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Output containment via multi-consensus for
heterogeneous linear systems on digraphs

F. Cacace, M. Mattioni, S. Monaco, L. Ricciardi Celsi

Abstract—In this paper we show how the problem of con-
tainment on arbitrary output trajectories for a group of linear
systems connected by a digraph can be analyzed and solved
based on topological results on multi-consensus concerning the
network structure. Specifically, we apply this approach to the
case of heterogeneous agents, for which output containment is
the relevant task. We assume that each agent only measures
the output of the corresponding exosystem, that defines the
consensus trajectory. Indeed, the latter one is asymptotically
generated by a set of linear systems (the exosystems) suitably
exchanging information through the network. The approach
proposed allows for the distributed, consensus-based stabilization
of the containment dynamics without requiring the agents to have
any non-local knowledge of the network structure.

Index Terms—Multi agent systems; Multi-consensus; Contain-
ment control; Output feedback control; Linear systems.

I. INTRODUCTION

Multi-consensus or cluster consensus, where parts of a
multi-agent system simultaneously reach different consensus
states, has attracted the interest of the research community [1],
[2] for its relevance in many application fields as, among many
others, opinion dynamics, game theory, biology, robotics,
communication systems (e.g., [3]–[8] to cite a few).

Previous results on cluster consensus and multi-consensus
include, among many others, [9], where conditions for estab-
lishing multi-consensus are derived for multi-agent systems
with fixed and switching topology. In [10], the clustering of a
set of discrete-time dynamical agents is guaranteed thanks to
the introduction of different inputs to different clusters.

An interesting application of multi-consensus is the con-
tainment problem; namely, given a multi-agent system one
seeks for a control constraining the behavior of the network
to the one dictated by a subset of agents, that might be
leaders or, more in general, roots of the graph. This task
can be formulated as a multi-consensus problem, in which,
for example, some clusters play the role of leader agents
that converge toward some desired trajectories, whereas other
clusters converge to an appropriate convex combination of the
clusters containing the leaders.

Many previous works on containment are available. In
general, they are not based on multi-consensus. For example,
in [11] distributed containment control is considered for a
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second-order multi-agent system guided by multiple leaders
with random switching topology. In this case, distinct dynam-
ics are explicitly assigned to the leaders and the agents. In [12]
the distributed control containment problem for heterogeneous
first-order and second-order agents on a digraph is solved.
[13] studies containment for heterogeneous agents. The leaders
are assumed to be exosystems and the approach relies upon
designing a distributed output-feedback control based on a
multi-leader following output regulation framework.

In this paper we consider the situation in which a set of
heterogeneous agents endowed with uniform reference trajec-
tory generators are connected by a general directed graph.
We emphasize that the idea of enforcing consensus on a
desired reference trajectory via a network of exosystems is
typically used in many applications such as, for instance,
attitude and formation tracking control of robots, swarms of
satellites or trains (see for instance [14]–[18]). Also, it is worth
to note that such an approach also embeds leader-following
consensus control [19]. We show that in this situation by
suitably designing in a distributed way the coupling gains and
the local controllers it is possible to make the agents evolve
in clusters that are determined only by the network topology.
The clusters are partitioned in “autonomous” clusters Hi, in
which all the agents evolve together on trajectories determined
by their respective leaders, and “dependent” clusters Ci that
evolve together on a convex combination of theHi. The role of
leaders, followers, autonomous and dependent clusters depend
only on the network topology. In other words, a distinctive
feature of this approach is that the role of the agents depends
only on their position in the network and not on their inherent
structure or dynamics. Thus, the topological characterization
described in the paper is useful either to analyze the behavior
of a given network or design a specific topology to arrange the
configuration of the multi-agent system in a pre-determined
way. These results pave the way to a new control approach
for possibly heterogeneous multi-agent systems, topological
control, in which the collective behavior of the agents is
controlled by only switching on/off their interactions without
any modification of the single agents’ dynamics.

The reference trajectories are those that can be generated
by an arbitrary observable and controllable linear system.
The structure of the reference trajectory generators is uniform
across the graph, but their initial conditions at each agent
can be arbitrary. We describe two solutions, one for the case
when the state of the local generator is available to design the
control, and the other one for the case when only the output is
available. We remark that this is the first work to investigate
multi-consensus-based containment on general trajectories for
heterogeneous agents, where the clusters are determined only
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by the network, that is, homogeneity hypotheses are not
required for agents in the same cluster.

In order to solve the problem we exploit recent results on
the characterization of the multi-consensus behavior induced
by features of the network, namely the presence of symmetries
[20] or of almost (or external) equitable partitions ( [21]–[25]).
In particular, in [24], [26] it was shown that on digraphs the
network topology naturally induces a clustering of the dynam-
ics that can be exploited to reach cluster synchronization to
a static point, where the cluster trajectories are distinguished
by the initial conditions of the root agents of each cluster.
Interestingly, one feature of the proposed solution is that
the clustering is induced by the network, i.e., the agents are
unaware of the cluster they belong, and the control is designed
without any knowledge of the structure of the clusters. The
technical contributions can be summarized as follows.

1) We extend the distributed internal model principle of [27]
to multi-consensus, that is, to the case of graphs that are
not uniformly connected.

2) We extend the multi-consensus containment design of
[26] to the case of a class of time-varying reference
trajectories, rather than constant values; namely, we con-
sider output references that can be generated by a suitably
defined LTI finite-dimensional system.

3) We apply these results to solve the output containment
problem with general trajectories of multi-agent systems
over arbitrary digraphs when the agents have access
only to the output, and not to the whole state, of their
neighbors.

The rest of the paper is organized in the following way. In
Section II, preliminary notions are given. In Section III, we
formulate the problem of output multi-consensus design for
heterogeneous linear systems on general unweighted digraphs.
In Section IV, the theory of output regulation and the results
on multi-consensus are applied to the design of the reference
generators. In Section V, we discuss two cases, namely when
the state of the reference generators is available in the feedback
and when only their output is available. In Section VI, we pro-
vide two simulated examples: the first one ensures containment
on a set of systems driven by heterogeneous actuators toward
periodic trajectories; in the second one, the proposed approach
is used to enforce formation tracking of a group of unicycles.
Concluding remarks in Section VII end the paper.

II. PRELIMINARIES

A. Notations, definitions and basic graph properties

C+ and C− represent, respectively, the open right and left
sides of the complex plane. R+ ⊂ R denotes the set of non-
negative real. |S| denotes the cardinality of the set S. Given
a matrix A ∈ Cn×n, A? denotes its conjugate transpose.
Given λ ∈ C, we define by Re(λ) the corresponding real-
part. We denote by 0 either the zero vector or the zero matrix
of suitable dimensions. 1c denotes the c-dimensional column
vector whose elements are all ones while In is the identity
matrix of dimension n. σ(A) ⊂ C denotes the spectrum of a
matrix A ∈ Rn×n whereas ImA is its image (or range space).

