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ABSTRACT

Spatial and snapshot clustering approaches are presented
and discussed for particle image velocimetry (PIV) data
of high-Reynolds number uniform and buoyant jets and
4- and 7-bladed propeller wakes respectively. Data clus-
tering is based on the k-means algorithm, along with the
identification of the optimal number of clusters based on
three metrics, namely the within-cluster sum of squares,
average silhouette, and number of proper orthogonal de-
composition (POD) modes required to resolve a desired
variance. Spatial clustering for jets flow is based on
three sets of clustering variables, namely cross-section
velocity profiles, point-wise energy spectra, and point-
wise Reynolds stress tensor components. Snapshot clus-
tering of phase-locked propellers wake data is based on
the vorticity with focus on tip vortices regions. POD
and t-distributed stochastic neighbor embedding along
with kernel density estimation are used to provide a two-
dimensional visualization of data clusters for assessment
and discussion. The objective of this work is to lay the
ground for a systematic data-clustering analysis of PIV
data. The examples discussed show how clustering meth-
ods can help in achieving physical insights of complex
fluid dynamics problems.

INTRODUCTION

Data science has emerged as a cutting-edge research field
that develops and applies rigorous methods and algo-
rithms to gain knowledge from data. In recent years,
data science methods have been applied in the context of
more traditional disciplines to accelerate the experimen-
tal/computational analysis process and extract insights
from experiments and simulations data.

In ship hydrodynamics, supervised machine
learning methods (including, e.g., metamodeling, regres-
sion, multi-fidelity methods) have been used to integrate

experiments and simulations data and reduce the com-
putational cost of design performance assessment and
optimization procedures. Unsupervised machine learn-
ing methods (such as proper orthogonal decomposition
formulations, POD, along with linear/nonlinear princi-
pal component analysis, PCA) have been used to re-
duce the problem dimensionality, plan more efficient
design- and/or operational-space explorations, and gain
insights of complex physical phenomena. POD has
been widely used for the identification of coherent struc-
tures in turbulent flows (Berkooz et al., 1993) and ap-
plied to steady/transient uniform/buoyant jets (Gordeyev
and Thomas, 2002; Zhou and Hitt, 2004) and marine
propeller wakes (Felli and Falchi, 2018a). In the dis-
crete form, POD is equivalent to PCA and allows to de-
compose the flow into a linear combination of a sub-
set of orthogonal eigenfunctions, capable of highlighting
its spatial/temporal structure and providing a reduced-
order/dimensionality model for the flow dynamics. Al-
though POD is a widely used and has well-established
global optimality properties, it is based on the linearity,
stationarity, and ergodicity assumptions and may not be
effective when nonlinear, transient, non-stationary, non-
ergodic dynamics are investigated. For this reason non-
linear dimensionality reduction (NLDR) methods have
been developed and applied to provide with a deeper un-
derstanding of data structures and physical phenomena.
A straightforward approach to NLDR with POD/PCA is
to use data clustering methods and perform POD/PCA
within each cluster.

Cluster-based reduced-order and/or dimension-
ality modeling by POD/PCA can provide with physical
insight of complex phenomena and is achieved by local
PCA (LPCA), where the data set is divided into clus-
ters and POD/PCA is applied to each cluster, assum-
ing therefore an approximate linear structure within each
cluster. The cluster centroids along with the associated
modes are used to extract relevant flow feature in the spa-



tial/temporal domains. Applications of spatial clustering
via the k-means method with POD/PCA have been pre-
sented in Serani et al. (2019) for a transient buoyant jet.
POD/PCA approaches based on temporal and spatial k-
means clustering have been presented in Barwey et al.
(2020) for a swirl-stabilized combustor flow. In general,
the number of clusters and the similarity metrics used
for data clustering highly affect the quality of the re-
sulting reduced-order/dimensionality model, and there-
fore the possibility to gain valuable physical knowledge
from the clustering analysis. Rigorous data-clustering
methods can assist in achieving a deeper understanding
of experiments/simulations data and have been proposed
in different fields, such as computer vision and speech
recognition. A further step towards fully nonlinear di-
mensionality reduction of data sets has been proposed
via t-distributed stochastic neighbor embedding (t-SNE)
by van der Maaten and Hinton (2008). The method pro-
vides with the capability of embedding and visualizing
high-dimensional data in a low-dimensional space and
has been applied to turbulence data sets from simulations
in Wu et al. (2017).

The objective of the present work is to lay the
ground for a systematic data-clustering analysis of parti-
cle image velocimetry (PIV) data with the aim of achiev-
ing physical insights of complex fluid dynamics prob-
lems. Examples are provided for high-Reynolds num-
ber uniform/buoyant transient jets along with 4- and 7-
bladed propeller wakes.

The velocity fields under investigation (both
for jets and propellers) are obtained from experimental
tests with large scale, time/phase-resolved, PIV measure-
ments. GWU provided data for the jets, whereas data for
the propeller wake were collected at CNR-INM. Cluster-
ing of PIV data is based on the k-means algorithm. Three
clustering approaches are applied to the jet in the spa-
tial domain to identify coherent/self-similar spatial re-
gions using the following clustering variables: (a) cross-
section velocity profiles, (b) point-wise energy spectra,
and (c) point-wise Reynolds stress tensor components.
The resulting clusters and centroids are representative of
the local flow, in terms of cross-section profiles and tur-
bulence variables. Data clustering for the propeller wake
is applied to phase-locked snapshots to gain knowledge
on the topology of wake-instability and its stochastic re-
alizations. The vorticity is used as clustering variable.
The resulting cluster centroids identify the topology of
the instability, where two or more tip vortices interact
and coalesce.

Three metrics are proposed for the identifica-
tion and assessment of clustering methods, including the
selection of the proper number of clusters, namely: (a)
within-cluster sum of squares, (b) average silhouette, and
(c) within-cluster number of POD modes required to re-

solve prescribed levels of total variance/energy. Addi-
tionally, embedding of data via POD/PCA and t-SNE is
used to define and visualize data clusters in a reduced
dimensionality space. Finally the kernel density estima-
tion (KDE) is applied to POD/PCA and t-SNE represen-
tations to provide with continuous data distributions for
assessment and discussion. A summary of test cases and
clustering approaches used is presented in Table 1.

