associated 
with the lidar sensor. The noise has a zero mean Gaussian 
distribution with 𝜎& =2 cm and 𝜎@ =0.3°. The covariance 
matrix is now defined as follows:  

 𝑃′V 3:) = 𝑌 _𝑃T3:) 0
0 𝑊

`𝑌9 (9) 

𝑊 is the covariance matrix of the LIDAR sensor noise and 𝑌 
is the insertion Jacobian: 

 𝑌 = D6E
D!
= _

𝐼F×F 0F×1
�̅�" 𝐺!

` (10) 

�̅�" = (D%
D6
	 , 01×F0H)  and 𝐺! =

D%
D!

. The matrix size 𝑛  is the 
length of the state vector 𝑞 prior to the identification of the 
new landmark. 

If the same landmark is observed afterwards, the state and 
the covariance matrix are updated through an Extended 
Kalman Filter (EKF) algorithm:  

 q	gk+1=qT′k+1+Kk+1[zk+1-h(qT′k+1)]       (11) 

 𝑃X3:) = [𝐼 − 𝐾3:)𝐻3:)]𝑃′V 3:) (12) 

 

 



  

Fig. 6. Reconstructed trajectory (red) and uncertainty ellipses obtained 
through the processing of WO, IMU and LIDAR measurements vs simulated 
trajectory. The estimated location (white dots) and uncertainty ellipses of the 
landmarks are reported in comparison with their simulated distribution 
(black dots). 

h is the computed observable and K is the Kalman gain, 
computed at each step: 

 𝐾3:) = 𝑃′V 3:)	𝐻3:)9 𝑆0) (13) 

where 𝑆 = 𝐻3:)𝑃′V 3:)𝐻3:)9 +𝐻$𝑊𝐻$9 ; H is the matrix of 
the partial derivatives of the observed observables with 
respect to q; 𝐻$is the derivative of the observed observables 
with respect to w. The non-zero terms of H are associated 
with the vehicle’s state and the j–th landmark coordinates. If 
the LIDAR detects a group of landmarks the system 
randomly selects one of them to update the state vector and 
the covariance matrix.  

The additional information provided by the LIDAR 
significantly improves the performances of the localization 
system. Fig. 6 highlights that the reconstructed trajectory 
slightly diverges from the simulated path because of WO 
errors. The accumulated integration errors also affect 
significantly the estimate of the landmarks locations, leading 
to larger discrepancies as the distance from the starting 
position increases. Fig. 7 (a) shows that the errors in the 
rover’s position estimates obtained through the SLAM 
method are almost one order of magnitude lower than those 
associated with WO only at the end of the path. Furthermore, 
the SLAM method allows reducing the uncertainty on the 
estimated position (Fig. 7 (b)).   

The SLAM technique mitigates the drift errors of position 
and heading angle that accumulate over time in WO. A 
drawback of this method is that the SLAM performances are 
deeply affected by featureless environments that compromise 
the accuracy of localization and map updating [26].  

V. SUMMARY 
Accurate models of the rover’s dynamics were 

implemented to carry out realistic simulations of rover’s 
operations in different  environments. Since   soil   properties   

Fig. 7.  (a) comparison of the position error obtained through WO and IMU 
trajectory reconstruction and through SLAM method. (b) Square root of the 
determinant of vehicle’s state covariance matrix vs the distance travelled.  

deeply affect rover navigation, our results account for wheel-
soil interaction forces. 

By analyzing different terrain conditions and types, we 
reproduced mission scenarios that are in agreement with the 
ExoMars expected performances [15]. An accurate modeling 
of the dynamical equations allowed us to simulate the 
navigation of a rover across a site with obstacles. By 
implementing WO and LIDAR instruments, we processed the 
simulated data to investigate the benefits of simultaneous 
localization and mapping. Our results are consistent with the 
expectation, supporting that the adopted technique is well-
suited for safe navigation of rovers across rough terrains.  
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