The Kronecker product is denoted by A⊗B. Given N matrices
Ei ∈ Rni×mi of suitable dimensions, we denote

colNi=1(Ei) =
(
E>1 . . . E>n

)> ∈ R(n1+···+nN )×m

when mi = m for all i = 1, . . . , N ,

rowN
i=1(Ei) =

(
colNi=1(E>i )

)> ∈ Rn×(m1+···+mN )

when ni = n for all i = 1, . . . , N and, finally,

diagNi=1(Ei) =

E1 . . . 0
...

. . .
...

0 . . . EM

 ∈ Rn×m

with n :=
∑N
i=1 ni and m :=

∑N
i=1mi.

Consider a digraph (that is a simple unweighted directed
graph) G = {V, E} with V the set of vertices, |V| = N and
E ⊆ V × V the set of edges. (j, r) ∈ E if there exists an
edge from j to r or, equivalently, j is a neighbour of r. The
set of neighbours associated to j ∈ V is denoted Nj and
dj = |Nj | is the in-degree. The in-degree matrix is defined as
D = diagj=1,...,N (dj) ∈ RN×N whereas the adjacency matrix
is A = {ajr} ∈ RN×N with ajj = 0 and ajr = 1 if (r, j) ∈ E
and ajr = 0 otherwise for j 6= r. We say that Gu = {V, Eu}
is the undirected version of the digraph G = {V, E} if E ⊆ Eu
and, in addition, for all (j, r) ∈ E then (r, j) ∈ Eu.
G is said to be: weakly connected if its undirected version is

connected; strongly connected if there always exists a directed
path between every pair of nodes and there is no unreachable
node. Given j ∈ V , R(j) denotes a node reach, that is, the set
of nodes that are reachable from j. If R(j) is not contained
in any other R(r), j 6= r, then R(j) is called a graph reach
of G and denoted Rj . Thus, Ri for i = 1, . . . , µ are the
distinct graph reaches of G with µ ≤ N . For each reach Ri,
Hi = Ri\ ∪µj=1,j 6=i Rj with hi = |Hi| defines the exclusive
part while Ri = Ri\Hi is the corresponding common part
whose union defines C = ∪µi=1Ri with c = |C|, see Example
2.1 below.

The Laplacian L = D − A of G, L ∈ RN×N has one
eigenvalue λ = 0 with algebraic multiplicity µ equal to the
number of reaches of G and all other eigenvalues with positive
real parts [21], [28]. After suitably reordering the graphs
nodes, the Laplacian L admits the upper triangular form

L =

(
diagµi=1(L1) 0
rowµ

i=1(Mi) M

)
, Li =

(
Pi 0
Ri Qi

)
(1)

where Li ∈ Rhi×hi is the Laplacian associated to Hi and
M ∈ Rc×c associated to the common part C of the digraph.
Pi is a square matrix of size pi = |Pi| with Pi ⊆ Hi the set of
root nodes in Hi. Qi is non-singular of dimension hi − pi =
|Qi| with Qi = Hi\Pi. As a consequence, each Li possesses
an eigenvalue λ = 0 with algebraic multiplicity 1 and σ(M) ⊂
C+. If Mi = 0 then the reach Ri defines a disconnected
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Fig. 1. A weakly connected digraph and its coarsest AEP. R1 = R(1) =
R(2) = {1, 2, 3, 6, 7, 8} and R2 = R(4) = R(5) = {4, 5, 6, 7, 8} are the
maximal sets of reachable nodes and they thus correspond to the two reaches
of the graph. Their exclusive parts are H1 = {1, 2, 3} and H2 = {4, 5},
while the common part C = {6, 7, 8} contains two cells, C = C3 ∪ C4.

component of the graph G. The eigenspace associated to the
zero eigenvalue of L is Es = span{z1, . . . , zµ} with

z1 =


1h1

0
...
0
γ1

 , z2 =


0
1h2

...
0
γ2

 , . . . , zµ =


0
0
...

1hµ
γµ

 (2)

with
∑µ
i=1 γ

i = 1c, Li1hi = 0 and Mi1hi +Mγi = 0 for
all i = 1, . . . , µ. The left eigenvectors associated to the zero
eigenvalue of L are given by

ṽ>1 =
(
v>1 . . . 0 0

)
, . . . , ṽ>µ=

(
0 . . . ν>µ 0

)
. (3)

All ν>i ∈ R1×hi satisfy ν>i Li = 0 and are assumed, without
loss of generality, such that ν>i 1hi = 1 for all i = 1, . . . , µ.
Moreover, it can be checked that νi is non-negative with non-
zero entries on Pi, i.e. ν>i = (ν>pi 0hi−pi).

Definition 2.1: A partition π = {ρ1, . . . , ρr} of V is a
collection of disjoint cells ρi ⊆ V such that ∪ri=1ρi = V .
The characteristic vector of a cell ρ ⊆ V is p(ρ) =
(p1(ρ) . . . pN (ρ))> ∈ RN with for i = 1, . . . , N , pi(ρ) = 1
if vi ∈ ρ and 0 otherwise. The characteristic matrix of a
partition π = {ρ1, . . . , ρr} of V is P (π) = rowi(p(ρi)). π1 is
said to be coarser than π2 (π1 � π2) if all cells of π2 are a
subset of some cell of π1. We name π = V the trivial partition
containing a unique cell with all nodes.

Definition 2.2: A partition πAE = {ρ1, ρ2, . . . , ρr} is said
to be an almost equitable partition (AEP) of G if, for each
i, j ∈ {1, 2, . . . , r}, with i 6= j, there exists an integer dij
such that |N (v, ρj)| = dij for all v ∈ ρi, where N (v, ρ)
denotes the set of neighbors of v in the cell ρ.
Equivalently and in terms of Laplacian, π is an AEP for G if
and only if ImP (π) is L-invariant [22]. A non trivial partition
π? is the coarsest AEP of G if for all non trivial π AEP of G
then π? � π.

The coarsest AEP can be represented, exploiting (1), as

π? = {H1, . . . ,Hµ, Cµ+1, . . . , Cµ+k}. (4)

Thus, a further partition within the common C is revealed:
nodes in C belong to the same cell Cµ+` of the AEP if for

all i = 1, . . . , µ the corresponding components of γi coincide.
We denote c` = |Cµ+`|, ` = 1, . . . , k.