DATA ANALYSIS METHODS

Data analysis methods are outlined in the following.
Specifically, the k-means clustering method is briefly re-
called. POD/PCA implementation is described and used
both as metric for identifying an optimal number of clus-
ters and a visualization technique. For the same purpose,
the t-SNE method is used as visualization technique and
briefly discussed along with KDE.

k-Means Clustering

The k-means is a widely used clustering method (Jain,
2010), which allows to build partitions of the original
data collected in an [L × S] matrix U in k different sets
(clusters), defined by representative points (centroids).
Here, the original data in U is rearranged as per the clus-
tering approach and criterion used. In general, we refer
to ξj as one realization (point) of the rearranged data.
Note that, generally, ξj ∈ RQ with j = 1, ...,H , where
Q 6= L and H 6= S.

The Euclidean distance is used to measure both
the similarity between data points ξj and evaluate the as-
sociated cluster centroids µi, the latter by averaging all
data points within the i-th cluster Ki. The assignment
of data points to k clusters is achieved by the minimiza-
tion of the squared Euclidean distance between ξj and
µi (within-cluster sum of squares, WCSS)

WCSS =

k∑
i=1

∑
ξj∈Ki

‖ξj − µi‖2 (1)

The minimization of WCSS in Eq. 1 is a NP-
hard problem (Drineas et al., 2004). For its solution, the
heuristic approach presented in Lloyd (1982) is used and
briefly presented in Alg. 1. Results are highly sensitive
to centroids initialization. Here, the initialization strat-
egy proposed in Arthur and Vassilvitskii (2007) is used.

Proper Orthogonal Decomposition/Principal Compo-
nent Analysis

For the jet analysis, Reynolds decomposition of the ve-
locity vector is used, with

u = u+ u′ v = v + v′ (2)
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Table 1: Summary of test cases and clustering approaches.

Test case Uniform/buoyant jets 4/7-bladed propeller wakes

Data dimension 73,678 × 4,600 / 3,141 6,000 × 1,000 / 10,000 × 500

Clustering domain Spatial Snapshots

Clustering variables Cross-section velocity profiles Vorticity
Point-wise energy spectra
Point-wise Reynolds stress

Clustering metrics and assessment Within cluster sum of squares Within cluster sum of squares
Average silhouette Average ilhouette
Number of POD/PCA components POD/PCA embedding and KDE

t-SNE embedding and KDE

where u and v indicate x- (axial/vertical) and y- (hor-
izontal) components, respectively. Overbar and prime
characters indicate time average and fluctuations, respec-
tively.

The POD is implemented as follows. The [L×
S] data matrix U is defined as

U =
[

u(1) . . . u(S)
]

(3)

where u = {u′(x1), . . . , u
′(xP ), v

′(x1), . . . , v
′(xP )}T

collects the discretized velocity fluctuations, xi repre-
sents the i-th node of the spatial discretization, P is
the spatial discretization size, superscript (i), with i =
1, . . . , S, indicates the i-th time realization (snapshot),
and finally L = 2P . The data matrix U is reduced in
dimensionality through projection of the snapshots into
a new linear subspace, formed by the eigenvectors of the
[L× L] covariance matrix (Bishop, 2006)

C =
1

S
U UT (4)

evaluated by
CZ = ZΛ (5)

where Z and Λ collect the L eigenvectors (zi) and eigen-
values (λi) of C, respectively. This corresponds to per-
forming the PCA of the matrix U. The problem of Eq.
5 may be alternatively solved using the singular value
decomposition, SVD (Golub and Reinsch, 1970). Fur-
thermore, if L > S the dual problem may be solved
via the so-called snapshot-POD (equivalent) formula-
tion, see e.g. Cizmas et al. (2003).

POD/PCA eigenvalues represent the variance
(under proper assumptions this represents the turbulent
kinetic energy) resolved along the corresponding eigen-
vectors. The linear subspace formed by the N eigen-
vectors (POD/PCA modes, collected in Ẑ) associated to
the largest N eigenvalues resolves (globally) the largest
variance/energy, compared to any other linear subspace
of dimension N (Bishop, 2006; Holmes et al., 2012).
The cumulative sum of the eigenvalues is used to assess

the variance resolved by the linear subspace of dimen-
sion N . Finally, the associated reconstruction of U is
given by Û = ẐẐTU, where by definition the coeffi-
cient αi = ẑTi U is the projection of the data matrix onto
the i-th mode.

POD/PCA implementation for the propeller
wake follows the same procedure, with

ω = ω + ω′ (6)

where ω = ∂v/∂x−∂u/∂y is the vorticity z-component
(out of plane) and x and y are the axial/horizontal and
vertical coordinates respectively.

The [L×S] data matrix U is defined in this case
as

Ω =
[
ω(1) . . . ω(S)

]
(7)

where ω = {ω′(x1), . . . , ω
′(xP )}T collects the dis-

cretized vorticity fluctuations, xi represents the i-th node
of the spatial discretization, P is the spatial discretization
size, superscript (i), with i = 1, . . . , S, indicates the i-th
time realization (snapshot), and finally L = P .

t-Distributed Stochastic Neighbor Embedding

The t-SNE is a machine learning algorithm proposed by
van der Maaten and Hinton (2008), which is found very
effective for embedding high-dimensional data for visu-
alization in a low-dimensional space of two or three di-
mensions. The t-SNE first constructs joint probability
densities pij that reflect pairwise similarty among data-
points u(i) and u(j) (or ω(i) and ω(j)) parameterized by
a Gaussian distribution

pij =
pj|i + pi|j

2S
(8)

with

pj|i =
exp (−||u(i) − u(j)||2/2ς2i )∑S
k 6=i exp (−||u(i) − u(k)||2/2ς2i )