Example 2.1: In the digraph of Fig.1 there are two reaches
R1 and R2 that correspond to the two maximal sets of
reachable nodes R(1) = R(2) and R(4) = R(5)1. Thus,
µ = 2 is the multiplicity of 0 as an eigenvalue of the Laplacian.
The exclusive part of R1 is H1 = {1, 2, 3} and its root nodes
are P1 = {1, 2}. The exclusive part of R2 is H2 = {4, 5}
and its root nodes are P2 = {4, 5}. Notice that the sub-graphs
associated to P1 and P2 are strongly connected. The common
part of the reaches is C = R1 = R2 = {6, 7, 8} which is
composed by the two cells C3 and C4 of the AEP. Nodes in
C3 have one neighbor in H1 and one neighbor in H2, whereas
nodes in C4 have one neighbor in C3 and one neighbor in H2.

B. Multiconsensus of scalar integrators

As proved in [24] the notion of AEP is linked to the
characterization of multi-consensus for multi-agent systems.
Consider a set of N of scalar integrators ẋj = uj , xj ∈ R
that exchange information based on a communication graph
G = (V, E) whose vertices j ∈ V correspond to the agent (or,
equivalently, node) xj . Then, under the coupling rule

uj = −
∑
r∈Nj

(xj − xr) = −
N∑
r=1

Ljrxr (5)

nodes asymptotically cluster into r = µ + k consensuses
with such clusters uniquely defined by the coarsest AEP π?:
the states of all agents belonging to the same cell of the
AEP converge to the same consensus state. Considering the
aggregate network dynamics ẋ = −Lx with x = colNj=1{xj},
L as in (1), and

xi = colj∈Hi(xj) ∈ Rhi , xµ+` = colj∈Cµ+`(xj) ∈ Rc` ,

for i = 1, . . . , µ and ` = 1, . . . , k, then each γi ∈ Rc in (2)
reads

γi = colk`=1(1c` ⊗ γi`), γi` ∈ R. (6)

Thus, as t→∞, the following holds true:
1) nodes in Hi converge to a consensus value; i.e., for all

i = 1, . . . , µ and j ∈ Hi
xi(t)→ 1hi ⊗ xssi , xssi := ν>i xi(0)

with ν>i being the left eigenvector (3);
2) nodes in Cµ+` for ` = 1, . . . , k converge to a convex

combination of the consensuses induced by the Hi,

xµ+`(t)→ 1c` ⊗ xssc` , xssc` :=

µ∑
i=1

γi`x
ss
i .

We note that, due to the structure (3), the consensus values
xssi and xssc` (with i = 1, . . . , µ and ` = 1, . . . , k) depend
only on the initial condition of the root nodes of Hi. These
results were extended to general linear homogeneous systems
in [26]. From now on, for a general digraph G with AEP π? as

1The node reaches R(3), R(6), R(7) and R(8) are not graph reaches
because they are contained in R1 and R2.
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in (4), µ > 1 and k > 0 will denote the number of exclusive
reaches Hi and the number of cells of the AEP partitioning
the common C.

III. PROBLEM STATEMENT AND OVERVIEW OF THE
APPROACH

Consider the case of heterogeneous agents connected by a
graph G = {V, E}. Let each agent j ∈ V be in the form

ẋj =Ajxj +Bjuj (7a)
yj =Cjxj (7b)

with xj ∈ Rnj , yj ∈ Rq , uj ∈ Rpj . All agents are
assumed stabilizable and detectable and the nodes of the
digraph suitably sorted so that the communication digraph
exhibits the triangular form (1). Let xi = colj∈Hi(xj) ∈ Rhi ,
ui = colj∈Hi(uj) ∈ Rpi , yi = colj∈Hi(yj) ∈ Rqhi be,
respectively, the stack of the state, input and output variables
in the reach Hi and xµ+` = colj∈Cµ+`(xj) ∈ Rc` , uµ+` =
colj∈Cµ+`(uj) ∈ Rp` , yµ+` = colj∈Cµ+`(uj)(yj) ∈ Rqc` be,
respectively, the stack of the state, input and output variables
in the cell Cµ+`, for i = 1, . . . , µ and ` = 1, . . . , k. In the
following, we address the problem of designing a distributed
control law driving the output of all agents to multi-consensus
trajectories induced by the digraph G via the almost equitable
partition (4). More in detail, we seek for a distributed feedback
ensuring the following properties.
P1. The output evolutions of all nodes belonging to the same

reach Hi converge to a desired suitably defined trajectory
θs,i(t) (as introduced in Section IV below); namely, for
i = 1, . . . , µ, as t→∞

yi(t)→ (1hi ⊗ Iq)θs,i(t).
P2. The output evolutions of all nodes in C within the same

cell of the AEP in (4) converge to a suitably defined
convex combination of θs,i(t); namely, for all Cµ+` ∈ π?,
γ`i as in (6), ` = 1, . . . , k and t→∞

yµ+`(t)→ (1c` ⊗ Iq)
µ∑
i=1

γi`θs,i(t).

As the intuition suggests, an internal model principle condition
as proved in [27] for single consensus should also hold to get
linear output multi-consensus.

The approach that we propose is the following. In the
first place we associate to each node j ∈ V a set of N
homogeneous (i.e., identical) reference generators of the form

ẇj =Swj +Kvj (8a)
θj =Qwj (8b)

with wj ∈ Rn0 for some n0, θj ∈ Rq , S ∈ Rn0×n0 and Q ∈
Rq×n0 with (S,Q) observable and such that the resonance
condition below holds for all j ∈ V

rank
(
Aj − λIn Bj

Cj 0

)
= nj + q, for all λ ∈ σ(S). (9)

The second step is to assume that each node may access the
output of the generators of its neighbors and to induce output
multi-consensus on the generators. To this aim vj ∈ Rq is
designed as a coupling induced by G of the form

vj = −
∑
r∈Nj

(θj − θr) = −
N∑
r=1

Ljr(θj − θr), (10)

with the coupling strength matrix K ∈ Rn0×q designed to
guarantee that the outputs of all agents in the same cell
synchronize; i.e., as t→∞

θj(t)→ θs,i(t), j ∈ Hi (11a)

θj(t)→
µ∑
i=1

γi`θs,i(t), j ∈ Cµ+` ⊆ C. (11b)

The third step is to design a local and distributed regulator
so that the output of each agent is forced to track the output
θj(t) of the local reference generator (8) that is, for all j ∈ V
and as t → ∞ one gets yj(t) → θj(t), with the constraint
that each agent can access only measures of the output of
the corresponding generator with no global knowledge of the
network configuration.

Remark 3.1: The matrices (S,Q) can be suitably designed
to generate the desired consensus trajectories θs,i : R+ → Rq .
Their choice allows the designer to impose a family of desired
consensuses (e.g., constant, sinusoidal, etc). We shall prove
that the coupling strength K can be the same for all the agents
and it is possible to compute it in a distributed way. The local
regulator is specific to each agent, due to the heterogeneous
nature of the agents.

Remark 3.2: In the following, we assume that nodes
of the network are ordered so that the Laplacian is of the
form (1) with AEP as in (4). In addition, agents within the
common C are assumed sorted so that the last component of
the eigenvectors in (2) get the form (6). Such a sorting and
the spectral information of (1) are only used in the proofs
of the results to come. No knowledge of the aforementioned
quantities is used for implementing the control laws we will
design. All results hold true for the case of generally labeled
nodes of G.

IV. DESIGN OF THE REFERENCE GENERATORS

In this section we illustrate how to design K so that the
output of agents in the same cell of the AEP π? in (4) converge
to the same consensus trajectory, independent from K, the
so-called mean-field dynamics of the cluster of generators (8)
with the corresponding state the so-called mean-field unit [29].
The section also provides the expression of these consensus
trajectories. In particular, for the cells Hi the mean-field
dynamics depends only on the pair (S,Q) and on the initial
conditions of the root nodes in Pi ⊆ Hi. Conversely, for the
cells Cµ+` the consensus trajectory is a convex combination
of the mean-field dynamics of the cells Hi. The results in this
section extend those of [26] to the case when only the output
of the neighbors is available.

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3330929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on December 05,2023 at 08:00:40 UTC from IEEE Xplore.  Restrictions apply. 



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 5

The network composed of the N identical reference gener-
ators (8) can be compactly rewritten as

ẇi =
(
(Ihi ⊗ S)− (Li ⊗KQ)

)
wi (12a)

ẇC =
(
(Ic ⊗ S)− (M⊗KQ)

)
wC −

µ∑
i=1

(Mi ⊗KQ)wi

(12b)
θi =(Ihi ⊗Q)wi (12c)
θC =(Ic ⊗Q)wC (12d)

with, i = 1, . . . , µ and ` = 1, . . . , k, wi = colj∈Hi(wj) ∈
Rn0hi , θi = colj∈Hi(θj) ∈ Rqhi , wµ+` = colj∈Cµ+`(wj) ∈
Rn0c` , θµ+` = colj∈Cµ+`(θj) ∈ Rqc` , wC = colk`=1(wµ+`) ∈
Rn0c, θC = colk`=1(θµ+`) ∈ Rqc.

Proposition 4.1: Consider a digraph G that connects the
homogeneous reference generators (8). Let π? as in (4) be an
AEP of G. Then, the following holds.

1) In each Hi the functions ws,i : R+ → Rn0 and θi :
R+ → Rq defined by

ws,i =(ν>i ⊗ In0)wi (13a)

θs,i =(ν>i ⊗ Iq)θi (13b)

are the mean-field units and evolve according to

ẇs,i =Sws,i (14a)
θs,i =Qws,i, (14b)

that is, ws,i(t) = eSt(ν>i ⊗ In0
)wi(0).

2) In each cell Cµ+` ⊆ C the mean-field units given by

ws,µ+` =

µ∑
i=1

γi`ws,i (15a)

θs,µ+` =

µ∑
i=1

γi`θs,i (15b)

evolve according to (14).
3) If wi = 1hi ⊗ws,i and wµ+` = 1c` ⊗ws,µ+`, that is, if

there is consensus in each cell, then

wC =

µ∑
i=1

γi ⊗ ws,i (16a)

θi =1hi ⊗ θs,i, i = 1, . . . , µ (16b)
θµ+` =1c` ⊗ θs,µ+`, ` = 1, . . . , k. (16c)

Proof. Point (1). Since ν>i Li = 0 and ν>i 1hi = 1,

ẇs,i =(ν>i ⊗ In0)
(
(Ihi ⊗ S)− (Li ⊗KQ)

)
wi

=(ν>i ⊗ S)wi = S(ν>i ⊗ In0
)wi = Sws,i

θs,i =(ν>i ⊗ Iq)(Ihi ⊗Q)(1hi ⊗ In0
)ws,i

=(ν>i ⊗Q)(1hi ⊗ In0
)ws,i = Qws,i.

Point (2). Immediate by using (14) into (15).

Point (3). It can be proven as follows.

wC = colk`=1(1c` ⊗ ws,µ+`)

= colk`=1

(
1c` ⊗

µ∑
i=1

γi`ws,i

)
=

µ∑
i=1

γi ⊗ ws,i

θi =(Ihi ⊗Q)(1hi ⊗ ws,i) = 1hi ⊗ (Qws,i)

= 1hi ⊗ θs,i
θµ+` =(Ic` ⊗Q)(1c` ⊗ ws,µ+`) = 1c` ⊗ (Qws,µ+`)

= 1c` ⊗ θs,µ+`

�
From the result above, it is clear that the mean-field

dynamics are invariant for all generators; namely, when the
corresponding initial conditions satisfy

wi(0) = (1hiν
>
i ⊗ In0)wi(0)

wµ+`(0) =

µ∑
i=1

γi`(1c`ν
>
i ⊗ In0)wi(0)

for i = 1, . . . , µ and ` = 1, . . . , k, then all generators in
the same cell of π? in (4) evolve with the same trajectory
provided by a combination of the outputs of the generators
(8) associated to the root nodes of the communication digraph
G. More in details, for nodes in Hi, the consensus trajectory
is defined by a weighted mean of the initial states of the root
nodes and governed by the mean-field dynamics (14). On the
other side, the consensus of nodes in the same cell Cµ+` is a
convex combination of the consensuses over the reaches.

At this point, for inducing output multi-consensus, the
coupling matrix K must be fixed to make the mean-field
dynamics attractive for all agents, that is to asymptotically
stabilize the multi-consensus error dynamics

ėi =
(
(Ihi ⊗ S)− (Li ⊗KQ)

)
ei (17a)

ėC =
(
(Ic ⊗ S)− (M⊗KQ)

)
eC −

µ∑
i=1

(Mi ⊗KQ)ei

(17b)

with the error components being

ei =wi − (1hi ⊗ In0
)ws,i, i = 1, . . . , µ (18a)

eµ+` =wµ+` − 1c` ⊗
µ∑
i=1

γi`ws,i, ` = 1, . . . , k. (18b)

This can be achieved by exploiting [26, Theorem 3.3]
for multi-consensus of homogeneous networks over weakly
connected digraphs as detailed below.