(9)

In a similar manner the joint probability densities qij are
defined for the low-dimensional representations αi and
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αj , parameterized by a t-student distribution

qij =
(1 + ||αi −αj ||2)−1∑S
k 6=i(1 + ||αi −αk||2)−1

(10)

The points (or coefficients) αi are determined
by minimizing the Kullback-Leibler divergence of the
distribution Q from the distribution P as

KL(P ||Q) =

S∑
i 6=j

pij log

(
pij
qij

)
(11)

The minimization of Eq. 11 with respect to the
points αi is performed using gradient descent. The pa-
rameter ςi is set in such that the perplexity of the condi-
tional distribution Pi =

∑
j pji over all data points given

u(i) equals a predefined perplexity Perp(Pi),

Perp(Pi) = 2(
∑S

j pj|i log2 pj|i) (12)

which is solved with a bisection method. The perplexity
can be interpreted as a smooth measure of the effective
number of neighbors, with typical values ranging from 5
and 50 (van der Maaten and Hinton, 2008).

Multivariate Kernel Density Estimation

The kernel density estimation (KDE, Silverman 2018) is
a non-parametric method to estimate the probability den-
sity function (PDF) of a random variable, introduced for
univariate data. Extending the concept to multivariate
data (Simonoff, 2012), let {α}Si=1 be a d-variate random
vector whose PDF is estimated as

PDF(α) =
1

S

S∑
i=1

KH (α−αi) (13)

where α = {α1, α2, . . . , αd}T, αi =
{αi1, αi2, . . . , αid}T with i = 1, . . . , S, H is the band-
width (or smoothing) [d× d] matrix which is symmetric
and positive definite, and K is the kernel function which
is a symmetric multivariate density defined as

KH(α) = |H|−1/2K(H−1/2α) (14)

DATA ANALYSIS METRICS

Three metrics are used for the assessment of clustering
approaches and identification of the optimal number of
clusters k, namely: (1) within-cluster sum of squares,
(2) average silhouette, and (3) within-cluster number of
POD modes required to resolve prescribed levels of total
variance/energy. The latter is used only for buoyant jets.
Their definition is included in the following.

Within-Cluster Sum of Squares

The WCSS in Eq. 1 is used as evaluation metrics to iden-
tify the optimal number of clusters k. Specifically, the
elbow method (Ketchen and Shook, 1996) is used with
the WCSS metrics.

Average Silhouette

The silhouette method provides a metrics of consistency
of data within clusters (Rousseeuw, 1987). Assume ai as
the average Euclidean distance between ξi and any other
data point within the cluster ξi belongs to. Assume then
ci as the smallest average Euclidean distance of ξi to all
data points in any other cluster ξi does not belong to.

The silhouette associated to ξi is defined as

si =
ai − ci

max[ai, ci]
(15)

and is a measure of how similar the data point is to points
in its own cluster as opposed to other clusters. It may
be noted that si ranges from −1 to 1, where 1 indicates
maximum similarity.

The average silhouette of all data points is used
as a metrics for proper data clustering:

savg =

H∑
i=1

si (16)

Note that for k = 1 the silhouette is not defined.
By convention, for k = 1 it is savg = 0.

Variance/Energy of POD/PCA Representation

The relative variance/energy resolved by within-cluster
POD representations of order N is also used to support
WCSS and average silhouette in the identification of an
optimal number of clusters k:

σ̂2

σ2
=

k∑
i=1

N∑
j=1

λ
(i)
j

L∑
j=1

λ
(whole)
j

(17)

where λ(k)j is the j-th POD eigenvalue associated to the

i-th cluster, provided that λ(i)j > λ
(i)
j+1. Superscript

”whole” refers to the whole field of view (no clustering
applied). It is worth noting that, for the sake of simplic-
ity, the same order N is assumed within each cluster in
Eq. 17. This assumption will be removed in future stud-
ies, where an optimal orderN will be investigated within
each cluster.
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EXPERIMENTAL METHODS

The following subsections present the experimental
setup for PIV measurements of jets and propellers under
investigation.

High-Reynolds Number Uniform and Buoyant Jets

The experiment is conducted at GWU and is the vertical
discharge of high-Reynolds number uniform and buoy-
ant transient jets. The latter is discharged in a linearly
stratified environment. To enable optical diagnostic de-
ployment, two refractive index matched solutions of dif-
ferent densities are employed; their density difference is
3.00%. Additionally, the dynamic viscosity of the solu-
tions are within 0.7% of each other at 20◦C. Details on
the refractive index and dynamic viscosity matching, as
well as on the linear stratification formation, are reported
in Clément et al. (2018).

The facility produces a round vertical jet in-
side a clear acrylic tank (cube of 914mm-side), Fig-
ure 1. A linear motor drives a piston in a 203mm-
diameter cylinder, which pushes the fluid through a first
contraction section followed by a contoured nozzle with
a D = 6.35mm exit diameter. The fluid in the cylinder
is initially at rest and the jet has no initial disturbances.
The piston-cylinder and contraction sections lead to a jet
with a top-hat velocity profile. The jet Reynolds number
is ReD = U◦D/ν is 2.00 × 104. The run time, limited
by the stroke of the piston, is 39 s. The change in height
in the tank from each run is 5.4mm or about 0.8D.

During the discharge of the buoyant jet, the
stratified environment evolves continuously; the flow
might not reach statistical stationarity. Therefore, the
whole time history of the velocity fields is recorded in a
time-resolved manner: initial circulations in the tank, the
entire run, and the settling down after the jet ends. Ad-
ditionally, the velocity field is recorded from the jet cen-
terline to the wall of the tank. The recorded flow area is
nearly 0.7 m horizontally by 0.5 m vertically. The spatial
and temporal scales vary greatly over the field of view
and to optimize the acquisition system, a multi-camera
array is employed. Cameras 1 to 9 are 1.3 MPixel CMOS
cameras and record the off-center and far field of the jet.
They record either at 64 or 128 Hz depending on their ra-
dial location. Camera 10 is a CMOS camera with CoaX-
press transfer protocol. It records on the centerline of the
jet at 512 Hz at 4 MPixels. The spatial resolution for
those cameras is on the order of the Taylor scale. Finally,
two other cameras are recording at higher resolution, but
the data are not treated here.