Theorem 4.1: Consider a digraph G and a network of
homogeneous reference generators (8) with (S,Q) observable
and the coupling as in (10). For an arbitrary a > 0, let
P ∈ Rn0×n0 be the unique P = P> � 0 solution to the
Riccati equation

SP + PS> + aI − PQ>QP = 0. (19)

Then, setting

K = κPQ>

κ ≥ 1

2λm
, λm = min

λ 6=0
{Re(λ) : λ ∈ σ(L)}. (20)

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3330929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on December 05,2023 at 08:00:40 UTC from IEEE Xplore.  Restrictions apply. 



6 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MONTH, YEAR

the outputs of all generators (8) converge to a multi-consensus
trajectory; i.e., for all i = 1, . . . , µ, ` = 1, . . . , k and θs,i ∈ Rq
as in (13b)

lim
t→∞

θi(t) =1hi ⊗ θs,i(t) (21a)

lim
t→∞

θµ+`(t) =1c` ⊗
µ∑
i=1

γi`θs,i(t). (21b)

Proof. The result is proved if we show that ei and eC are
asymptotically stable. As proved in [26, Lemma A.1], since
the Li admit a spanning tree the error dynamics (17) is asymp-
totically stable if and only if the matrices Sλ = S−λKQ are
Hurwitz for all λ ∈ σ(L)\{0}. Accordingly, it is enough to
show that for P � 0 then for all x ∈ Cn0\{0} and with K as
in (20) x?

(
PS?λ + SλP

)
x < 0. To this end, we compute

x?
(
PS?λ − SλP

)
x

=x?
(
PS> + SP − λKQP − λ?PQ>K>

)
x

=x?
(
PS> + SP − (λ+ λ?)κPQ>QP

)
x

=x?
(
PS> + SP − 2λmκPQ

>QP
)
x

≤x?
(
PS> + SP − PQ>QP

)
x

=− a‖x‖2 < 0, for all x 6= 0

so concluding the proof. �
Remark 4.1: The distributed computation of K is possible.

As a matter of fact, each P � 0 is solution to the Riccati
equation (19) which depends only on the pair (S,Q) with no
required information on the network topology. In addition, the
bound κ ≥ 1/(2λm) in (20) can be satisfied can be computed
locally, even if κ depends on the structure of the network. This
can be made by choosing κ sufficiently large (thanks to the
high-gain nature of the condition) or, if necessary, in a fully
distributed way by using, e.g., the adaptive algorithm in [30].

V. MULTI-CONSENSUS CONTROL VIA LOCAL REGULATION

Given a network of N identical generators (8) under the
hypotheses of Theorem 4.1, we construct a distributed and
local regulator to force the output of all agents (7) to asymp-
totically track the one of the corresponding generator (8); this
corresponds to zeroing the regulation error

εj = yj − θj = Cjxj −Qwj , j = 1, . . . , N. (22)

In Section V-A, the regulation problem is solved by Theorem
5.1 when the state of the generators is accessible and all
dynamics are known. In Section V-B, the local and distributed
control law is designed for the case of partial information, that
is, each agent (7) only possesses information on the output of
the corresponding generator (8).

A. The case of full-information feedback

We consider the agent j ∈ V embedded with the corre-
sponding set of hi reference generators (12a) whose state is
measured with apriori known matrices (S,Q).

Theorem 5.1: Consider a network of heterogeneous LTI
systems of the form (7) being stabilizable and detectable
with communication digraph G. Consider the exosystem of
reference generators (12a) under the hypotheses of Theorem
4.1 and assume that the resonance conditions (9) hold. Then,
under the feedback law

uj =Fj(xj −Πjwj) + Ψjwj (23)

with Fj such that σ(Aj +BjFj) ⊂ C− and (Πj ,Ψj) solution
to the Francis equation

ΠjS =AjΠj +BjΨj

CjΠj =Q
(24)

the outputs of all nodes converge to the consensus trajectory

yi(t)→ 1hi ⊗ θs,i(t), for all j ∈ Hi (25a)

y`(t)→ 1c` ⊗
( µ∑
i=1

γi`θs,i(t)
)
, for all j ∈ Cµ+` (25b)

with θs,i ∈ Rq as in (13b).
Proof. We use a coordinate transformation onwi with arbitrar-
ily chosen first component, wi

1, and wi
2 = colj∈Hi, j 6=i(wj −

wi
1), representing the generators’ disagreement within Hi.

That is,(
wi

1

wi
2

)
= (Ti ⊗ In0

)wi, Ti =

(
1 0

−1h1−1 Ih1−1

)
(26)

where it is easy to see that Ti satisfy, for all i = 1, . . . , µ

TiLiT−1
i =

(
0 Li,1
0 Li,2

)
.

For the nodes in the common, introduce the transformation

w̃C =wC −
µ∑
i=1

(γi ⊗ In0
)wi

1 (27)

to all generators (12b) in C with wi
1 as in (26). Accordingly,

for all j ∈ Hi we consider a local regulation problem over
the extended system

ẇi
1 =Swi

1 − (Li,1 ⊗KQ)wi
2 (28a)

ẇi
2 =
(
(Ihi−1 ⊗ S)− (Li,2 ⊗KQ)

)
wi

2 (28b)
ẋj =Ajxj +Bjuj (28c)

εj =Cjxj −Q(wi
1 + Ejw

i
2) (28d)

with E1 = 0, Ej = e>j ⊗ In0 with ej ∈ Rhi−1 the canonical
vector. Introducing the coordinate transformation zj = xj −
Πjw

i
1 and applying the feedback in (23), (28) reads

ẇi
1 =Swi

1 − (Li,1 ⊗KQ)wi
2

ẇi
2 =
(
(Ihi−1 ⊗ S)− (Li,2 ⊗KQ)

)
wi

2

żj =(Aj +BjFj)zj

εj =Cjzj −QEjwi
2.

Since Aj +BjFj and (Ihi−1⊗S)− (Li,2⊗KQ) are Hurwitz
by construction, one gets zj(t) → 0 and wi

2(t) → 0 as
t→∞. Accordingly, εj(t)→ 0 and, hence, yj(t)→ θj(t) as
t → ∞. Finally, from Theorem 4.1, θj(t) → θs,i(t) so that
(25a) follows.
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Analogously, for all j ∈ Cµ+`, we consider a regulation
problem over the extended system

ẇi
1 =Swi

1 − (Li,1 ⊗KQ)wi
2 (29a)

ẇi
2 =
(
(Ihi−1 ⊗ S)− (Li,2 ⊗KQ)

)
wi

2 (29b)
˙̃wC =

(
(Ic ⊗ S)− (M⊗KQ)

)
w̃C

−
µ∑
i=1

(
(γiLi,1 ⊗KQ) + (Mi ⊗KQ)

)
wi

2 (29c)

ẋj =Ajxj +Bjuj (29d)

εj =Cjxj −Q
µ∑
i=1

γi`w
i
1 −QEjw̃C (29e)

with Mi = Mi

(
0> Ic−1

)>
and selection matrix Ej =

e>j ⊗ In0
, with ej ∈ Rc the canonical vector. Using again

the coordinate transformation zj = xj − Πjwj and (26)-(27)
with the feedback (23), the system above gets the form

ẇi
1 =Swi

1 − (Li,1 ⊗KQ)wi
2

ẇi
2 =
(
(Ihi−1 ⊗ S)− (Li,2 ⊗KQ)

)
wi

2

˙̃wC =
(
(Ic ⊗ S)− (M⊗KQ)

)
w̃C

−
µ∑
i=1

(
(γiLi,1 ⊗KQ) + (Mi ⊗KQ)

)
wi

2

żj =(Aj +BjFj)zj

εj =Cjzj −QEjw̃C .

Since Aj +BjFj , (Ihi−1⊗S)− (Li,2⊗KQ) and (Ic⊗S)−
(M⊗KQ) are Hurtwitz, one gets asymptotically zj(t)→ 0,
wi

2(t) → 0 and w̃C(t) → 0. Accordingly, εj(t) → 0 and,
hence, yj(t) → θj(t). In addition, by construction of the
exosystem in Theorem 4.1, it is guaranteed that θj(t) →∑µ
i=1 γ

i
`θs,i(t) for all j ∈ Cµ+`, so that (25b) follows. �

From Theorem 5.1 it follows that the distributed control
laws (23) ensure output multi-consensus for the network
of heterogeneous systems (7). For such a feedback to be
implementable, all agents need to access the state of the
corresponding generator and the matrices (S,Q).

B. The case of partial information feedback

Assuming only the output of the corresponding signal
generator accessible to each agent, we construct a local and
distributed feedback composed of:

(i) a (pre-processing) internal model of the exosystem inject-
ing a copy of the multi-consensus behavior on all agents
of the network;

(ii) a stabilizer making the output consensus trajectory attrac-
tive.

In order to prove the result we consider separately the problem
over the reaches Hi (i = 1, . . . , µ) and then in Cµ+` ⊂ C
(` = 1, . . . , k). However, we shall conclude that the controller
structure is the same in both cases and consequently each
node can implement the control law without any knowledge
about its role in the network. In the reaches Hi the exosystem

driving the regulator is given by (28a). For all j ∈ Hi the
corresponding local feedback is a system of the form

ξ̇j =Ljξj +Mj(yj − θj) (30a)

η̇j =Φηj +G
(
Njξj +Hj(yj − θj)

)
(30b)

uj =Γηj +Njξj +Hj(yj − θj) (30c)

where (30a) is the consensus stabilizer at each node and
(30b) is the internal model of the exosystem (28a). This latter
component allows to handle the case in which agents use
distinct realizations of the output consensus trajectories. More
in detail, denoting by p(s) = c0+c1s+· · ·+cn0−1s

n0−1+sn0

the minimal polynomial of S (that can be assumed known
apriori to all agents with no loss of generality), a state
realization of the output of each generator can be assumed
of the form2

Φ =S0 ⊗ Iq, G = B0 ⊗ Iq (31)

S0 =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−c0 −c1 . . . −cn0−1

 , B0 =


0
...
0
1


Exploiting the results in [31, Section 4.6] the following result
can be proved.

Theorem 5.2: Consider a network of heterogeneous LTI
systems of the form (7) under the hypotheses of Theorem 5.1
with (Πj ,Ψj) the solution to the Francis equation (24). Then,
the control law (30) ensures that all outputs converge to the
consensus trajectory in (25) provided that (Φ, G) are fixed as
in (31), Γ and (Lj ,Mj , Nj , Hj) are such that, respectively,
σ(Φ−GΓ) ⊂ C− and

σ

Aj +BjHjCj BjΓ BjNj
GHjCj Φ GNj
MjCj 0 Lj

 ⊂ C−. (32)

Proof. By construction of (Φ, G) as in (31), one can pick
Γ to make Φ−GΓ Hurwitz. Thus, there exists Ωj satisfying
the Francis equation ΩjS = ΦΩj , Ψj = ΓΩj with Ψj the
solution to (24). Accordingly, one must show that the feedback
(30) ensures that, as t → ∞, xj(t) → Πjw

i
1(t) and η(t) →

Ωjw
i
1(t). To this end, let us first consider j ∈ Hi and the

coordinate transformation zj = xj−Πjw
i
1, ζj = ηj−Ωjw

i
1

and the augmented system

ẇi
1 =Swi

1 − (Li,1 ⊗KQ)wi
2 (33a)

ẇi
2 =
(
(Ihi−1 ⊗ S)− (Li,2 ⊗KQ)

)
wi

2 (33b)

żj =−
(
BjHjQEj −Πj(Li,1 ⊗QK)

)
wi

2

+ (Aj +BjHjCj)zj +BjΓζj +BjNjξj (33c)

ζ̇j =−
(
GHjQE

i
r + Ωj(Li,1 ⊗QK)

)
wi

2

+GHjCjzj + Φζj +GNjξj (33d)

ξ̇j =−MjQEjw
i
2 +MjCjζj + Ljξj (33e)

εj =Cjzj −QErwi
2 (33f)

2The realization in canonical controllable form is assumed the same for all
nodes for the sake of clarity. However, different realizations can be associated
to each node.
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exhibiting a lower block triangular form with E1 = 0,
Ej = e>j ⊗ In0 and ej ∈ Rhi−1 the canonical vector. By
Theorem 4.1, one gets that wi

2(t)→ 0 asymptotically because
(Ihi−1⊗S)−(Li,2⊗KQ) is Hurwitz. Accordingly, zj(t)→ 0
and ζj(t) → 0 if and only if (32) is Hurwitz. To this end,
because (Aj , Bj , Cj) are stabilizable and detectable and (9)
holds, then there exist (Lj ,Mj , Nj , Hj) ensuring that the
matrix (32) possesses all eigenvalues with negative real part.
Accordingly, one gets εj(t)→ 0 as t→∞ and thus the result
for the reaches. Let us consider now nodes in the common
j ∈ Cµ+` and the dynamics composed by (33a), (33b) and

˙̃wC =
(
(Ic ⊗ S)− (M⊗KQ)