Three large laser sheets illuminate the fields of
view the cameras. They are split from a single cavity of a
dual cavity Nd:YLF laser (Photonics DM 527) operated

at nearly 30 mJ/pulse. The intensity of each laser sheet
is controlled individually by a set of beam splitters. Each
laser is configured as a telescope, with a nearly constant
3mm thickness.

Data are processed with Davis 8.4.0 from LaV-
ision. The velocity fields recorded at 64 Hz are first
up-sampled to 128 Hz using Davis super-time-sampling
function, and data at 512 Hz are down-sampled at 128
Hz. Once all velocity fields are sampled at the same rate,
they are spatially stitched together, applying a sliding av-
erage over the areas where cameras overlap.

Figure 1: Experimental facility for the jets with the
location of the PIV whole field of view.

Propeller Wake

The study is based on a comprehensive database of de-
tailed flow measurements of the notional E1658 subma-
rine propeller wake in open water using 2D-PIV (see
Felli and Falchi 2018a; Posa et al. 2019). The database
covers an extensive set of propeller conditions in terms
of advance coefficients and blade number configurations
providing a wide range of vortex instability and interac-
tion mechanisms that are crucial for the objectives of the
present study. In particular, the present study focuses on
two propeller configurations with 4 and 7 blades and one
value of the advance ratio, corresponding to a high pro-
peller loading (i.e. J = 0.56).

The survey was carried out at the CNR-INM
cavitation tunnel (i.e. 2.7 m long by 0.6 m width by
0.6 m height test section, 2% highest free-stream turbu-
lence, mean velocity uniformity within % for the axial
component and 3% for the vertical component), measur-
ing the propeller wake flow at the vertical centerplane
by a system of multiple, side-by-side, synchronous cam-
eras, 2560×2160 pixels each, and two 200 mJ/pulse Nd-
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YAG lasers. This arrangement, already adopted in other
similar experiments (Felli et al., 2010; Felli and Falchi,
2018b,a) of the propeller wake, allowed the simultane-
ous reconstruction of a long portion of the wake flow (i.e.
from the propeller plane to 3.3D downstream, where D
is the propeller diameter) without jeopardizing the spa-
tial resolution. More detailed information on the exper-
imental set up are reported in Felli and Falchi (2018a).
Camera acquisition was conditioned upon the passage of
the propeller reference blade for a selected angular posi-
tion. This was achieved by synchronizing the four cam-
eras and the two lasers to a TTL OPR (i.e. Once Per Rev-
olution) signal, supplied by a 3600 pulse/sec rotary incre-
mental encoder mounted on the propeller dynamometer.

SPATIAL CLUSTERING APPROACH

Clustering approaches in the spatial domain are proposed
for the turbulent transient jets, using as clustering vari-
ables (1) cross-section velocity profiles, (2) point-wise
energy spectra, and (3) point-wise Reynolds stress ten-
sor components, whereas propellers wakes are cluster-
ized in the snapshot domain based on the vorticity only.
The formulation underlying each approach is described
in the following.

Cross-Section Velocity Profiles

Cross-sections are clustered together, based on their ve-
locity profiles. Firstly, cross-section (x-constant) veloc-
ity profiles are scaled and secondly used as variables in
the clustering process. Specifically, the profiles of the
following variables are stitched together to form cluster-
ing arrays in Eq. 1:

u

uc
,

(
u′u′

)1/2
uc,l

,

(
v′v′

)1/2
uc,l

,
u′v′

u2c,l
(18)

where uc is the mean axial velocity at the center line; uc,l
is the the mean axial velocity at the center line, assuming
idealized profiles from the fully developed region where
1/uc is linear (Serani et al., 2019).

Profile abscissa are scaled assuming that the ve-
locity (positive mean axial component) profile follows a
Gaussian distribution and using its standard deviation b,
evaluated numerically as

b(x) =

√√√√√√√√
ymax∫
ymin

(y − yc)2 max[u(x), 0] dy

ymax∫
ymin

max[u(x), 0] dy

(19)

where yc is the horizontal coordinate of the center line.
It may be noted that, under the Gaussian distribution

assumption, the 95% of the (positive) flux is contained
within ±2b. Similarly to uc, abscissa scaling for turbu-
lence variables in Eq. 18 is performed using idealized
linearly increasing values of b from the fully developed
region, referred to as bl.

Accordingly, ξi (with i = 1, ...,H) arrays are
formed as

ξi =



u(ŷ, xi) [uc(xi)]
−1

[
u′(ŷ, xi) ◦ u′(ŷ, xi)

]1/2
[uc,l(xi)]

−1

[
v′(ŷ, xi) ◦ v′(ŷ, xi)

]1/2
[uc,l(xi)]

−1

u′(ŷ, xi) ◦ v′(ŷ, xi) [uc,l(xi)]
−2


∈ RQ

(20)
where ŷ collects discretized scaled abscissa and ‘◦’ indi-
cates entry-wise product. Here, Q equals four times the
size of ŷ and H equals the number of cross sections con-
sidered. Variables values at positions ŷ are evaluated by
linear interpolation.

Point-Wise Spectra

Spatial points are clustered together based on their en-
ergy spectra. Each point is provided with the energy
spectrum (Gibson, 1963; Benzi et al., 1990), namely
E(f), where f is the frequency. It may be noted that the
use of energy spectra in the frequency domain is more
convenient in the present context, where spatial cluster-
ing is sought after. Spectra are used in logarithmic scale
to form clustering arrays in Eq. 1:

ξi =
{
log [E(f)]

}
∈ RQ i = 1, ...,H (21)

where f is the vector collecting discretized frequencies,
Q equals the size of f , and H = J .

Point-Wise Reynolds Stress Tensor Components

Spatial points are clustered together based on their
Reynolds stress tensor components. Specifically, each
point is provided with Reynolds stress tensor compo-
nents, which are combined together to form clustering
arrays in Eq. 1:

(
u′u′

)β
,

(
v′v′

)β
,

∣∣u′v′∣∣β (22)

where the exponent β is used as a tuning parameter for
the clustering process, and assumed equal to 1/2.
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Accordingly, clustering variables collected in ξi
are organized as

ξi =



[
u′(xi)u′(xi)

]1/2
[
v′(xi)v′(xi)

]1/2
∣∣∣u′(xi)v′(xi)∣∣∣1/2


∈ RQ i = 1, ...,H

(23)
where Q = 3 and H = P .

SNAPSHOT CLUSTERING APPROACH

Snapshot clustering is performed for the propeller wake
using vorticity snapshots following clustering variables
as

ξi = ω
(i) i = 1, ...,H (24)

Data sets are organized in phase-locked snap-
shots where each phase is typically observed hundreds
of times. In this case Q equals the size of the spatial
discretization and H = S.

SPATIAL CLUSTERING: UNIFORM AND BUOY-
ANT JETS RESULTS

The whole field of view is discretized with 197 × 187
points. Data rates of 128 and 64 Hz are used for the
uniform and buoyant jet respectively. A total of 4,600
snapshots are used for the uniform jet, whereas 3,141 are
used for the buoyant jet. For the purpose of current study,
a spatial subsampling by a factor of 2 along each spatial
direction is used. Coordinates x and y are relative to the
jet virtual origin and reported as ratio with respect to the
nozzle diameter D.

Mean Flow

Figure 2 shows the mean flow (left) and vorticity (right)
for the uniform (top) and buoyant (bottom) jet respec-
tively. It may be noted how impingement with the top
and (to a minor extent) left walls occurs for the uniform
jet, whereas the buoyant jet experiences a reverse flow
still quite far from the top wall.

Clustering by Cross-Section Velocity Profiles

Figure 3a shows the mean axial velocity (in the form of
1/uc) at the center line and the jet width b for the uniform
jet, showing a reasonable linear trend along the jet axis.
Figures 3b–e show the scaled profiles of mean axial ve-
locity (b) and root square of Reynolds stress tensor com-
ponents (c–e) respectively. As expected for this type of
flow, cross-Section velocity profiles scale very well with

uc and b. Profiles of the Reynolds stress tensor compo-
nents scale reasonably well with uc,l and bl especially if
far from the top wall where impingement occurs.

Figure 4a shows the mean axial velocity (in the
form of 1/uc) at the center line and the jet width b for the
buoyant jet, showing a reasonable although quite limited
linear trend in the bottom region of the jet. Figures ??b–
e show the scaled profiles of mean axial velocity (b) and
root square of Reynolds stress tensor components (c–e)
respectively. Velocity profiles scale reasonably well with
uc and b especially if far from the region where the flow
starts reversing. Similarly, profiles of the Reynolds stress
tensor components scale reasonably well with vc,l and bl.
It may be noted that the profiles that do not scale well are
those corresponding to the jet dome and the near-wall
(top) region.

Clustering of velocity profiles produces the
metrics presented in Figures 5 and 6 for the uniform and
buoyant jet respectively. Overall, three clusters may be
identified for the uniform jet since (a) the WCSS presents
a quite noticeable elbow point for k = 3, (b) the silhou-
ette has a reasonably large value for k = 3, and finally
(c) for k = 3 the number of POD/PCA components re-
quired to resolve the 75% or the total variance has the
largest drop. It may be noted that the curve showing the
75% variance is only used as a trend. Larger (or smaller)
variability thresholds can be applied similarly and will
be investigated in future studies. Similar considerations
apply for the buoyant jet, where five (k = 5) clusters are
identified.

Figure 7 shows the uniform-jet cluster cen-
troids for the mean axial velocity (a) and the profiles
of Reynolds stress quantities (b–d). The corresponding
cross-section clustering is presented in Figure 7e. Self-
similarity of mean axial velocity profiles is reflected in
the centroids (e). Significant differences emerge for the
Reynolds stress, where the uu component (normal/axial)
presents noticeable differences between the bottom and
middle cluster (c), suggesting the turbulence fully devel-
ops transitioning from the bottom to the middle clusters.
The vv component (normal/horizontal) has almost iden-
tical profiles for the bottom and middle clusters, whereas
it presents a bi-modal shape for the top cluster where im-
pingement occurs (d). Finally the uv component (shear)
produces cluster centroids with significant larger values
for the top cluster (e). We may conclude that three re-
gions are identified via k-means clustering, namely bot-
tom (developing), middle (fully developed), and top (im-
pingement) regions.

Figure 8 shows the buoyant-jet cluster cen-
troids for the mean axial velocity (a) and the profiles
of Reynolds stress quantities (b–d). The corresponding
cross-section clustering is presented in Figure 7e. Self-
similarity of mean axial velocity profiles can be noticed

7



(a) (b)

(c) (d)

Figure 2: Mean flow for the uniform (a,b) and buoyant (c,d) jets – Velocity (a,c) and vorticity (b,d).

only for the first three clusters (from bottom to top),
whereas the top two clusters present not only a remark-
able reverse flow but also a different scaling properties
with respect to b (a), which may be due to the presence of
instabilities and very low velocity values. The uu com-
ponent (normal/axial) presents noticeable differences be-
tween the bottom/middle clusters and the top three clus-
ters (c). The vv component (normal/horizontal) has simi-
lar profiles for the bottom and middle clusters, whereas it
presents a mild bi-modal shape for the top clusters, which
also show reduced values (d). Finally the uv component
(shear) produces cluster centroids with very small values
for the two top clusters (e). We may conclude that five re-
gions are identified via k-means clustering, namely first
from bottom (developed, with almost no reverse flow),
second (developed, with significant reverse flow and as-
sociated shear stress), third (flow reversing), fourth (jet
dome), fifth (top wall) regions.