)
w̃C

−
µ∑
i=1

(
(γiLi,1 ⊗KQ) + (Mi ⊗KQ)

)
wi

2

żj =−
µ∑
i=1

Πi
j(Li,1 ⊗QK)

)
wi

2 −BjHjQE
`
r̄wC

+ (Aj +BjHjCj)zj +Bj(Γζj +BjNjξj)

ζ̇j =−
µ∑
i=1

Ωj(Li,1 ⊗QK)wi
2 −GHjQE

µ+`
r̄ wC

+GHjCjzj + Φζj +GNjξj

ξ̇j =−MjQEr̄w̃C +MjCjζj + Ljξj

εj =Cjzj −QE`r̄w̃C

with selection matrix Ej = e>j ⊗In0 and ej ∈ Rc the canonical
vector. By Theorem 4.1, one gets that wi

2(t) → 0 and
wC(t)→ 0 asymptotically because (Ihi−1⊗S)−(Li,2⊗KQ)
and (Ic⊗S)−(M⊗KQ) are Hurwitz. Accordingly, zj(t)→ 0
and ζj(t) → 0 if and only if (32) holds. To this end,
because (Aj , Bj , Cj) are stabilizable and detectable and (9)
holds, there exist (Lj ,Mj , Nj , Hj) making the matrix in (32)
Hurwitz. Accordingly, one gets εj(t)→ 0 and the result. �

Theorem 5.2 characterizes, through the resonance condi-
tions (9), the class of output multi-consensuses which are
admissible for a network of heterogeneous dynamics (7) over
a general communication digraph G. As a matter of fact,
the assignable multi-consensuses output evolutions are the
ones whose modes (associated to a suitably defined dynamical
matrix S) are compatible with all agents’ dynamics. For this
reason, the internal model (30a)-(30b) that is injected in all
agents under feedback is homogeneous.

Remark 5.1: The dynamical matrix in (32) is the one gov-
erning the regulation error (22). Accordingly, multi-consensus
can be enforced over the network as Theorem 5.2 ensures the
existence of a controller making the corresponding dynamics
asymptotically stable that is equivalent to satisfy (32).

Remark 5.2: For the design of the local control law (30),
the knowledge of the spectral and structural properties of
the Laplacian (and hence of the network) are not required.
Also, no agent must possess the information of the cell of
the partition it belongs to. The corresponding decomposition
is used only for proving the results in a structural manner.
Accordingly, the feedback (30) can be computed in a decen-
tralized and distributed way.

Thanks to the regulation framework we have settled the
problem into [31], assuming all nodes only possess mea-
sures the output of the corresponding generator, the solution
specified in Theorem 5.2 can be extended to handle robust
design, with due modifications. This includes, for instance, the
following cases: (i) agents cannot measure the corresponding
state; (ii) measures of the state of each generator are not
available to the corresponding node; (iii) agents do not
possess information on the network configuration (and thus, of
the corresponding exosystem); (iv) the model of each agent
(i.e., the matrices Aj , Bj , Cj) are known with uncertainties;
(v) the matrix S characterizing all generators (and the multi-
consensus state dynamics) is not known to all agents. This
latter case includes different further scenarios often occurring
in practice as, for instance, the following ones: the output of
the generator is known to the corresponding agent; for a fixed
output trajectory, the exosystem (and thus the realization of
the output trajectories) is not the same for all agents.

Accordingly, the general stabilizers (30a) allow the inclu-
sion of adaptive laws or robust observers for the stabilization
of the whole dynamics independently on the knowledge of
the corresponding model and of the network structure. For
similar reasons, the internal model (30b) defines a realization
of the output evolutions of the multi-consensus (whose nature
is deduced from the measures of the reference generator) when
the specific matrix S and the network structure are available
with uncertainty.

As the intuition suggests, under stronger hypotheses the de-
sign can be notably simplified as highlighted in the following
remarks.

Remark 5.3: If each agent j ∈ V knows the corresponding
(Aj , Bj , Cj) with no uncertainty, the control (30) can be
simplified setting

Nj +HjCj = Fj , Lj −BjNj = Aj −KjCj

Kj = Mj −BjHj

so that (32) holds whenever Mj and Hj guarantee

σ

(
Aj −KjCj BjΓ
−GNj Φ

)
⊂ C−.

Remark 5.4: If each agent j ∈ V knows the corresponding
(Aj , Bj , Cj) and measures the state of the corresponding
generator, the feedback (30) reduces to the output controller

ξ̇j =Ajξj +Bjuj +Kj(yj − Cjξj)
uj =Ψjwj + Fj(ξj −Πjwj)

with Kj making σ(Aj − KjCj) ⊆ C− and the dynamical
component being a local state observer. This case represents an
extension of the solution proposed in [27] for single consensus.

Remark 5.5: When the model of each agent and the matrix S
are known to all agents, the feedback (30) can be modified as
follows: the component (30a) is replaced by the corresponding
observers presented in Remark 5.4; the internal models (30b)
constitute an observer of the state of the corresponding gener-
ator. In the latter case, the generator observer can be designed
as proposed in [26, Section 4] depending on the information
that is available to each node.
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Fig. 2. Clustering of the reference generators in the four cells of the AEP
π∗ in the state space (w1, w2) of the generators.
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Fig. 3. Containment of the output yj(t) as a function of time.

VI. EXAMPLES

A. An academic example

We consider the containment problem for the example
proposed in [27] of a set of interconnected double integrators
driven by different types of actuators,

Aj =

0 1 0
0 0 cj
0 −dj −aj

 Bj =

 0
0
bj

 Cj =
(
1 0 0

)
(34)

with aj , bj , cj > 0 and dj ≥ 0. The systems are observable
and controllable, the first two components are a double integra-
tor and the third component can be considered as the actuator
state, with speed aj and gains bj , cj . In the simulations these
parameters are randomly chosen with uniform distribution in
the interval [0, 5].

We want to confine the first component with a sinusoidal
function, thus we choose

S =

(
0 1
−1 0

)
, Q =

(
1 0

)
. (35)
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Fig. 4. Clustered trajectories of the unicycles.

The regulator equations (24) are satisfied by

Πj =

 1 0
0 1

−1/cj 0

 , Ψj =
(
aj
bjcj

dj
bj

)
. (36)

The graph in Fig. 1 contains |N | = 8 nodes and the
coarsest equitable partition is π∗ = {H1,H2, C3, C4} where
H1 = {1, 2, 3}, H2 = {4, 5}, C3 = {6} and C4 = {7, 8}.
The multiplicity of 0 as an eigenvalue of L is µ = 2, thus there
are two reaches, whose exclusive parts are H1 and H2 with
h1 = 3 and h2 = 2. The common part contains c = 3 nodes
and it is the union of C3 (with c3 = 1) and C4 (with c4 = 2).
Thus the number of cells in the common part is k = 2.