Clustering by Point-Wise Energy Spectra

Figure 9 shows the energy spectra associated to the
whole field of view (in black) of the uniform (a) and
buoyant (b) jets, where the inertial subrange is well visi-
ble with a slope equal to −5/3.

Clustering by point-wise energy spectra pro-
duces the metrics presented in Figures 10 and 11 for
the uniform and buoyant jet respectively. The number of
clusters selected for the uniform jet is 5 since for k = 5

(a) the WCSS shows a mild elbow point, (b) the silhou-
ette is reasonably large, and especially (c) the number
of POD/PCA components required to resolve the 75%
of the variance experiences a significant drop. Similarly,
the number of clusters for the buoyant jet is 4 since (a)
the WCSS shows a mild elbow point, (b) the silhou-
ette is reasonably large, and especially (c) the number
of POD/PCA components required to resolve the 75% of
the variance experiences a significant drop.

Cluster centroids are included in Figure 9,
whereas spatial points associated to each cluster are
shown in Figure 12 for the uniform (a) and buoyant (b)
jets. For both jets (as expected) the cluster at the jet core
retains the largest energy, showing a well visible iner-
tial subrange with a −5/3 slope. Interestingly, moving
from the jet core towards outer clusters identifies regions
characterized by lower local Re and energy, bringing into
light subregions with slope equal to −3 and −1, which
may suggest the emergence of two-dimensional inertial
and viscous convective subranges. Clustering results also
emphasizes the differences between uniform and buoyant
jets, where the former experiences a reverse flow with
associated shear layer due to impingement with the top
and left walls, whereas for the latest the reverse flow and
shear layer are closer to the jet axis.
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(a) (b) (c)

(d) (e)

Figure 3: Clustering by cross-section velocity profiles – Uniform jet – Mean axial velocity at center line (1/uc) and
jet width (b/D) along jet axis (a); scaled profiles of mean axial velocity (b) and Reynolds stress quantities, normal
(c,d) and shear (e).

(a) (b) (c)

(d) (e)

Figure 4: Clustering by cross-section velocity profiles – Buoyant jet – Mean axial velocity at center line (1/uc) and
jet width (b/D) along with jet axis (a); scaled profiles of mean velocity (b) and Reynolds stress quantities, normal
(c,d) and shear (e).

Clustering by Point-Wise Reynolds Stress Tensor
Components

Clustering by point-wise Reynolds stress tensor compo-
nents gives the metrics presented in Figures 13 and 14
for the uniform and buoyant jet respectively. A num-
ber of clusters equal to 3 is selected for both jets. Simi-
larly to previously-shown clustering approaches, the se-
lected number of clusters provides an elbow point for the
WCSS (a), a reasonably large value for the silhouetee
(b), and a visible drop in the number of POD/PCA com-
ponents to resolve the 75% of the total variance (c).

Cluster centroids are shown in Figure 15,
whereas spatial points associated to each cluster are
shown in Figure 16. It may be observed how the cluster-
ing method defines spatial regions mainly by turbulence
intensity, highlighting the differences between the two
jets.

It may be noted that even if a number of clusters
equal to 3 satisfies most criterion, by definition this num-
ber represents a compromise between physical resolution
and complexity of the representation.
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(a) (b) (c)

Figure 5: Clustering by cross-section velocity profiles – Uniform jet – WCSS (a), average silhouette (b), and number
of POD/PCA components to resolve a prescribed relative variance (c).

(a) (b) (c)

Figure 6: Clustering by cross-section velocity profiles – Buoyant jet – WCSS (a), average silhouette (b), and number
of POD/PCA components to resolve a prescribed relative variance (c).

(a) (b)

(c) (d) (e)

Figure 7: Clustering by cross-section velocity profiles – Uniform jet – Cluster centroids (Cid) for scaled mean velocity
(a) Reynolds stress quantities (b,c,d); cross sections labeled by cluster (e).

SNAPSHOT CLUSTERING: PROPELLER WAKE
RESULTS

4-Bladed Propeller

Four phase-locked vorticity data sets (0, 90, 180, and 270
deg) are used, where each phase is observed 250 times
for a total of 1, 000 snapshots. The snapshots are orga-

nized (subsampled) in a 200 × 30 array, ranging axially
from 0 to 3.3 D, and radially from 0.3 to 0.8 D, focusing
on the tip vortex only (see Figure 17). The data matrix
has a dimension equal to 6,000 × 1,000. It may be noted
that once the data matrix is formed, the information on
the phase is lost (as this information is not included in
the data matrix).

First, the k-means is applied to the whole field
of view (see Figure 18). Figure 19 shows that 4 clus-
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(a) (b)

(c) (d) (e)

Figure 8: Clustering by cross-section velocity profiles – Buoyant jet – Cluster centroids (Cid) for scaled mean velocity
(a) and Reynolds stress quantities (b,c,d); cross sections labeled by cluster (e).

(a) (b)

Figure 9: Clustering by point-wise energy spectra – Total energy spectrum and energy spectrum associated to
cluster centroids (Cid) for uniform (a) and buoyant (b) jets.

(a) (b) (c)

Figure 10: Clustering by point-wise energy spectra – Uniform jet – Within cluster sum of squares (a), average
silhouette (b), and number of POD/PCA components to resolve a prescribed relative variance (c).

ters emerge from the data set. Specifically, WCSS shows
a clear elbow corresponding to k = 4. The average
silhouette exhibits a clear maximum corresponding to
k = 4. Figure 20a shows the projection of the data set
onto the first two POD/PCA modes. Data is labeled both
by cluster and phase, showing that the method is able
to recover phase information and the data set is clearly
clustered by phase. A similar analysis and visualiza-

tion is shown using t-SNE in Figure 20b, confirming
the POD/PCA result. Finally, Figure 20c provides joint
and marginal probability density functions of POD/PCA
and t-SNE coefficients α given by KDE, confirming the
data has four clusters of equal size. The corresponding
cluster centroids are presented in Figure 21, showing that
the mechanism of vortex coupling and convection down-
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(a) (b) (c)

Figure 11: Clustering by point-wise energy spectra – Buoyant jet – Within cluster sum of squares (a), average
silhouette (b), and number of POD/PCA components to resolve a prescribed relative variance (c).

(a) (b)

Figure 12: Clustering by point-wise energy spectra – Spatial points labeled by cluster (Cid) for uniform (a) and
buoyant (b) jets.

(a) (b) (c)

Figure 13: Clustering by point-wise Reynolds stress tensor components – Uniform jet – Within cluster sum of
squares (a), average silhouette (b), number of POD/PCA components to resolve a prescribed relative variance (c).

(a) (b) (c)

Figure 14: Clustering by point-wise Reynolds stress tensor components – Buoyant jet – Within cluster sum of
squares (a), average silhouette (b), number of POD/PCA components to resolve a prescribed relative variance (c).

stream is globally (for the large scale) deterministic de-
pending mainly on the phase.

A second analysis is performed, dividing the
filed of view in several windows, based on the vorticity

mean and variance associated to each cross section. Fig-
ure 22 shows the maximum mean and variance of cross
sections along the propeller axis. Four windows are se-
lected, as shown in Figure 17: (1) 0 ≤ x/D < 0.4,
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(a) (b)

Figure 15: Clustering by point-wise Reynolds stress tensor components – Cluster centroids (Cid) for uniform (a)
and buoyant (b) jets.

(a) (b)

Figure 16: Clustering by point-wise Reynolds stress tensor components – Spatial points labeled by cluster (Cid) for
transient uniform (a) and buoyant (b) jets.

Figure 17: 4-bladed propeller – Windows used for clustering of vorticity snapshots.
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Figure 18: Vorticity mean value (top) and variance (bottom) for the 4-bladed propeller.

where the maximum variance is low and the wake is sta-
ble; (2) 0.4 ≤ x/D < 0.8, where the maximum vari-
ance starts increasing and the wake destabilizing; (3)
0.8 ≤ x/D < 2, where the maximum variance reaches
its own maximum and starts decreasing along with the

maximum mean and the wake experiences a fully devel-
oped tip vortex interaction; (4) 2 ≤ x/D ≤ 3.3 where
variance and mean are almost constant and a fully turbu-
lent wake is observed.
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Figure 19: Clustering of vorticity snapshots – 4-bladed propeller, whole field of view – Within cluster sum of squares
(left) and average silhouette (right).

(a) POD/PCA labeled by cluster (left) and phase (right) (b) t-SNE labeled by cluster (left) and phase (right)

(c) KDE for POD/PCA (left) and t-SNE (right) coefficients

Figure 20: Clustering of vorticity snapshots – 4-bladed propeller, whole field of view – Data-projection on the first
two POD/PCA modes (a) and embedding via t-SNE (b), along with joint and marginal probability density functions
by KDE (c).

Figure 23, first column, shows the WCSS and
silhouette for window 1. Figure 24, first column, shows
the POD/PCA and t-SNE coefficients labeled by clus-
ter and phase for the same window. Figure 25, fist col-
umn, shows the density functions of the coefficients. As
expected, no significant structures are observed. The t-
SNE highlights some structure and hints of data cluster-
ing. Nevertheless, these are not significant and the data
can be interpreted as a single cluster.

Similarly, the second column of Figures 23, 24,
and 25 provides the results for window 2. Clustering re-
sults are ambiguous since 4 and 3 clusters are identified
by WCSS and silhouette, respectively. POD/PCA coef-
ficients show 2 or 3 main clusters whereas the t-SNE
clearly identifies 4 clusters associated to the propeller
phases.

Results for window 3 and 4 are presented in the
third and fourth column of Figures 23, 24, and 25, re-
spectively where 4 clusters are clearly identified with a

one-to-one association to the phase. It may be noted how
an high degree of determinism is still present far down-
stream the propeller. It may be also noted how window 4
t-SNE analysis presents some hints of transition towards
a different clustering structure.

Figure 26 shows the cluster centroids associated
to windows 2, 3, and 4, where rows represent clusters and
columns represent windows. As discussed earlier, these
centroids also represent phase-locked averages. The un-
supervised association of clusters to phases by k-means
indicates that the destabilization (and coupling) of tip
vortices progresses following mechanisms governed by
deterministic chaos.

Finally, the same analysis is performed for win-
dow 5, which bounds more closely a single vortex (see
Figure 17). Clustering results are ambiguous in this re-
gion (see Figure 27), even if some patterns are identified
by both POD/PCA and t-SNE coefficients, where a pair-
wise mixture of phases 0 − 90 and 180 − 270 is present
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Figure 21: Clustering of vorticity snapshots – 4-bladed propeller, whole field of view – Cluster centroids correspond-
ing to phases 0, 90, 180, 270 deg.
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Figure 22: 4-bladed propeller, whole field of view – Maximum value of mean (top) and variance (bottom) of the
vorticity along cross sections.

Figure 23: Clustering of vorticity snapshots – 4-bladed propeller – Within cluster sum of squares (top) and average
silhouette (bottom). From left to right: windows 1, 2, 3, and 4.

(see Figure 28). Cluster centroids are shown in Figure
29.

7-Bladed Propeller

A similar analysis is performed for the 7-bladed pro-
peller. In this case, the data set is composed by 500 snap-
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(a) POD/PCA labeled by cluster

(b) POD/PCA labeled by phase

(c) t-SNE labeled by cluster

(d) t-SNE labeled by phase

Figure 24: Clustering of vorticity snapshots – 4-bladed propeller – Data-projection on the first two POD/PCA
modes (a,b) and embedding via t-SNE (c,d). From left to right: windows from 1 to 4.

shots coming from a single phase (0 deg). The snapshots
are organized (subsampled) in a 200× 50 array, ranging
axially from 0 to 3.3 D, and radially from 0 to 0.8 D
(Figure 30). The data matrix has a dimension equal to
10,000 × 500.