The local full-information controller is implemented as

uj = Fj(xj −Πjwj) + Ψjwj (37)

with the gains Fj chosen to assign the eigenvalues
{−0.5,−1.0,−1.5} to the matrices Aj+BjFj . The consensus
gain K is chosen as in (19), (20) with a = 2 and κ = 0.5 that
yields K = [0.9306, 0.3660]>. With random initial conditions
for the N = 8 agents, Fig. 2 shows the clustering of the
generators state in the 4 cells of the AEP π∗. Fig. 3 plots
yj(t) over time.

B. Formation control of unicycles

Consider a group of unicycles

ζ̇j =g(ϑj)vj

v̇j =
1

Mj
fj

ϑ̇j =ωj

ω̇j =
1

Jj
τj

with Mj , Jj > 0, ζj ∈ R2 the vector of cartesian position
coordinates, ϑ ∈ R the orientation, uj := (fj τj)

> ∈ R2 the
input forces and g(ϑj) = (cosϑj sinϑj)

>.
We wish to design a feedback control ensuring all nodes

in the same cluster of the AEP move in the same direction
(that is, distinct parallel linear trajectories). To this aim, by
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Fig. 5. Velocity (left) and control input f (right) of the unicycles.

assuming small velocities, we perform the design based on
the linear tangent model at a fixed angle ϑ̄j ∈ R (a priori
different for all agents) that is given by

ẋj =Ajxj +Bjuj (38)
yj =Cxj (39)

with xj = (ζ>j , vj , ϑj − ϑ̄j , ωj)> ∈ R5,

Aj =


0 0 cos ϑ̄j 0 0
0 0 sin ϑ̄j 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 , Bj =


0 0
0 0
1
Mj

0

0 0
0 1

Jj
.

 .

We note that the linear tangent model above is not control-
lable for any ϑ̄j ∈ R. Still, one can drive the agents to the
required trajectory so that the problem admits a solution. To
this end, we set the control objective with respect to one of the
Cartesian coordinates only (say the first one, ζj,1) by choosing
the controlled output yj = (ζj,1, v) with

C =

(
1 0 0 0 0
0 0 0 1 0

)
.

In the coordinates x̃j = Tjxj = (ζ1/ cos ϑ̄j , vj , ϑj −
ϑ̄j , ωj)

> ∈ R4, (38)–(39) become

˙̃xj(t) =Ãx̃j(t) + B̃juj(t)

yj(t) =C̃j x̃j(t)

Ã =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B̃j =


0 0
1
Mj

0

0 0
0 1

J j


C̃j =

(
cos ϑ̄j 0 0 0

0 0 1 0

)
and now the pair (Ã, B̃j) is controllable. Notice that the first
component of x̃ is the abscissa along the trajectory. We can
set the reference generator as wj = (ζwj,1, vj,1, ϑj− ϑ̄j), where

ζwj,1 and vj,1 are the desired position and velocity with respect
to the horizontal axis and the output is θj = (ζwj,1, ϑj − ϑ̄j)

S =

0 1 0
0 0 0
0 0 0

 , Q =

(
1 0 0
0 0 1

)
.

The Francis equations on the reduced system, ΠjS = ÃΠj +
B̃jΨj , C̃jΠj = Q are solved by Ψj = 0 and

Πj =


1

cos ϑ̄j
0 0

0 1
cos ϑ̄j

0

0 0 1
0 0 0

 . (40)

If each reference generator is initialized with ϑj − ϑ̄j = 0,
the regulator will drive ϑj → ϑ̄j ; i.e. the orientation will be
steered to the local linearization set-point. In order to make
the orientations coincide within the same cluster, we add to
the regulator design an orientation consensus algorithm on ϑ̄j ,

˙̄ϑj = −
∑
i∈Nj

ϑ̄i, (41)

thus we assume that the agents exchange yj = (ζj,1, v) and ϑ̄j .
With these choices, the unicycles in the same cluster will move
with identical velocity, direction and horizontal coordinate ζj,1
(i.e. they will be aligned along a vertical line). Finally, the
control input is

uj(t) = Fj(Tjxj −Πjwj), (42)

where Fj is chosen through an eigenvalue assignment algo-
rithm so that Ã+ B̃jFj is Hurwitz. Notice that Ã and B̃j do
not depend on ϑ̄j , thus the control gain Fj does not need to
be adapted if ϑ̄j is modified by the consensus algorithm on
the orientation.

Assuming the graph in Fig. 1, the unicycles will form four
clusters corresponding to H1, H2, C3 and C4. In H1, H2 the
orientation will depend on the initial value ϑj of the root
nodes, j ∈ {1, 2} and j ∈ {4, 5} respectively, that will
determine the consensus value ϑ of the cluster. Since the
regulator make ϑj → ϑ̄, this will steer the unicycles in the

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3330929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on December 05,2023 at 08:00:40 UTC from IEEE Xplore.  Restrictions apply. 



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 11

cluster to assume that orientation. Analogously, the horizontal
velocity and position of the nodes in H1, H2 will depend on
the initial conditions of the reference generators of the root
nodes, j ∈ {1, 2} and j ∈ {4, 5} respectively. Finally, the
orientation, horizontal speed and position of nodes in C3 and
C4 will converge toward a suitable convex combination of the
respective variables in H1, H2.

The trajectories of the unicycles for t ∈ [0, 50] are shown
in Fig. 4. Initially, the unicycles’ coordinates are chosen
randomly in [−5, 0]× [−5, 0], with 0 initial speed and random
orientation ϑj = ϑ̄j . When the control gains Fj are chosen to
assign to Ã+B̃jFj the eigenvalues {−1, −1.2, −1.4, 1,−1.6}
the unicycles move toward the top right corner and form 4
clusters. Fig. 5 (left) shows the clustering of velocities of the
four groups as a function of time t ∈ [0, 20] and Fig. 5 shows
that the control input goes to 0 as the steady state is reached.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, moving from the topology-induced contain-
ment design proposed in [26], the authors extend multi-
consensus to a network of heterogeneous linear systems in
the case of output information feedback, ensuring that parts of
the overall multi-agent system simultaneously track different
arbitrary trajectories.

Future work will be aimed, on the one hand, at further
realizing the effectiveness of the proposed approach with
respect to practical application scenarios, and, on the other
hand, at extending the proposed output feedback containment
design to networks of nonlinear interacting agents, ultimately
removing the exosystem itself and embedding noise, delays
and intermittent communication [32]–[35].
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