Applying the clustering method to the whole
field of view does not reveal any clusters, as shown by
WCSS, silhouette (see Figure 31), and POD/PCA and
t-SNE coefficients (Figure 32). This is due to the fact
that the data set is composed by one phase only and it
is consistent with what we found for the 4-bladed pro-
peller, i.e., that overall the data clustering follows the
phase. Also window 1 (bounding one vortex) does not
show hints of clustering as Figures 33 and 34 show.

CONCLUSIONS AND FUTURE WORK

Spatial and snapshot clustering approaches have been
presented and discussed for PIV data of high-Reynolds
number uniform and buoyant jets and 4- and 7-bladed

propeller wakes respectively. Data clustering was based
on the k-means algorithm with the optimal number of
clusters provided by the assessment of three metrics,
namely the within-cluster sum of squares, average sil-
houette, and number of POD/PCA components required
to resolve a prescribed level of variance. Spatial clus-
tering for jet flows was based on three sets of clus-
tering variables, namely the cross-section velocity pro-
files, point-wise energy spectra, and point-wise Reynolds
stress tensor components. Snapshot clustering of phase-
locked propellers wake data was based on the vorticity
field with focus on the tip vortices. POD/PCA and t-SNE
embedding along with KDE were used to provide a two-
dimensional visualization of data clusters for assessment
and discussion.

Clustering of jet cross-section velocity profiles
helped identifying uniform and buoyant jet zones. The
analysis of clustering variables allowed to propose new
self-similarity laws for the jet, based on (i) actual cen-
ter velocity and jet width for the velocity profiles and (ii)
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(a) POD/PCA coefficients

(b) t-SNE coefficients

Figure 25: Clustering of vorticity snapshots – 4-bladed propeller – Joint and marginal probability density functions
of POD/PCA (a) and t-SNE (b) coefficients by KDE. From left to right: windows from 1 to 4.
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Figure 26: Clustering of vorticity snapshots – 4-bladed propeller – Cluster centroids corresponding to phases 0, 90,
180, 270 deg. From left to right: windows 2, 3, and 4.

their idealized linear representation for Reynolds-stress
quantities. Three zones were identified for the uniform
jet flow, namely bottom (developing), middle (fully de-
veloped), and top (impingement) regions. Five zones
where identified for the buoyant jet, namely first from
bottom (developed, with almost no reverse flow), second

(developed, with significant reverse flow and associated
shear stress), third (flow reversing), fourth (jet dome),
fifth (top wall) regions. Clustering by point-wise energy
spectra emphasized for both jets how jet core data re-
tain the largest energy, with a well visible inertial sub-
range with slope equal to −5/3. Moving from the core
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Figure 27: Clustering of vorticity snapshots – 4-bladed propeller, window 5 – Within cluster sum of squares (left)
and average silhouette (right).

(a) POD/PCA labeled by cluster (left) and phase (right) (b) t-SNE labeled by cluster (left) and phase (right)

(c) KDE for POD/PCA (left) and t-SNE (right) coefficients

Figure 28: Clustering of vorticity snapshots – 4-bladed propeller, window 5 – Data-projection on the first two
POD/PCA modes (a) and embedding via t-SNE (b), along with joint and marginal probability density functions by
KDE (c).
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Figure 29: Clustering of vorticity snapshots – 4-bladed propeller, window 5 – Cluster centroids.

to outer regions and therefore to lower local Re, clusters
brought into light subregions with slope equal to −3 and
−1. Clustering results also emphasized the differences
between uniform and buoyant jets, with significantly dif-
ferent clusters topologies. Finally, clustering by point-
wise Reynolds stress tensor components produced spa-
tial zones driven mainly by the turbulence intensity.

4-bladed propeller wake clustering of phase-
locked snapshots produced no clusters (meaning only
one cluster) for the near-field data window. Clusters
with a one-to-one association to the phase were found
for other data windows. Specifically, this was clearly ob-
served for the whole field of view as well as for win-
dows covering the region where the wake transitions to a
unstable regimes and windows in the far field. Cluster-
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Figure 30: 7-bladed propeller – Windows used for clustering of vorticity snapshots.

Figure 31: Clustering of vorticity snapshots – 7-bladed
propeller, whole field of view – Within cluster sum of
squares (left) and average silhouette (right).

(a) POD/PCA (b) t-SNE

(c) KDE for POD/PCA (left) and t-SNE (right) coefficients

Figure 32: Clustering of vorticity snapshots – 7-bladed
propeller, whole field of view – Data-projection on the first
two POD/PCA modes (a) and embedding via t-SNE (b),
along with joint and marginal probability density func-
tions by KDE (c).

Figure 33: Clustering of vorticity snapshots – 7-bladed
propeller, window 1 – Within cluster sum of squares (left)
and average silhouette (right).

(a) POD/PCA (b) t-SNE

(c) KDE for POD/PCA (left) and t-SNE (right) coefficients

Figure 34: Clustering of vorticity snapshots – 7-bladed
propeller, window 1 – Data-projection on the first two
POD/PCA modes (a) and embedding via t-SNE (b),
along with joint and marginal probability density func-
tions by KDE (c).

ing results suggested that the wake instability and sub-
sequent progression of tip vortices is characterized by
mechanisms governed by deterministic chaos also in the
far field. Results were confirmed by clustering of a single
phase from the 7-bladed propeller data sets, where only
a mild clusterization was found.

Ongoing and future work includes extending
the analysis of clustering methods and results covering
both spatial and temporal clustering for all jet and pro-
peller wake cases with comparison and discussion of the
results. The idea is to combine spatial/temporal clus-
tering to fully exploits data reduction and visualization
techniques to provide physical characterization of zones
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and intervals in space and time domain respectively. Fur-
thermore, a systematic analysis of POD/PCA modes for
the whole and clusterized data set will be performed.
Extensions to dynamic mode decomposition (DMD) are
also part of the ongoing research.
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